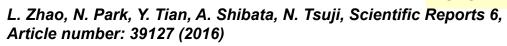
Elements Strategy Initiative for Structural Materials Director: Isao Tanaka (Kyoto University) <u>Fundamental research on structural materials</u> <u>based on the elementary processes of deformation and fracture</u> Research Project Outline for 2nd Phase (FY2016–2018)

Improvement of ductility of metallic structural materials by bulk nanostructuring and elucidation of its mechanisms

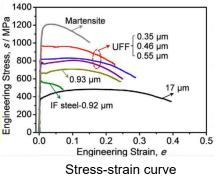

©Elucidation of deformation mechanisms in steel, titanium and magnesium materials and acquisition of control guidelines.

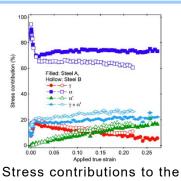
Derivation of common principles and design guidelines, and establishment of common guiding principles.

Research Results (FY2015–2017)

New metallurgical technologies that may enable production of UFG steels

- ✓ New strategies for ultra grain refinement can be developed by combining DT and DRX mechanisms, based on which fully ultrafine microstructures having a mean grain size as low as 0.35 microns and exhibiting superior mechanical properties can be obtained without high-strain deformation.
- ✓ Obtained a significantly higher yield strength of 770–953 Mpa, a tensile strength of 810–973 MPa, and total elongation of 23–29%.
 UFG steels by DT and DRX


Martensite phase stress and the strengthening mechanism in TRIP steel by neutron diffraction


- ✓ Stress contributions to the flow stress were evaluated by multiplying the phase stresses by their phase fractions.
- ✓ The stress contribution from martensite was observed to increase during plastic deformation.

In-situ neutron diffraction study during tensile deformation in TRIP steel

S. Harjo, N. Tsuchida, J. Abe, W. Gong, Scientific Reports 7, Article number: 15149 (2017)

flow stress from three phases

\clubsuit Refined β grains and both strength and ductility improved in Ti-6AI-4V alloy

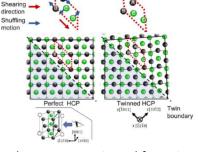
- ✓ Fully martensite microstructures transformed from refined β grains were obtained in a Ti-6AI-4V alloy by rapid heat treatment (RHT)
- \checkmark By increasing the heating rate, the resulting β grain size was refined.
- \checkmark Both strength and ductility improved with the decrease in β grain size.

Both strength and ductility increased in Ti-6AI-4V alloy

Y. Chong, T. Bhattacharjee, J. Yi, A. Shibata, N. Tsuji, Scripta Mater. 138, 66-70 (2017)

Shuffling-controlled versus strain-controlled deformation twinning: The case for HCP Mg twin nucleation

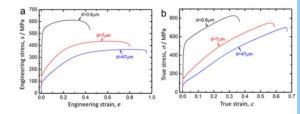
- ✓ Shuffling-controlled deformation twinning is expected to have different temperature and strain-rate sensitivities from strain-controlled deformation twinning due to its relatively weaker strength of long-range elastic interactions, particularly at the twin nucleation stage.
- \checkmark By increasing the heating rate, the resulting β grain size was refined.


Shuffling of atoms in Mg twin nucleation

1400 1298MP: 1190MPa σ/MPa 1200 1000 800 $D_{\beta}=200\mu m$ $D_{\beta}=40\mu m$ $D_{\beta}=15\mu m$ $D_{\beta}=8\mu m$ ε,=13.4% ε,=16.3% ε,=19.8% 600 400 200 0.00 0.05 0.10 0.15 0.20 Engineering strain, s

Engineering stress-strain curves of fully martensite microstructures with different β grain sizes

M=4 sup


Atomic arrangements and four-atom supercell shape of perfect HCP and twinned HCP configurations

Significant contribution of stacking faults to strain hardening behavior

- \checkmark By decreasing the grain size from 47 μ m to 0.6 μ m, the yield strength greatly increases from 80 MPa to 450 MPa.
- ✓ Instead of twinning, we detected a significant contribution from stacking faults (SFs) irrespective of the grain size, even in the initial stage of the tensile process.
- ✓ Deformation twinning was sensitive to grain size, and the onset of twinning was postponed to a higher strain with an increase in the grain size.
 Elucidation of plastic deformation process

Y. Z. Tian, L. J. Zhao, S. Chen, A. Shibata, Z. F. Zhang, in ultrafine-grained Cu-15%Al alloy

N. Tsuji, Scientific Reports 5, Article number: 16707 (2015)

Mechanical properties of Cu-15Al specimens with different grain sizes