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Lattice XML File
square lattice

<LATTICES>
  <LATTICE name="square lattice" dimension="2">
    <PARAMETER name="a" default="1"/>
    <BASIS><VECTOR>a 0</VECTOR><VECTOR>0 a</VECTOR></BASIS>
  </LATTICE>
  <UNITCELL name="simple2d" dimension="2">
    <VERTEX/>
    <EDGE>
      <SOURCE vertex="1" offset="0 0"/>
      <TARGET vertex="1" offset="0 1"/>
    </EDGE>
    <EDGE>
      <SOURCE vertex="1" offset="0 0"/>
      <TARGET vertex="1" offset="1 0"/>
     </EDGE>
  </UNITCELL>
  <LATTICEGRAPH name="square lattice">
    <FINITELATTICE>
      <LATTICE ref="square lattice"/>
      <EXTENT dimension="1" size="L"/>
      <EXTENT dimension="2" size="L"/>
      <BOUNDARY type="periodic"/>
    </FINITELATTICE>
    <UNITCELL ref="simple2d"/>
  </LATTICEGRAPH>
</LATTICES>

(0,0)

(0,1)

(1,0)

<MODELS>
  <BASIS name="spin">
    <SITEBASIS name="spin">
      <PARAMETER name="local_S" default="1/2"/>
      <QUANTUMNUMBER name="S" min="local_S" max="local_S"/>
      <QUANTUMNUMBER name="Sz" min="-S" max="S"/>
      <OPERATOR name="Sz" matrixelement="Sz"/>
      <OPERATOR name="Splus" matrixelement="sqrt(S*(S+1)-Sz*(Sz+1))">
        <CHANGE quantumnumber="Sz" change="1"/>
      </OPERATOR>
      <OPERATOR name="Sminus" matrixelement="sqrt(S*(S+1)-Sz*(Sz-1))">
        <CHANGE quantumnumber="Sz" change="-1"/>
      </OPERATOR>
    </SITEBASIS>
  </BASIS>
  <HAMILTONIAN name="spin">
    <PARAMETER name="J" default="1"/>
    <PARAMETER name="h" default="0"/>
    <BASIS ref="spin"/>
    <SITETERM>
      -h * Sz(i)
    </SITETERM> 
    <BONDTERM source="i" target="j">
      J * (Sz(i)*Sz(j) + (Splus(i)*Sminus(j)+Sminus(i)*Splus(j)))/2
    </BONDTERM>
  </HAMILTONIAN>
</MODELS>

Model XML File
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Parameter File
LATTICE = "square lattice"
MODEL   = "spin"
L       = 16
Jxy     = 1
Jz      = 2
SWEEPS  = 10000
THERMALIZATION = 1000

{ T = 0.1 }
{ T = 0.2 }
{ T = 0.5 }
{ T = 1.0 }

DMFT

The status quo
• individual codes
• model-specific implementations
• growing complexity of methods
• outputs in non-portable formats

ALPS
• community codes
• generic implementations
• common libraries simplify code
    development
• common file formats

Open source libraries and simulation
code for strongly correlated quantum
systems
• quamtum Monte Carlo
• exact diagonalization
• DMRG
• DMFT, etc

Motivation
• established algorithms
• increased demand for reliable
    simulations from theorists and
    experimentalists

The ALPS Project
Algorithms and Libraries for Physics Simulations

The ALPS Framework

Spin Ladder Material Na2Fe2(C2O4)3(H2O)2

Applications code
• published under ALPS 
   Application Lisence
• free for non-commercial use
• based on GNU public license
• citation requirements

ALPS Paper
• “The ALPS project release 2.0:  open source software for strongly
      correlated systems”, B. Bauer et. al., JSTAT P05001 (2011).

Library code
• less restrictive
• partially available under a free
   license

Modification/improvements of codes
• should be integrated into ALPS
• not obligatory to publish

Lisence Issue
The "cite-me" Lisence

ALPS + VisTrails
Integration with Workflow and Provenance Management System

http://www.vistrails.org/

Windows & Mac OS X Support
Ready-made Binary Installers

for Mac OS X

for Windows

Web Page (Wiki)
• http://alps.comp-phys.org

World-wide Workshops
• Developers Workshop
• Users Workshop, Summar School

Mailing Lists
• ALPS developers mailing list
• ALPS users mailing list

Source Code Management System
• SVN (Subversion)

Bug Tracking System
• Trac

Infrastructure for International Collaboration

Generic QMC Library
• successor of Looper 2
   (Fortran 90)

Based on ALPS framework
• implemented in C++
• ALPS/Lattice Library
• ALPS/Model Library, etc

Models
• generic XXZ Hamiltonians
• generic lattices
• any spin size S

Method
• path-integral and SSE representations
• multi-cluster loop algorithm
• hybrid (MPI + OpenMP) parallelization
     for K Computer 

