世界で競い成長する大学経営のあり方 に関する研究会

第2回 事務局資料

2025年10月27日

文部科学省 経済産業省

欧州で誕生した大学は、米国で国家、産業と結びついて飛躍的に発展。 近年、アジアでも世界のトップに伍する大学が増加している。

~ 産業革命 ~

▼第2次世界大戦

リベラルアーツ・神学・法学・医学・建築など

▼オイルショック

▼リーマンショック

中世11世紀~

1800年~戦前

戦後1945年~

1980年~

2000年~

伊/英/仏

欧

米国

- ・ 大学制度の誕生
- 教会や貴族がパトロネッジ

1088年: ボローニャ大学

1150年頃:パリ大学

1167年頃: オックスフォード大学

1810年: ベルリン大学

- 公的資金による大学運営の普及

パトロネッジ・支配階級の、権威・教義宣伝の手段としても機能

国家が資金を拠出し大学運営(フンボルトモデルとして普及)

1980年: バイドール法

連邦資金研究の特許権を大学等に付与

• ボローニャ:学生主導(学生が教授を雇い契約で授業を受ける)、パリ大学:教授組合主導、オックスフォード:学生・教師の共同体、生活共同体、カレッジ制

1636年: ハーバード大学

1701年: イェール大学

東海岸 アイビーリーグ 入植者による大学設立

- 入植者、教会、ボストンの商人などによる資金拠出
- 家名の向上、産業の勃興への期待

1862年:モリル法

西海岸

欧州型大学モデルの普及

- 研究、リベラルアーツ、ドイツへの留学 エリート(人材)育成
- 実学の普及 • 経済が西海岸へ移ることに連動し、農業・工学など実学の普及、大学間の競争と淘汰

・ ニューディール政策、マンハッタン計画において連邦政府からのファンディング増

研究と教育(理論の追求)

- 連邦政府(NIH/DOE/DOD等)からの投資増
 - カリフォルニア大学によるロスアラモス研究所の運営などGOCO(FFRDC)モデルの普及 大学による産業化の促進
- 連邦政府から各州へ土地を無償譲渡、州立大学設立
- 1868年: カリフォルニア大学(州立) 1885年: スタンフォード大学(私立)

2011年: NSF I-Corps開始

研究者が研究成果の商業化/起業の手法を学び始める

州政府からの補助金削減

• 知財制度の普及、研究成果の商業化・技術移転増

民間からの投資増

アントレプレナーシップ普及 企業化する大学経営

2004年:国立大学法人化

- 研究成果のスタートアップ化 収益を得る仕組みの普及と多様化

シンガポール

英植民地政府

1962年:シンガポール大(英語系) →▶ 1980年:NUSとして統合 1955年頃:南洋大(華語系私大)

中国

日本

欧州型大学モデル

ソ連型 (単科大・専門大学化)

1966-76年

1898年:北京大学の前身(京師大学堂)設立 1911年:清華大学設立

大学再建と世界一流大学に向けた重点化

- ・ 1995年: 211プロジェクト: 112校
- 1998年5月:985プロジェクト:39校に絞り込み

一流大学&一流学科のリスト化と重点投資 QSランク2026

- · 2017年:双一流 (Double First-Class) 計画
- 一流大学42校,一流学科140大学465学科をリスト化
 - メルボルン大学:19位

• NUS:8位

・ 北京大学:14位

· 東京大学:36位

欧州型大学モデルの普及 帝国大学制度の整備

1877年:東京大学設立

• エリート(人材)育成 • 殖産産業との連動

1990年 バブル崩壊 1998年頃 橋本行政改革

2014年:研究開発力強化法改正(大学発ベンチャーへの出資)

