

イプシロンSロケット 2段モータ(E-21)地上燃焼試験調査状況

令和5年10月26日 宇宙航空研究開発機構

宇宙輸送技術部門 事業推進部 部長 佐藤 寿晃 イプシロンロケットプロジェクトチーム プロジェクトマネージャ 井元 隆行

目 次

1. イプシロンSロケットの概要

- 1.1 イプシロンSロケット機体仕様(再掲)
- 1.2 イプシロンSロケット2段モータの概要(再掲)

2. イプシロンSロケット2段モータ地上燃焼試験

- 2.1 地上燃焼試験の概要(再掲)
- 2.2 地上燃焼試験結果

3. 原因調査状況

- 3.1 FTA
- 3.2 試験データ
- 3.3 破壊起点部位の特定
- 3.4 原因の検討

4. 今後の計画

ロケットシステム

1.1 イプシロンSロケット機体仕様 (強化型との比較)(再掲)

オプション形態

イプシロンS

(仕様統一)

	全長		約26m		約27.2m		
	段構成		固体3段	固体3段 +PBS	固体3段+PBS		
	フェアリング分離		2段燃焼開始前 (機軸方向加速度なし)		2段燃焼中 (機軸方向加速度あり)		
	アビオニクス		H-IIAと共通(一部)		H3と共通(一部)		
	3段	搭載方式	フェアリング内 (インポーズ)		フェアリング外 (エクスポーズ)		
		推進薬量	約2.5トン		約5トン		
		姿勢制御	スピン安定		TVC + PBS		
	2段	推進薬量	約15トン		約18トン		
		姿勢制御	TVC	+ RCS	TVC + RCS		
	1段	モータ	SR	B-A	SRB-3		
		推進薬量	約6	6トン	約67トン		
		姿勢制御	TVC +	SMSJ	TVC + SMSJ		
B							

強化型

基本形態

PBS:Post Boost Stage(小型液体推進系) TVC:Thrust Vector Control(推力方向制御) RCS:Reaction Control System(ガスジェット装置) SMSJ:Solid Motor Side Jet(姿勢制御用補助推進系)

Epsilon 1.2 イプシロンSロケット2段モータの概要 (強化型との比較)(再掲)

■ 打上げ能力最適となる推進薬量(強化型2段モータをサイズアップ)。
■ 強化型2段モータとSRB-3開発成果を活用し、高信頼性・低コスト化を追求。

強化型 2段モータ

項目	強化型2段モータ	イプシロンS 2段モータ
固体推進薬	コンポジット推進薬	コンポジット推進薬
真空中推力	約470 kN	約610 kN
性能(Isp)	295 s	294.5 s
固体推進薬量	約15 ton	約18 ton
全長	4.0 m	4.3 m
直径	ф 2.5m	φ 2.5m
燃焼時間	130 s	約120 s
ノズル駆動方式	TVC	TVC

TVC: Thrust Vector Control

2.1 地上燃焼試験の概要

(再揭)

- 試験目的 : 以下の技術データを取得し、設計妥当性を確認する。
 - ① モータ着火・燃焼・推進特性
 - ② モータ・ノズル構造特性、断熱材特性
 - ③ TVCシステム性能
 - ④ 振動・衝撃等の環境
- 試験場所 : 能代ロケット実験場 真空燃焼試験棟
- 燃焼時間 : 120秒程度
- 供試体 : 短ノズル型

(大気圧下で試験を行うため、ノズル内部流れの剥離防止として短ノズルを使用)

■ 計測項目 : 推力、燃焼圧力、各部温度・歪・加速度等の約170点

天阪/旅历武殿口旅左夹					
実機仕様	燃焼試験仕様				
コンポジット推進薬	コンポジット推進薬				
約610 kN	約560 kN				
294.5 s	267.3 s				
約18 ton	約18 ton				
4.3 m	3.2 m (短ノズル型のため)				
ф 2.5m	ф 2.5m				
約120 s	約120 s				
TVC	TVC				
	<u> (戌ン) ががらいみ (大) (水) (水) (水) (水) (水) (水) (水) (水) (水) (水</u>				