The ALPS/looper Library
Multi-Cluster Quantum Monte Carlo Library

http://wistaria.comp-phys.org/alps-looper/

• Universality
  • depends on few parameters:
     dimensionality, symmetry of
     order parameter, etc

QLM: quantum spin models,
          bosonic Hubbard models, etc

• Effects of strong correlations in
   multi-degree-of-freedom systems

  • various types of long-range order

  • quantum disordered phase 
     (quantum liquids, spin gap phases)

  • phase transitions and critical
     phenomena

    • quantum critical point

• Powerful simulation algorithms

  • quantum Monte Carlo methods
     exact diagonalization, DMRG, etc 

Why quantum lattice models?

cold atoms on optical lattice

quantum critical point

QMC challenges for spin/bosonic lattice models

• Criticality with large (logarithmic) corrections to scaling (Kosterlitz-
   Thouless transition, phase transition in upper critical dimension, etc)
• Supersolid: co-existence of diagonal and off-diagonal order in
   frustrated spin/bosonic lattice models
• Deconfined criticality: direct continuous quantum phase transition 
   between long-range ordered phase with incompatible symmetries (or 
   weak 1st order phase transition?)
• Long-range interacting system (magnetic dipole, RKKY, etc): change of 
   effective spatial dimension, exotic boundary effects, etc
• Strongly anisotropic systems (layered magnets, etc)
• ...

⇒ large-scale parallel simulations on the K Computer

contact:
  Synge Todo <wistaria@phys.s.u-tokyo.ac.jp>
  Department of Physics, University of Tokyo

powered by ALPS
http://alps.comp-phys.org

2.2 Experimental methods
The magnetic susceptibilities of a single crystal of SIO

were measured at 100Oe with a superconducting quantum
interference device (SQUID) magnetometer (Quantum
Design MPMS-XL7). High-field magnetizations in pulsed
magnetic fields up to about 53 T were measured utilizing a
non-destructive pulse magnet, and the magnetizations were
detected by an induction method using a standard pick-up
coil system.
ESR measurements on a single crystal of SIO in pulsed

magnetic fields up to about 53 T were carried out using our
pulse field ESR apparatus equipped with a non-destructive
pulse magnet, a far-infrared laser, and several kinds of Gunn
Oscillators for the frequency range from about 50GHz
to about 1.6 THz. We also performed ESR measurements
of SIO in static magnetic fields up to 14 T utilizing a
superconducting magnet (Oxford Instruments) and a vector
network analyzer with some extension (ABmm). All the
experiments were carried out at KYOKUGEN in Osaka
University.

2.3 Calculation methods
The quantum Monte Carlo (QMC) method used in this

calculation is coded on the basis of a continuous-time loop
algorithm, which is one of the most efficient methods for
simulating quantum spin systems. The linear size along the
chainL is 64 in the present case, and we adopt a periodic
boundary condition in this direction, i.e.,S ;iþ L ¼ S ;i , where
S ;i is the spin operator at sitei on the th chain ( ¼ 1; 2). In
addition, it is ascertained that there is no size dependence.
Details of the algorithm are given in refs.13 and14.
The density matrix renormalization group (DMRG)

method used here is an infinite system size algorithm at
T ¼ 0. However, a conventional infinite-system method with
the total-Sz quantum number cannot be used and often fails
in the convergence ofi terations, since the external field
directions in our experiments are different from the principal
axes. Therefore, we employ the improved algorithm based
on the matrix product representation of the DMRG wave-
function to obtain highly accurate magnetization process-

es.15,16) Note that the maximum number of retained bases
m is up to 50, with which sufficient convergence of the
magnetization curve can be confirmed.

3. Results
Figure 2 shows the temperature dependences of the

magnetic susceptibilities forH k a ( k) and H ? a ( ? ).
They show a broad peak at about 25 and 20K, respectively.
The peak k is about three times larger than the peak? ,
which indicates a large anisotropy. In addition, although?
shows a slight decrease with decreasing temperature below
about 20K, k shows an upturn below about 5 K.
Figure 3 shows the magnetization processes at 1.3 K in

magnetic fields up to about 53 T forH k a (Mk) andH ? a
(M? ). For H k a, magnetization increases gradually up to
about 5 T, then shows a steep increase up to about 10 T. On
the other hand, forH ? a, it shows a gradual increase up
to the saturation magnetization of approximately 30 T. The
linear magnetization above the saturation field with almost
identical slopes in both directions could be attributed to the
Van Vleck paramagnetism, whose susceptibility is estimated
to be about 0.01B/(Fe2þ T ) (¼ 0:011emu/mol). This
value is almost the same as that of RbFeCl3.17) For an
isolated antiferromagnetic Heisenberg dimer formed by
neighboring ions on a rung, a steplike change in magnet-
ization due to level crossing is expected to be observed in
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Fig. 1. (Color online) (a) Crystal structure of Na2Fe2(C2O4)3(H2O)2.
Hydrogen and sodium atoms are omitted for clarity. Fe2þ ions are
connected by oxalate molecules and form two-leg ladders along the
a-axis, as shown by red broken lines. (b) Distorted FeO6 octahedra
bridged by oxalate ion. (c) Arrangement of the ladders in thebc-plane,
and red broken lines corresponding to rungs of the ladders.
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Fig. 2. Temperature dependences of magnetic suceptibilities of Na2Fe2-
(C2O4)3(H2O)2 atH ¼ 100Oe forH k a andH ? a.
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Fig. 3. Magnetization curves of Na2Fe2(C2O4)3(H2O)2 at 1.3 K forH k a
andH ? a.
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• Fe2+ ions in octahedral crystal field
      → effective S=1 spins at low T

