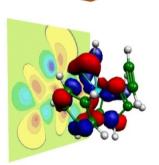


Elements Strategy Initiative for Catalysts and Batteries (ESICB)

AIM of ESICB

- ◆ Development of high performance catalysts with less use of and without use of critical-elements
- ◆Development of critical-elements-free rechargeable batteries of high performance Contribution to the realization of sustainable society
- **◆**Elucidation of guidance principles and description of processes during catalysis and battery operation


Deepening the science of interface and surface of complex and composite systems

Tateyama

Otani

Nagoya Univ.

Satsuma

京都大学 **KYOTO UNIVERSITY**

Tanaka Director

Sato

Hagiwara

Dokko

Morikawa Yamashita

Osaka Univ.

Ohta M

Hokkaido Univ.

Shimizu Taketsugu

Yamada Co-Director

Tsukuda GL

ESICB Organization

T. Tanaka Director Catalysts (Kyoto U.)

A. Yamada Co-Director **Batteries** (U. Tokyo)

K. Ohta Project Manager (Kyoto U.)

Labs:40 Researchers: 120

Group leaders

Fundamental

M. Ehara **Electronic Theory** (Inst. Mol. Sci.)

Material Synthesis

M. Machida TW Catalysts (Kumamoto U.)

S. Okada Post LIB (Kvushu U.)

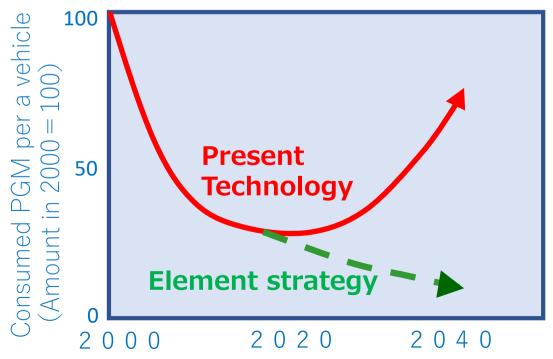
S. Komaba **Na Batteries** Tokyo U. Sci.)

Kyoto U., U.Tokyo Inst. Mol. Sci., Kyushu U., Kumamoto U., Tokyo U. Sci.,

Hokkaido U., NIMS, Nagova U., AIST, Tohoku U., Osaka U. Waseda U., Kobe U., Nagoya Inst.Technol., Tokyo Metropolitan U., Yokohama Nat. U., etc.

Target elements

in catalysts and batteries


PGM (Platinum Group Metals) in automotive catalyst

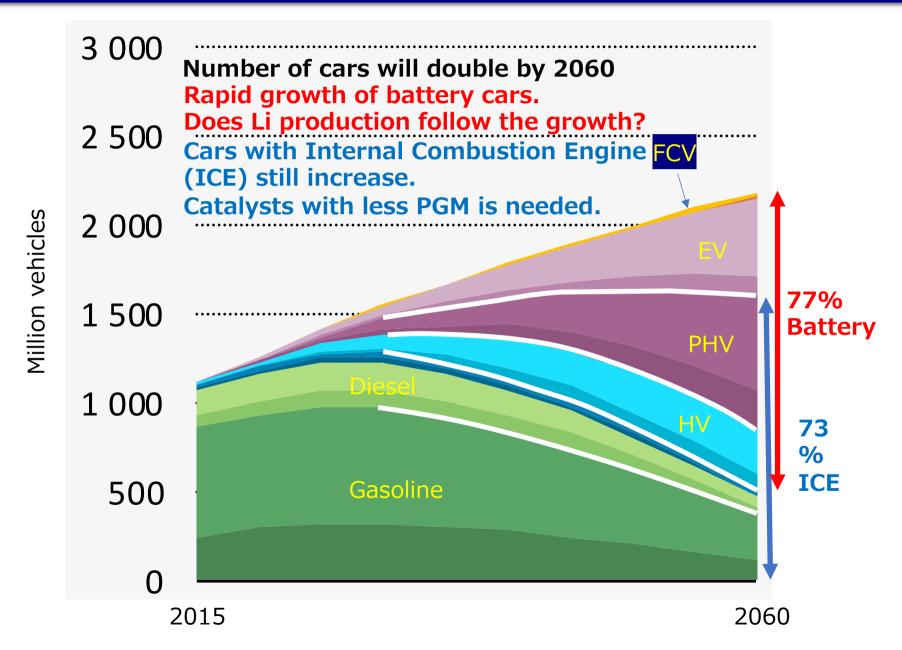
Consumption of PGM for automotive catalyst (2012)

