Ultrafast Magnetic Dynamics of Mott insulator Sr₂IrO₄

P. M. Dean, ^{1, π} Y. Cao, ^{1, †} X. Liu, ^{2, 3, ‡} S. Wall, ⁴ D. Zhu, ⁵ R. Mankowsky, ^{6, 7} V. Thampy, ¹ X. M. Chen, ¹ J. Vale, ⁸ D. Casa, ⁹ Jungho Kim, ⁹ A. H. Said, ⁹ P. Juhas, ¹ R. Alonso-Mori, ⁵ J. M. Glownia, ⁵ A. Robert, ⁵ J. Robinson, ⁵ M. Sikorski, ⁵ S. Song, ⁵ M. Kozina, ⁵ H. Lemke, ⁵ L. Patthey, ¹⁰ S. Owada, ¹¹ T. Katayama, ¹² M. Yabashi, ¹¹ <u>Yoshikazu Tanaka</u>, ¹¹ T. Togashi, ¹² J. Liu, ¹³ C. Rayan Serrao, ¹⁴ B. J. Kim, ¹⁵ L. Huber, ¹⁶ C.-L. Chang, ¹⁷ D. F. McMorrow, ⁸ M. F¨orst, ^{6,7} and J. P. Hill ¹

¹Brookhaven National Laboratory,²Chinese Academy of Sciences, ³Collaborative Innovation Center of Quantum Matter, Beijing, ⁴The Barcelona Institute of Science and Technology, ⁵Linac Coherent Light Source, ⁶Max Planck Institute for the Structure and Dynamics of Matter, ⁷Center for Free Electron Laser Science, Hamburg, ⁸University College London, ⁹Advanced Photon Source, ¹⁰Paul Scherrer Institut, ¹¹RIKEN SPring-8, ¹²Japan Synchrotron Radiation Institute, ¹³University of Tennessee, ¹⁴University of California, Berkeley, ¹⁵Max Planck Institute for Solid State Research, ¹⁶Institute for Quantum Electronics, ETH, ¹⁷Zernike Institute for Advanced Materials

Innovation of short-pulsed laser sources make it possible to observe the ultra fast phenomena that have never been reached so far. Recently X-ray Free-Electron Laser facilities, such as SACLA [1], have enabled us to observe the atomic states by using X-ray diffraction or X-ray scattering with ultra short time-resolution. Here, we implement magnetic resonant inelastic X-ray scattering at a free electron laser to directly determine the magnetization dynamics after photo-doping the Mott insulator Sr₂IrO₄[2]. We find that the non-equilibrium state, 2 ps after the excitation, exhibits strongly suppressed long-range magnetic order, but hosts photo-carriers that induce strong, non-thermal magnetic correlations [3]. These two-dimensional (2D) in-plane N eel correlations recover within a few picoseconds, while the three-dimensional (3D) long-range magnetic order restores on a fluence-dependent timescale of a few hundred pico-seconds. The dramatic difference in these two timescales implies that the dimensionality of magnetic correlations is vital for our understanding of ultrafast magnetic dynamics.

References

- [1] T. Ishikawa et al.: Nature Photonics, **6** (2012) 540.
- [2] J. Kim et al.: Phys. Rev. Lett., 101 (2008) 076402.
- [3] P. M. Dean, et al., Nature Materials, 15 (2016) 601.