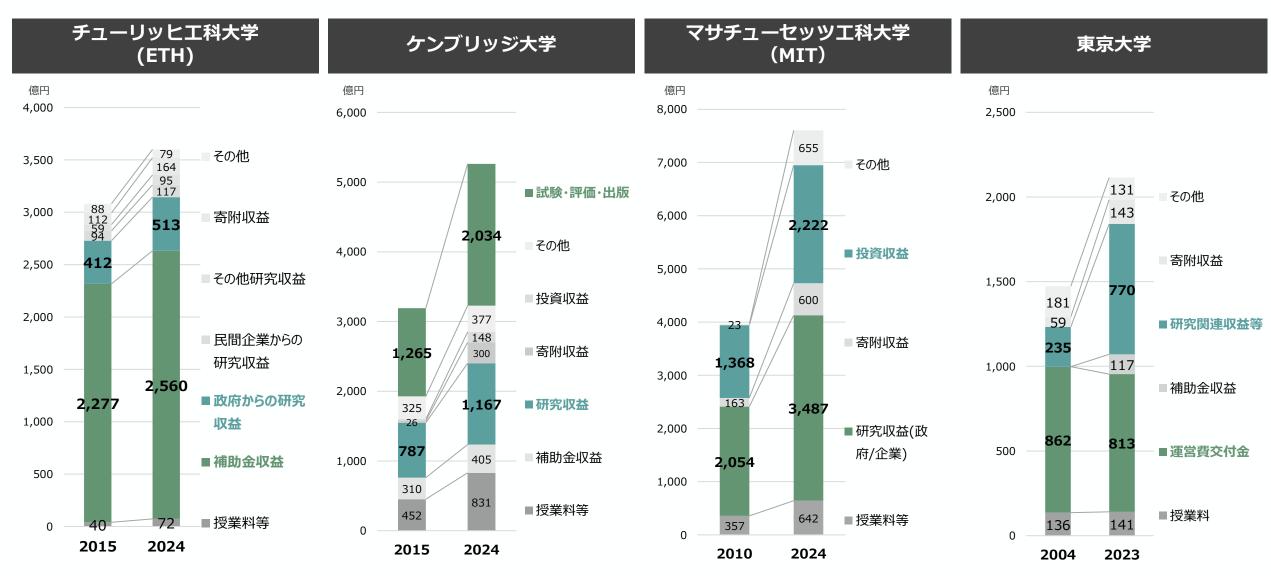
1998年:大学等技術移転促進法(TLO法) 1999年:産業活力再生特別措置法(日本版バイドール)

2017年:指定国立大学法人制度開始

2019年:科技イノベ活性化法(株式等取得・保有)

総合大学化、私立大学の普及、大学定員の増加、大衆化

1949年:新制国立大学発足→総合大学(4年生)へ移行


1951年:私立学校法制定

2022年:国際卓越研究大学制度

- 2024年 東北大学採択

- 2026年 新規採択予定

トップ大学それぞれの経営に特徴があり、収益構造が異なっている。

※各大学、項目の定義やまとめ方が異なるため、同一軸での比較にならないことに留意。各大学ごとの収益構造変化の参考として提示。

※便宜上簡易に、1スイスフラン:180円、1ポンド:200円、1ユーロ:170円、1USドル:150円で計算

各大学はそれぞれ強みを活かした大学経営を実施している。 特に直近10年間においても、新しい試みが行われている。

UCバークレー

17位

ペンシルベニア大学

15位

マサチューセッツ工科大学 (MIT)

1位

ケンブリッジ大学

6位

チューリッヒ工科大学 (ETH)

7位

シンガポール国立大学 (NUS)