	Mining / ton	Demand / ton	Demand fo Automobile / ton	
Pt	190	240	100	(42)
Pd	205	300	210	(70)
Rh	23	30	25	(83)

PGM is essential for automotive catalyst for purification of exhaust gas

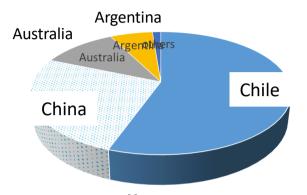
- A natural resources issue

- Severe regulation
- Low temperature of exhaust gas

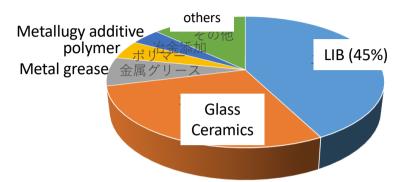


Resulting in an increase in PGM use

Technology of less use of PGM or replacement is desired.


IEA forecast of stock-base vehicles -2060

in 2017


Lithium Production

Estimated reserves of Li

84.6 million ton as LCE Lithium element is uneven distributed.

Classified by use of Li

217 k ton as LCE in 2017 LCE: lithium carbonate equivalent Ref. USGS, Industrial Minerals

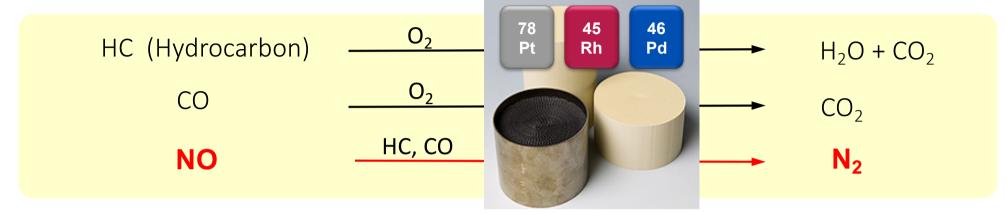
- World production of lithium may not follow the estimated increase of battery cars although the lithium production will also increase.
- Production of 5 millions of battery electric cars is estimated in 2025, corresponding to the use of 150-250 k ton Li as LCE.

And price of lithium remarkably rises up, more than twice during last two years

Rechargeable Battery composed of abundant elements, alternative to LIB is desired.

Main research themes in ESICB

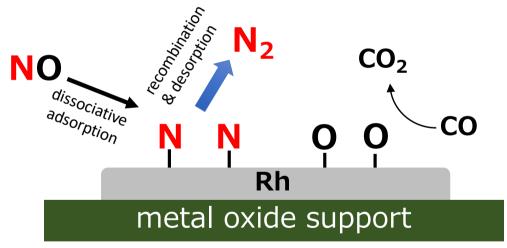
Catalyst


- Reduction of PGM use in TWC (three-waycatalyst) working at low temperature
- Realization of PGM-free TWC comparable to present PGM TWCs

Rechargeable battery

- Establishment of Na battery comparable to LIB
- Proposal of future rechargeable batteries

To save PGM in Three-Way-Catalysts


Purification of exhaust gas from gasoline engine

√ deNOx takes place on PGM surface.

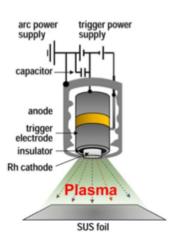
General policy to save PGM

✓ Stabilization of fine PGM nanoparticles and prevention of sintering of particles to maintain high specific surface area have been the way to save PGM.

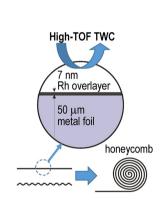
Prevention of sintering growth

support

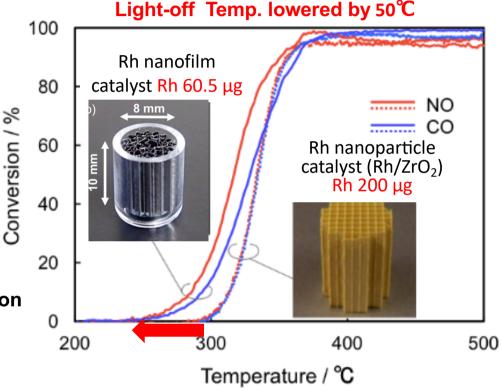
support

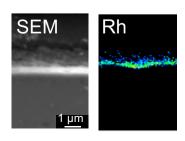

Fine particles: active

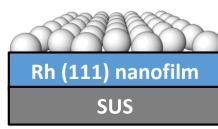
Large particles: less active


Rh nanofilm catalyst

enhancement of activity of Rh metal


Collaboration between activity measurement and DFT calculations suggested that Rh(111) plane is the most active for NO reduction rather than nanoparticle with various planes.

