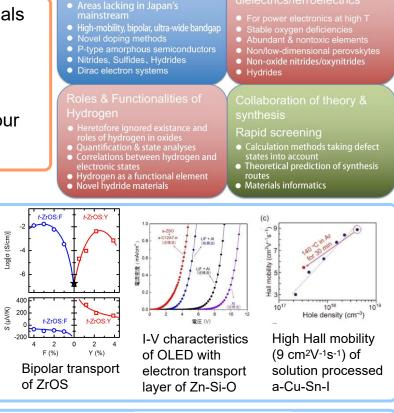
Creation of novel materials & devices with universal issues clarified

Project Outline for the 2nd Phase (FY2016–2018)

- Further evolution in the challenging exploration of new materials with expanded target materials based on novel concepts, structures & compositions
- Concentration on candidate materials for industrialization
- Starting collaborative research with industry partners in the four areas of focus shown in the figure to the right


Research Results (FY2016–2018)

Novel Semiconductors & Devices

- 1. ZrOS: bipolar semiconductors based on early transition metals
- 2. Zn-Si-O (ZSO): high-performance nanostructured semiconductors composed of abundant elements for electron transport in OLED
- 3. Cu-Sn-I: p-type amorphous semiconductors with the highest mobility
- ¹ T. Arai, *et al.*, *JACS* **139**, 17175-17180 (2017).
- ² N. Nakamura, et al., Adv. Electron. Mater. 46, 1700352 (2018).
- ³ T. Jun, et al., Adv. Mater. 30, 1706573 (2017).

Non-Perovskite Dielectrics for Power Electronics

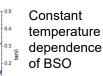
- 1. HfO₂:Y: fluorite ferroelectrics with high $T_{\rm C}$ & $P_{\rm S}$
- 2. BSO ($(Bi_xLa_{1-x})_2SiO_5$) : silicate dielectric with high ε_r at high temps satisfying standard requirements for automotive power electronics
- 3. CTAS (Ca₃TaAl₃Si₂O₁₄): Langasite piezoelectric for automobiles
- ¹ T. Shimizu, *et al.*, *Sci. Reps.* **6**, 32931 (2016).
- ² H. Taniguchi, *et al.*, *Phys. Rev. Mater.* **2**, 045603 (2018).
- ³ X. Fu, et al., Cryst. Growth. Des. **16**, 2151-2156 (2016).

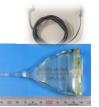
(Bi_{0.9}La_{0.1})₂SiO₅ 100kHz

400

Temperature (K)

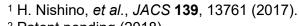
prototype pressure


sensor module


CTAS single

crystal and

in $T_{\rm C}$ - $P_{\rm S}$ correlation



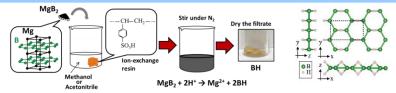
LaFeAsO, Quantification & State Analysis of Hydrogen (H) Discovery of 1. Highly sensitive (10¹⁶ cm⁻³) quantification of H in condensed matter hvdrides bv 2. Discovery of hydrides in the amorphous oxide semiconductor a-IGZO DFT elucidation FTIR & DFT 60to004 /e0000t08of high $T_{\rm C}$ H_xS and elucidation of their roles in the instabilities of transistor devices >0.5 Å > 0.5 Å-3 in a-IGZO > 0.05 Å⁻³ > 0.05 Å 3. Superior stability of hydrides to V_{0} in iron pnictide superconductors $V_{\rm O}$ in iron Development 4. Pressure dependence of superconducting H_xS by DFT calculations pnictide of system to superconductors ¹ T. Hanna, et al., Rev. Sci. Instrum. 88, 053103 (2017). measure lowsubstituted with densitv ² J. Bang, et al., Appl. Phys. Lett. **110**, 232105 (2017). hvdrides hydrogens ³ Y. Muraba, et al., Inorg. Chem. 54, 11567 (2015). ⁴ R. Akashi, et al., Phys. Rev. Lett. **117**, 075503 (2016). Typical Results of Theory-Synthesis Collaboration Interstitial fluorine 1. CaZn₂N₂: red-light emitting novel nitride semiconductor doping for p-type Cu₂N demonstrated by materials informatics and high-pressure synthesis 2. Ca₃N:F: DFT-based theoretical prediction and experimental demonstration of p-type doping of interstitial fluorine Local Structure 3. Sr_5P_3 : novel intermetallic 1D electride theoretically predicted by

- exploration based on GA and experimental demonstration
- ¹ Y. Hinuma, et al., Nat. Comms. 7, 11962 (2016).
- ² K. Matsuzaki, et al., Adv. Mater. 30, 1801968 (2018).
- ³ J. Wang, *et al.*, *JACS* **139**, 15668 (2017).

Other Remarkable Achievements

- 1. BH nano sheets: discovered novel covalent two-dimensional electronic materials
- Single-molecule resonant-tunneling transistor: demonstrated a channel of a few nanometers and operations aiming at achieving high-speed electronics

² Patent pending (2018).


Device structure and I-V characteristics of COPVn single-molecule resonant-tunneling transistor

Theoretically predicted

and red-light emission

phase diagram

from CaZn₂N₂

Crystalline and

of Sr₅P₃

electronic structu

Fabrication process for two-dimensional electronic materials: BH sheets