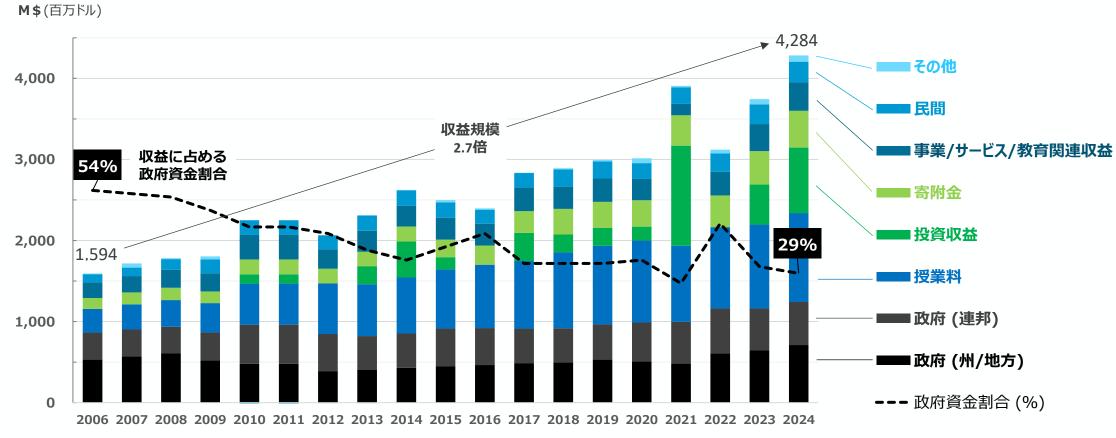
8位

台湾大学 陽明交通大学

63位、199位

- 州立大学特有の公的資金依存型の収益構造から脱却するため、2010年頃以降、経営改革を実行。10年間で寄付を1 兆円獲得するなど多様な収益源を確保しつつ、社会/企業への価値の提供を実現するための仕組を構築。州立大学でありながら、収益規模を3倍程度に拡大し、成長。
- ・ 2013年、研究成果の商業化を促す知財戦略を策定し、組織を整備。
- 特に、スタートアップへのライセンスを戦略的に活用。結果的に多額のライセンス収入を大学にもたらすことに成功 (mRNAなど)。
- 産学連携部門に、**企業ごとの担当者を設置**し、きめ細かく対応し、ソリューション、価値を提供。
- 加えて、**多様な企業や連邦政府機関と契約し、それぞれのクライアントに対応した研究所を個別に学内外に設置**し、 研究開発プロジェクトを進行。
- 従来から、**外国人留学生の授業料を高く設定**し資金を獲得(英国の大学共通の特徴)。
- 近年、<u>もともと強みであった試験・出版等サービス事業のデジタル化を徹底し、強化した結果、事業のパイが拡大し、</u>収入が増大。試験出版サービス事業が収益の大きな柱となっている。
- **スイス政府は国内に2つしかない国立大学と国研に重点投資**し、戦略的に研究開発を実施する方針。ETHは、こうした政府の戦略に沿い、**主として政府資金を用いて大学を運営**。他方、**今後の成長に向け、外部資金の獲得を指向**。
- 政府と連携してグローバルにオープンイノベーションを推進。海外11都市へ拠点(BLOCK71)を設立し、インキュベーション支援や投資家との接続支援を実施するなど積極的に海外へ展開。
- 留学生に対する**授業料引き上げによる収入増**に加え、産業育成の観点から卒業後の**国内就業有無により支払額が変動**。
- 新竹サイエンスパークでは、大学教員が、パーク内の他大学、行政関係研究機関(ITRI)、企業を自由に行き来し、
 施設を使って研究を実施。
- <u>国公立大学への規制が多く存在</u>し、大学経営改革が進んでいなかったものの、2021年に<u>特別法を制定</u>し、<u>企業と当</u> <u>局のマッチングファンド形式で既存の大学法に縛られない大学院運営を可能とする制度を試行</u>。企業からの大学院教育への投資が増大。

カリフォルニア大学バークレー校


カリフォルニアの州立大学は3層構造。 トップ10校を研究大学とし、リソース配分。教員の研究時間・環境を優遇。

- カリフォルニア州の大学システムは、1960年制定の"カリフォルニア高等教育マスタープラン"において規定されている。
- 10校からなるカリフォルニア大学システムは州の主要な学術研究機関と位置づけられ、教員により多くの研究時間が確保されている。

システム	カリフォル二ア大学	カリフォルニア州立大学	カリフォルニア・コミュニティ・カレッジ	
	UC: University of California	CSU: California State University	CCC: California Community College	
権限	・ 州憲法により自律性を保証 ・ 立法/司法/行政と同等の権限	・州法に基づく	・州法に基づく	
使命	・ 学士から博士課程までの学位授与・ 法学/医学/経営などの専門職学位も提供	・実践的な教育研究と教員養成・学士から修士課程までの学位授与	・ 職業教育や成人教育を提供 ・ 学部前半の2年間の教育	
入学基準	・ 上位8分の1	・ 上位3分の1	・ 教育から利益を得る能力のあるすべての学生	
学生数 (2020年度)	· 学部生約22.6万人 · 大学院生約5.9万人	・ 学部生約43.2万人・ 大学院生約5.3万人	・ 約210万人	
概要	 10の総合研究大学 5の学術医療センター 3の国立研究所の運営 ローレンス・バークレー、ローレンス・リバモア、サンディエゴ国立研究所 	・ 23のキャンパス	・ 116のカレッジ	
キャンパス例	カリフォルニア大学 O UCB: バークレー校 O UCM: マーヴェッド校 O UCR: リバーサイド校 O UCSB: サンタバーバラ校 O UCSC: サンタクルーズ校 ● UCSD: サンディエゴ校 ● UCLA: ロサンゼルス校 ● UCD: デイビス校 ● UCI: アーバイン校 ● UCSF: サンフランシスコ校 	カリフォルニア州立大学 ・ ベイカーズフィールド校 ・ ドミンゲスヒルズ校 など 23のキャンパス	・ サンタモニカカレッジ ・ ロンビーチシティカレッジ など 116のカレッジ	