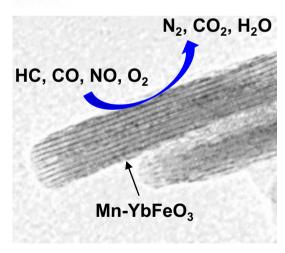

Pulsed AP deposition of Rh onto an SUS foil to create Rh(111) nanofilm

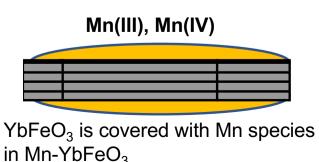

Miniature metal honeycomb fabrication

1,000 shots of AP pulses

3 nm thickness

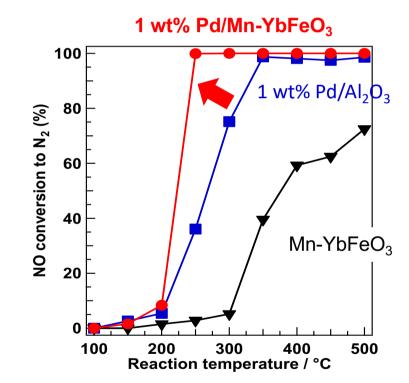



✓ Nanofilm catalyst with 1/3 lower Rh amount shows higher activity at low temperature than conventional Rh catalyst.