• Fitting experimental data by QMC results for several theoretical models
   (chain, ladder, dimer, etc)

each direction. We suggest two possible origins of the
gradual increase inM? . One is the existence ofi nter-dimer
interactions, namely, interactions along the leg direction. The
other is a mixing between a non-magnetic singlet ground
state and exited magnetic states caused by a large anisotropy.
The ESR spectra of a single crystal of SIO at 1.3 K in

magnetic fields up to about 53 T forH k a are shown in
Fig. 4. We observe strong and weak resonance signals
indicated by closed and open arrows, respectively, and plot
them in the frequency‒field diagram, as shown in Fig. 5.

4. Analyses and Discussion
4.1 Two-leg ladder model
It is well known that the lowest three states of the Fe2þ ion

in an octahedral crystal field are well separated from the
other excited states owing to the crystal field and spin‒orbit
coupling. Thus, the magnetic properties of Fe2þ can often be
described by a fictitious spinS ¼ 1with anisotropicg values
and exchange interactions at low temperatures.18,19) In this
case, the spin Hamiltonian of a two-leg ladder model is
written as

H ¼ J1
X

i
ðSz1;i Sz2;i þ Sy1;i Sy2;i þ Sx1;i Sx2;iÞ

þ J2
X

i

X
ðSz ;i Sz ;iþ 1 þ Sy ;i Sy ;iþ 1 þ Sx ;i Sx ;iþ 1Þ

þ
X

i

X
BS ;i ~ggH ; ð1Þ

where the inter- and intrachain exchange constants areJ1
and J2 (J1, J2 > 0, antiferromagnetic), respectively,< 1
the anisotropy constant, assuming identicalvalues are used
for not only thex- andy-components but also the intra- and
interchain interactions, B the Bohr magneton,~gg the g-
tensor, andH the external magnetic field. We defineR as
R ¼ J2=J1. The diagonal components for the principal axes
of the g-tensor aregx, gy, and gz, and the off-diagonal
components are zero. We consider that thea-axis of the SIO,
similarly to that of SCO, is tilted from the magnetic principal
axes.8) We define the angles between thea-axis and the
principal axes as shown in Fig. 6(a).
Figures 6(a) and 6(b) show the calculated results of

magnetic susceptibilities and magnetizations obtained by
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Fig. 4. (Color online) ESR spectra of Na2Fe2(C2O4)3(H2O)2 at 1.3 K for
H k a. The closed and open arrows indicate the strong and weak signals,
respectively.
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Fig. 5. (Color online) Frequency-field diagram of the resonance fields
of Na2Fe2(C2O4)3(H2O)2 for H k a. Closed circles and open triangles
denote strong and weak signals, respectively. The solid lines indicate the
resonance modes calculated from the energy diagram shown in Fig. 8.
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Fig. 6. (Color online) (a) QMC calculations of magnetic susceptibility for
different ratios ofR. The illustration shows the relation between thea-axis
and the principal axes. (b) DMRG calculations of magnetization process
for different ratios ofR. The illustration shows the relation between the Fe
ladder and the principle axes. Thez-axis is nearly perpendicular to the
rung of the ladder. In both figures, the open diamonds, open circles, and
open squares represent the calculated results forR ¼ 0:1, 0.3, and 0.5,
respectively.

J. Phys. Soc. Jpn., Vol. 78, No. 12 H. Y AMAGUCHI et al.

124701-3

Yamaguchi et al (2009)

Orbital Ordering in eg Orbital Systems

• Mott insulators with partially filled

   d-shells

• Non-tivial interplay of charge, spin,

   and orbital degrees of freedom 

• Effective Hamiltonian for orbital degrees of freedom (120 degree model)

|x2－y2 |3z2－r 2

H 120 = －
i, γ= x,y

1
4 J zT

z
i T zi+γ+ 3J x T xi T xi+γ

±
√
3Jmix (T zi T xi+γ+ T xi T zi+γ) －

i
J zT zi T zi+ z
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van Rynbach et al (2010)

generic C++

numerics

domain-specific
libraries

applications

tools

C / Fortran  BLAS     LAPACK     MPI     HDF5

graph serialization   XML/XSLT

iterative eigenvalue solverrandom   ublas

lattice   model   observables   scheduler

MC     QMC      ED      DMRG    DMFT

XML manipulation   Python binding   GUI  

Boost library