授業料、民間資金、寄附金、投資収益などにより収益を多様化し拡大。 収益規模が拡大するなかで、政府資金の割合は減少。

UCバークレー 収益の推移 (2006→2024)

※投資収益マイナスの年度は見やすさの都合により0で表示。(投資収益(M\$): 2012年:-9、2016年:-139、2022年:-459)

産学連携のための多様なチャネルを用意し、様々な企業と連携、価値を提供。 直接的な収益に加え、長期的に寄付等を獲得していくことも指向。

UCバークレーの企業との連携方法

多様な産学連携の方法を構築

間接経費率

10.50%

業界アフィリエイトプログラム
Industry Affiliate Program複数企業が年会費を払い、
最先端の研究情報にアクセス20%スポンサー研究
Sponsored Research・ 1対1の契約60.50%企業スポンサー型研究所
Industry Sponsored Institute・ 1社又は複数企業との取り組み
・ 長期的60.50%

・ 企業や個人からの寄付

• 契約上の義務や知財権の主張なし

大学主導で最先端の研究を行う産学連携も実施

プログラムの特徴

- 各社から2名が年2 回以上のセミナーに参加し、最先端の情報を得る
- ・ 企業へ作業範囲の承認を得ずに、プログラム内で助成金を支給
- 連邦政府が重要性に気づきファンディングを開始する前の最先端の研究 企業メリット
- **最先端**の研究動向をいち早く把握.
- 優秀な学生/研究者の認識、教授をコンサルタントとして雇用する**きっかけ**
- 1対1の契約を結び、IPの独占ライセンスの交渉権を得ることもある

大学側メリット

- ・ 学術的であり発表可能な研究
- 企業の議論が、何に資金を使うべきかの**ヒントを与えてくれる**

企業支援とリターン獲得の考え方

▶ 直接的な収益だけでなく、最終的に寄附等で大学に還元されれば良いという考え方 〈知財/産学連携支援組織(IPIRA)のトップへのインタビュー〉

・企業との関係へ投資する

研究寄付

Research Gift

- すべての企業がIPIRAとのみ取引を行うわけではなく、別のオフィスを経由して入る場合もある
- ・ 貢献はIP ライセンスだけではない
- 業界アフィリエイトプログラムを開始した企業の1社が、**建物の建設を支援するために1,100 万ドルの寄付**をしてくれた。これは単なる IP ライセンスだけの関係ではなく、**長年にわたり、様々な部門とあらゆる方法でバークレーから多くの価値を得ていると感じていることから**こそである。

産学連携組織 IPIRA の実績

▷ 企業との連携を増加させてきた

研究連携企業数

2004年: 100社未満

2024年: 1,370社

社会や企業の価値創出のために、収益を確保することを重要視。 産学連携組織(本部)運営の工夫として、収益を2年間プールし残余を学内に分配。

知財/產学連携支援組織:IPIRA (Intellectual Property & Industry Research Alliances) ※2004年設立

3つの 組織機能 (参考)

産業提携オフィス

IAO: Industry Alliances Office

企業との産学連携・プログラムの交渉/契約

全世界で1,300社以上の企業と契約を締結

技術ライセンシングオフィス

OTL: Office of Technology Licensing

知的財産権に関する契約の締結

730以上の革新的製品、250以上のスタートアップ

エクイティ・ソリューションズ・サービス

ESS: Equity Solutions Services

株式の受け入れ・管理

IPライセンス/SU支援/設備利用等の対価としての エクイティ(株式)受入、ポートフォリオ管理

> 社会の収益創造が大学の存在意義というphilosophy(哲学)のもと、それを実現するための組織や仕組みを整備

哲学

特徴

影響力

- カリフォルニア大学は社会の利益を創造するために存在しているという哲学 (philosophy)
- **研究者のためにお金を稼ぎ**、科学者や技術者の優れた**才能を社会に役立つものに変え、社会的影響を与えることが重要**
- 研究者、企業、起業家等を支援するワンストップ窓口として機能
- **ほぼ全員がScienceのバックグラウンド**を保持
- 財務的影響だけでなく社会的影響も追跡。例として、女性起業家の支援にも力を入れいているなかでVCが性別等のバイアス込みで投資をして いると判断し、キャピタリストたちに女性起業家の優位性に関するファクトを示すために、優秀なコンピューター/データサイエンス人材を採用
- 安定的かつ機動的な組織運営を実現するために、ライセンス収益の50%を2年間組織内にプールし、残余を学内に分配