<u>実機/燃焼試験仕様差異</u>

⁵

2.2 地上燃焼試験結果 (実施状況·被害状況)

【実施状況】

点火日時: 2023年7月14日(金) 09:00 試験場所: 能代ロケット実験場 真空燃焼試験棟 結果:

- ① 予定時刻に点火し燃焼試験を開始。
- ② 点火後約20sあたりから燃焼圧力が予測圧力から乖離。
- 高火後約57sの時点で燃焼圧力約7.5MPaでモータが爆発(燃焼圧力は最大使用圧力(8.0MPa)及び耐圧試験の圧力(10.0MPa)以下)。
- ④ モータ爆発までノズル駆動は正常。
- ⑤ モータ爆発により真空燃焼試験棟で火災発生。消防隊による消火活動により約2時間後に鎮火。
- ⑥ 第2段モータの大部分は立入規制区域内である真空燃焼試験棟内外に飛散した。真空燃焼試験棟内外の飛散物の大部分を回収。

※赤字:前回報告からの更新

【被害状況】

- 人的被害:被害報告なし
- 第三者物的被害:被害報告なし
- JAXA設備の損傷:真空燃焼試験棟及びその内部設備の損壊、実験場内隣接建屋の 破損(窓ガラス、扉等)

2.2 地上燃焼試験結果 (爆発前後の真空燃焼棟映像)(再掲)

正常燃焼(左図)から1/60s後に爆発・火炎が広がる(右図)。

異常発生直前(南側)

異常発生直前(北側)

異常発生直後(北側)

2.2 地上燃焼試験結果 (損壊状況)(再掲)

■ 真空燃焼試験棟の損壊状況を以下に示す。

真空燃焼試験棟(爆発後)

2.2 地上燃焼試験結果 (圧力・推力・画像データ) (再掲)

FX :モータ機軸方向推力 PIG :イグナイタ圧力 PC :モータケース圧力

- 56.970s手前から圧力が変動し、5ms程 度でゼロまで降下。
- 2 推力は増加し、56.971sまでに精度を保 証している計測機器の校正範囲 (500kN)を超過。
- ③ 高速度カメラ画像では56.972sまで正常で、1ms後の56.973sの画像で黒煙が発生。
- ④ 高速度カメラ画像では56.973sまでの間、 ノズル出口部は形状を保っている。

図 高速度カメラ画像(ノズル付近拡大)

3 原因調査状況 3.1 FTA (再掲)

【FTAの分析状況】

- ▶「2段モータ爆発」についてFTAを展開し、「モータケース破壊」と「ノズル破壊・脱落」の 2要因に分解し、製造・検査データ、試験データに基づき詳細な分析を実施していると ころ。
- ▶ 現時点においては、何らかの理由でモータケースに熱的に過大な負荷がかかり、構造部材が強度を維持するための許容温度を超えたことで破壊に至ったと推定。その要因としては、「推進薬燃焼異常」「インシュレーション断熱不良」が残っている。

3 原因調査状況

3.1 FTA

3 原因調査状況 3.2 試験データ

- 試験データの特記事項を以下に示す。
 - ① 点火後20sあたりから燃焼圧力が予測圧力から高い側に乖離【図1】
 - ② 点火後33sあたりから燃焼圧力上昇幅拡大【図1】
 - ③ 点火後57sあたりでモータケースの加速度・歪とも前方側より後方側の方が早く変動
 - ④ 点火後57sあたりで燃焼圧力は低下、推力は上昇(異常発生時の燃焼圧力は最大使用圧 カ以下)【2.2項】
 - ⑤ 異常発生直後に下側が発光【図2】
 - ⑥ 異常発生直後にモータケースとみられる破片が飛散(ノズルはそのあと飛散)【図2】

- 回収品分析結果の特記事項を以下に示す。
- ⑦ モータケース後方側口元部破片 ⇒ 下側から破断
- ⑧ モータケース後部側インシュレーション破片 ⇒ 板厚が予測より小(熱負荷が予測より大)
- ⑨ イグナイタ構成品(イグブースタ) ⇒ 先端部が欠損【図3】

3 原因調査状況 3.2 試験データ:図1

主推力(海面上推力)