H. Yoshida, K. Koizumi, M. Ehara, J. Ohyama, M. Machida et al., JPCC 2019, 123, 6080. JP2015-166264

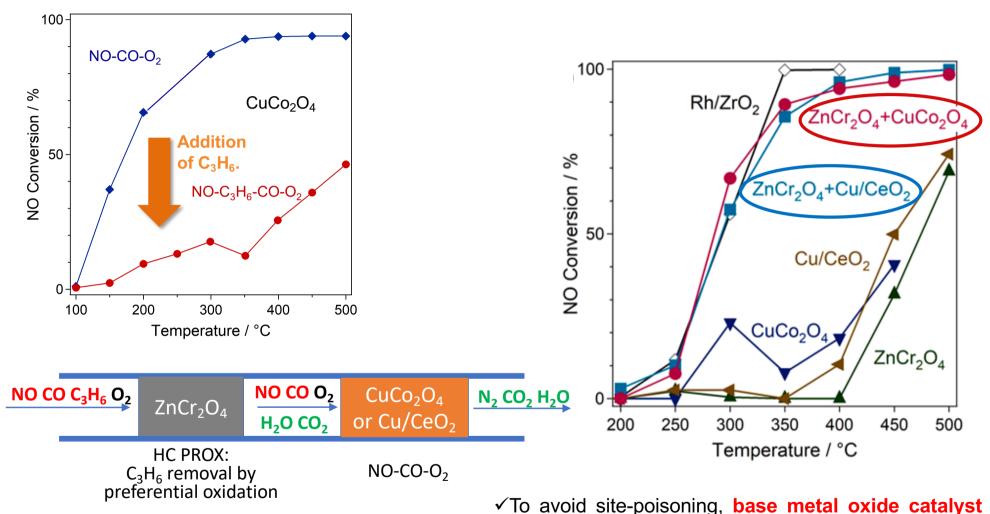
Pd/Mn-modified h-YbFeO₃

Activating MvK-type NO reduction



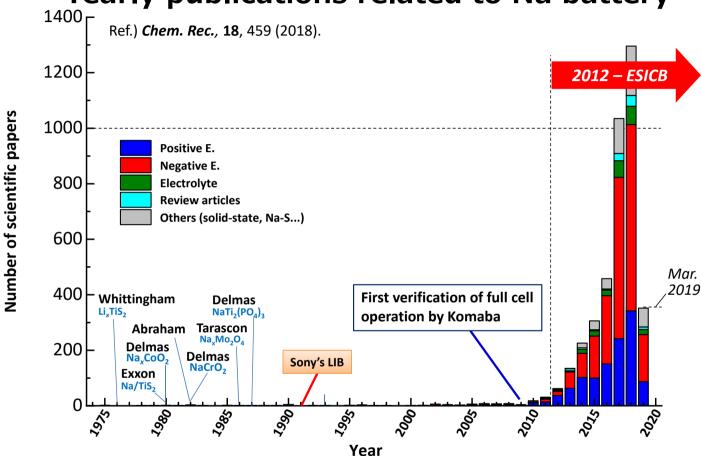
MvK-type NO reduction

 $\begin{aligned} &\text{CO + O}_{\text{L}} \rightarrow \text{CO}_{\text{2}} + \text{V}_{\text{O}} \\ &\text{2NO + 2V}_{\text{O}} \rightarrow \text{N}_{\text{2}} + \text{2O}_{\text{L}} \end{aligned}$


Pd works as a promoter

✓ By utilizing MvK-type NO reduction mechanism over catalyst support (Mn-YbFeO₃), **PGM use can be reduced to 1/10**.

S. Hosokawa, K. Teramura, T. Tanaka et al, Catal. Sci. Technol. 2016, 6, 7868. PCT/JP2016/057771


Realization of PGM-free tandem catalyst: ZnCr₂O₄ + CuCo₂O₄, ZnCr₂O₄+Cu/CeO₂

for preferential oxidation of C₃H₆ was placed at upstream of Cu/CeO₂, resulting in high activity comparable to Rh benchmarking catalyst.

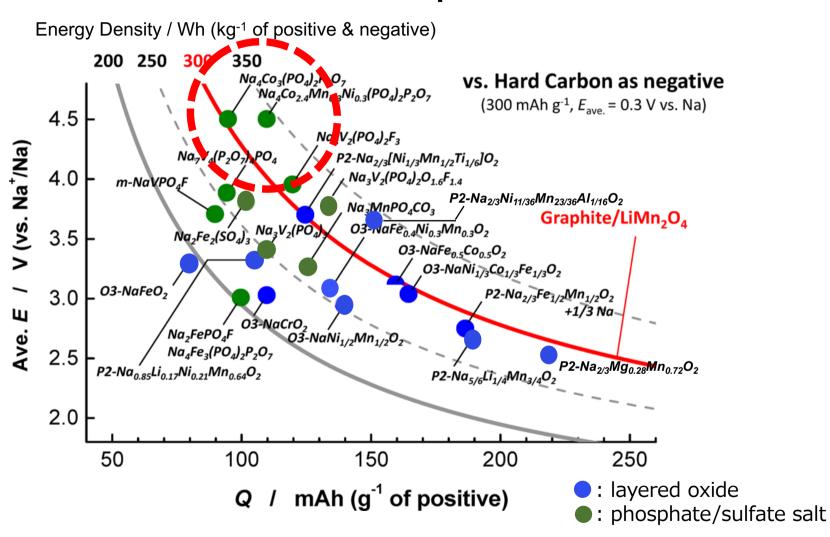
Positive electrode for sodium ion battery

Yearly publications related to Na battery

Discovering and searching for cathode materials

as well as development of ionic liquid for electrolyte

Na: disadvantage against Li:


Heavier atomic weight and more positive redox potential

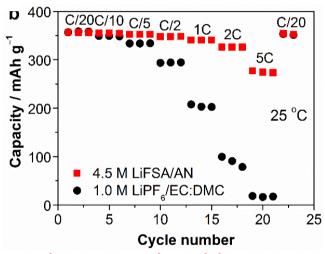
Na: advantage:

High natural abundance and larger ionic radius

Variety of cathodes for Na battery

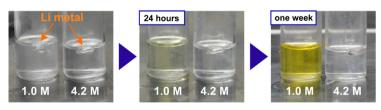
Effective cathode materials reported till 2015

ESICB's list of cathode materials is at the level of international database.