■ライセンス収益の分配方法 組織が変えてきた •50%分全てキャンパスに渡し、約10か月後に運営予算として戻る構造 ~2020年頃 コスト 収益分配の仕組み 35%: 発明者 ・50%分を2年間保持、運営費等に使い、残余を2年後にキャンパスに渡す 現在 ※毎年のライセンス利益が不透明なため、2年間としている 収益 │ 15%:学部 残 50%: IPIRA IPIRA組織運営費、知財法務・訴訟費用等 に利用 ⇒2年間プール ※知財/産学連携組織にプール

残り:キャンパス(大学)へ還元

2013年以降、学長主導のもとで寄附金獲得のための体制を強化。 10年間で約1兆円の寄付金を獲得。

学長主導

- ・ コロンビア大学でファンドレイジングの経験を持つ学長のコミットメントで主導(10代目 Nicholas氏,2013-2017)
- 「学長の最重要任務と捉え、3分の1の時間を費やす」

組織強化

ファンドレイザーの強化

2012年:50名

 $\hat{\mathbf{U}}$

2020年:250名

組織

(2020年時点)

• <u>寄附金募集部門の職員:500名</u> (95%以上がフルタイム)

- 全学担当: 250名、各専攻内担当: 250名

- ファンドレイザー(250名)、データベース整備、イベントマネージャー、ライターなど

高額寄附者:ファンドレイザー1名で20名を担当

• 少額寄附者: 学生200名がアルバイトでテレマーケティング

考え方

- 「大学を取り巻く環境として州からの補助金が削減。反比例して授業料を上げたが、大学も値上げはしたくない」
- 「米国の州立大学も2000年頃は寄附金獲得に十分取り組めておらず、寄附をお願いするなんてという状況」
- 「人々はただ寄附したい訳ではない。自分の興味がある何かに貢献したいと思っている」
- 「最初は少額の寄附で繋がり、イベントへの招待や大学のことなどを伝え、大きな寄付に繋げていく」
- 「寄附者に50年先の大学のビジョンを伝えて、その心を動かさなければならない」
- 「キャンペーンの実施により、卒業生以外からも寄附を受けることもできる」

実績

- "Light the Way"をキャッチコピーに大体的な寄附金獲得キャンペーンを実施
- 2014年⇒2023年の10年間で約1兆円(73.7億ドル)の寄付を獲得

▶ 幅広い対象から寄附を獲得 : 76%の寄附者が1,000ドル未満の寄付

▶ 大型寄付の獲得 : 2%の寄附者(5,185人)から、寄付額の94%を獲得

【参考】日本

·**家計の金融資産計:2,239兆円** うち現金・預金:1,126兆円

※2025年6月末時点

参考: UCバークレーは2010年以降、社会における大学のあり方を変え、 制度改正等に取り組んできた。

州政府からの補助金削減、研究と教育が中心、I&Eの取り組みや制度への対応が遅れていた

- 「州政府からの大学予算が大幅に削減されるなかで、<u>多くの州立大学は自らの運命を切り開く必要に迫られていた</u>」
- 「UCバークレーに技術移転オフィスは存在したが、資金がなく、法律や商業化などに関わるサポートが十分ではなかった」
- 「2000年頃のUCバークレーは『研究と教育こそが主たる使命であり、公立大学が起業や商業化に関わるべきではない』と考えられていた」
- 「私立大学が起業支援と恩返しを受ける仕組みを構築するなか、I&E (Innovation & Entrepreneurship) の対応や利益を受け取る仕組みの整備が遅れていた」
- 「例として私立大学のスタンフォードがGoogleから対価として株式を受け取ることについて、2013年頃までのUCはそれを利益相反と考えていた」