13

LA KA

3 原因調査状況 3.2 試験データ:図3

3 原因調査状況 3.3 破壊起点部位の特定

【破壊起点部位の特定状況】

- ▶ 破壊起点部位の特定のためモータケース起点、ケース・ノズル結合部起点、ノズル起点の3箇所に分解してFTAを展開。
- ▶ これまで確認した事実を基に、破壊起点部位はモータケース後方ドームと特定。

3 原因調査状況 3.3 破壊起点部位の特定

3 原因調査状況 3.4 原因の検討

- ■後方ドームが破壊起点であることをもとに「推進薬損傷」、「インシュレーション損傷」を トップ事象とした詳細FTAを展開して分析した結果、推進薬・インシュレーションの製造 不良(材料・製造)が原因ではなく、原因を以下の2つに絞り込んだ。
 - ① モータケースと推進薬の隙間が小さいため輸送時等の振動による接触荷重で推進薬かイン シュレーションが損傷【FTA:1-1-2,2-1-2】
 - ② イグブースタの一部(金属溶融物)が飛散して推進薬かインシュレーションが損傷【FTA:1-2-3-2, 2-2-3-2】

3 原因調査状況 3.4 原因の検討 推進薬損傷FTA

○:原因である

△:原因の可能性を否定できない

×:原因ではない

3 原因調査状況 3.4 原因の検討 インシュレーション損傷FTA

(凡例)

○:原因である

△:原因の可能性を否定できない

×:原因ではない

4 今後の計画

- 絞り込んだ2つの原因に対して追加検証(解析、試験)を実施し、原因を特定する。
- 原因調査と並行して直接対策と3段モータへの水平展開を検討し、再地上燃焼試験計画を 設定する。

(参考) 水平展開の状況

前回報告にて、SRB-3については材料の一部(推進薬のバインダ、インシュレーション)が共通であることを踏まえての影響評価を継続するとしていたが、原因調査の進捗により、材料には異常がないことが確認でき、SRB-3に懸念事項はないと評価した。

なお、H3試験機2号機用SRB-3については万全を期すため、要因として残る項目に関する製造・検査データの再確認も行い、この観点においても懸念事項はないと評価した。

また、原因調査の進捗により後方ドームが破壊起点であることをもとに原因が2つに 絞りこまれたことを受けて、下表に示す通り2つの原因に対応する影響評価を行い、 SRB-A、SRB-3に対して今回の事象からの反映が必要な懸念事項はないと評価した。

①モータケースと推進薬の隙間が小さいため輸送時等の振動による接触荷重で推進薬かインシュレーションが損傷

モータケースと推進薬の隙間形状はモータ毎に設計され、SRB-A/SRB-3はE-21の隙間形状と大きく異なる。 この形状の違いや輸送形態の違い(SRB-A/SRB-3は横置き)により隙間の接触は発生しないことを解析により確認済みである。 また、地上燃焼試験(SRB-A 14回、SRB-3 3回)を通じて、試験後の供試体確認を含めインシュレーションが正常に機能したことを検証 済みである。

上記に加え、フライトでの検証(SRB-A 100本以上、SRB-3 2本)も良好に完了していることも踏まえ、この事象に対してSRB-A/SRB-3 に懸念事項はない。

②イグブースタの一部(金属溶融物)が飛散して推進薬かインシュレーションが損傷

SRB-A/SRB-3はE-21とイグブースタ自体は同一仕様であるが、主モータに点火するためのイグナイタ仕様は大きく異なる。 なお、SRB-A/SRB-3のイグナイタはほぼ同一仕様(推進薬のバインダが相違)である。

このイグナイタ仕様の違いにより、イグブースタへの加熱量も大きく異なるため、SRB-A/SRB-3のイグブースタは溶融しないことを解析 により確認済みである。

また、地上燃焼試験(SRB-A 14回、SRB-3 3回) を通じてイグブースタの溶損/欠損は発生せず、イグブースタの耐熱性に問題がない ことを検証済みである。

上記に加え、フライトでの検証(SRB-A 100本以上、SRB-3 2本)も良好に完了していることも踏まえ、この事象についてSRB-A/SRB-3 に懸念事項はない。