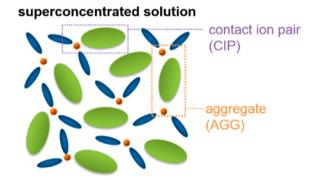

Revision of Fig. 26 in Yabuuchi, Kubota, Dahbi, Komaba, *Chem. Rev.*, 2014, 114, 11636

Unusual behavior of superconcentrated electrolytes

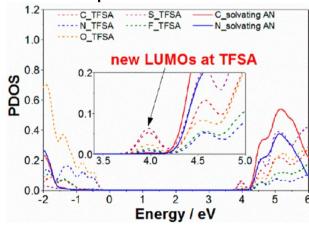
- The second start of highly concentrated electrolytes


4.5 M LiFSA/AN (acetonitrile)/ Li - Graphite anode

Molar ratio: Li/AN= 1/2
Performance of Li-graphite
anode half cell

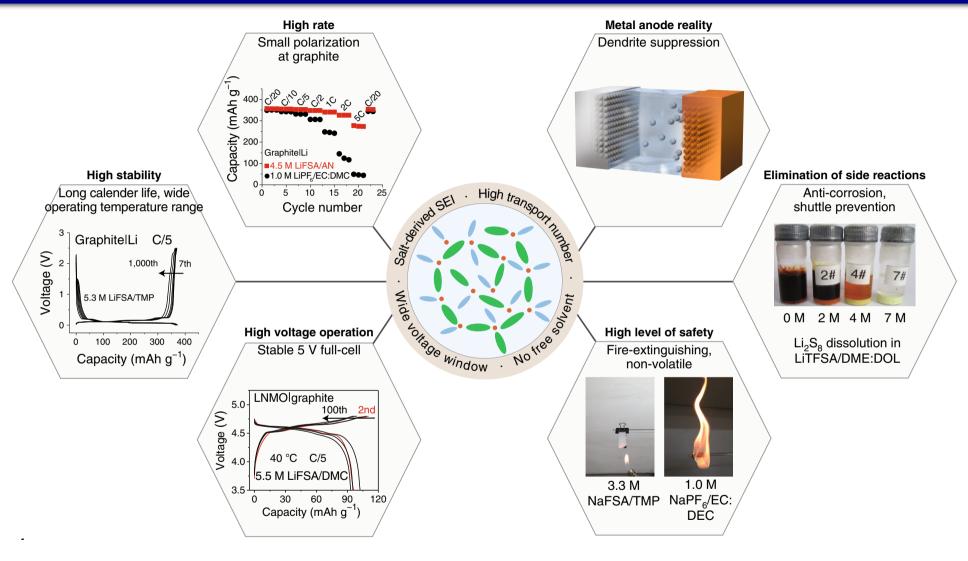

High rate and stable operation

Reactivity of Li and LiFSA/AN solutions


Enhancement of reductive stability of solvent

CP-DFT-MD simulation

No free solvents or anions


PDOS of superconcentrated solution

SEI film is formed by decomposition of anions

Y. Yamada, K. Sodeyama, Y. Tateyama, A. Yamada et al., J. Am. Chem. Soc., 2014, 136, 5039.

Superconcentrated electrolytes

Multiple functionality of superconcentrated electrolytes applicable to both Na and Li batteries

Publications and Patent Applications

Original papers

Patent applications

	Total publications	5 <i.f.<10< th=""><th>10<i.f.< th=""><th></th><th>Domestic</th><th>Inter- National</th></i.f.<></th></i.f.<10<>	10 <i.f.< th=""><th></th><th>Domestic</th><th>Inter- National</th></i.f.<>		Domestic	Inter- National
2012	18	6	0	2012	2	0
2013	97	20	4	2013	5	1
2014	272	57	14	2014	4	1
2015	200	41	16	2015	4	6
2016	204	54	12	2016	6	1
2017	245	58	11	2017	9	3
2018	254	44	27	2018	4	5

Summary and vision for the future

Achievement

Catalysis

- · Establishment of methodologies for reduction of PGM use in TWC
- · Design of PGM-free TWC

Battery

- · Proposal of sodium ion battery comparable to lithium ion battery
- · Discovery of multiple functionality of superconcentrated electrolytes

Social implementation

Testing stage for practical use

· 6 for catalyst and 7 for battery materials and technologies

Final stage of commercialization

• 5 for catalyst and 4 for battery materials and technologies, and 4 softwares

Projects in the final term

Catalysis

- · Realization of PGM-free TWC
- · Development of TWC operatable at very low temperature

Battery

- · Development of cathodes for high energy density
- · Development of future battery; solid state Na battery, battery with aqueous electrolytes, etc.

Electrocatalysis

- · Development of PGM-free/PGM less used cathodes of fuel cell
- · Development of PGM-free OER and ORR electrocatalysts

Future vision of ESICB center at Kyoto University

- 11ESICB unit will be continued after finishing the project. Upgrading the unit to independent center is planned.
- Strengthening the association among catalyst center at Kyoto and battery center at Tokyo tightly bound with the group of electronic theory at IMS