<u>2004年</u> 100社未満から研究支援

⇒体制の強化、制度変更、収益の多様化を進める

- ・ 産業連携支援組織(IPIRA)の強化:安定的な運営費確保の仕組み構築。研究者/産業界/起業家のone-stop shopとして機能
- 寄付金獲得の組織強化: 2012年:50名 →2017年:200名。 2013~2023年:73.7億ドル(約1兆円)獲得
- ・ スタートアップ支援の拡充: I&Eに関わる評価・休暇制度の見直し。2012年:学部横断のアクセラレーターSKYDECK開始、現在は世界へサービス展開
- スタートアップ支援の対価獲得:スタートアップの株式取得、VCとの共同ファンド設立と収益の受け取りが可能となるよう、制度を変更

⇒カリフォルニア大学全体でも、全10キャンパスに掛かる高いレベルのPolicy (規則) を発行し改革を推進

※カリフォルニア大学:バークレー校など10大学(キャンパス)からなるカリフォルニア州の大学システム

- 「各キャンパスの研究成果が社会/大学に還元されていない」というフラストレーションがUC理事会に存在
- 作業部会の立ち上げ、調査(学長や担当・教員等に、不満や市場還元のために必要な支援についてヒアリング)、提言
- 各提言に関して、特別審議会が設置され、有効性の検討と、進捗を管理する**仕組みを整備**
- 2021年:イノベーション移転とアントレプレナーシップに関する非常に高いレベルのUC理事会Policy(規則)を発行 ※ガバナンス、大学の資金調達、規則の運用、文化/評判、マネジメントシステム、効果測定と報告 などについて規定

1,370社から研究支援

参考:2020年以降、カリフォルニア大学10校全体で改革を推進

カリフォルニア大学理事会による「イノベーション移転とアントレプレナーシップ」に関わるPolicy(規則) の発行

■ Regents Policy 5105: Policy on Innovation Transfer & Entrepreneurship (承認日: 2021年5月13日、改正日: 2023年9月22日)

A ガバナンス

- ・ 各キャンパスへ責任と権限を付与する
 - > Innovation Transfer & Entrepreneurshipの責任・権限・説明責任は原則各キャンパスが持つ
 - ▶ 明確な戦略と基盤・内部統制を備えるキャンパスに権限と柔軟性を付与
- ・ UCOP: キャンパスの戦略実行支援と共通のニーズに対処する
 - ※UCOP: Office of the President カリフォルニア大学総長本部 (UC10校の経営面の執行を取り纏める)
 - ▶ UCOPはキャンパス主導の戦略実行を支援し、成功に役割を果たす
 - ▶ 単独のキャンパスでは費用対効果の出ないサービスを提供するとともに、複数キャンパス共通の ニーズを調整し対処することが、UCOP最大の価値

B ファンディング

- ・ 大学が資金を調達、提供するよう努める
 - ▶ 市場可能性を有するアーリーステージの開発および萌芽的イノベーションに対して、 大学がシード資金を調達、提供するよう努める

規則

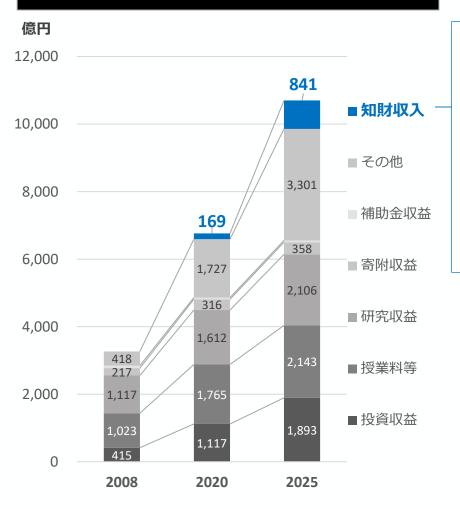
- ・ 各種規則:必要に応じて少なくとも5年ごとに更新し近代化する
- ・ 大学/発明者/産業界のスムーズで効率化なインターフェースを実現する
 - ▶ 知財/株式/産学連携に関する全ての大学規則を可能な限り整合・統合する
- 利益相反防止のため効果的かつ適切なポリシーを制定する
 - ▶ UCの発明者と民間企業との関与を促進するとともに、実際または認識上の利益相反を防止する
- ・ ガイダンス等によりステークホルダーへの規則の理解浸透を図る
 - ▶ UCOP:規則が不均一または誤った解釈・施行されるリスクを防ぐため、キャンパス等と協議し、ユーザーや大学内外のステークホルダーの理解に資するガイダンス、例示、解説およびリソースをタイムリーに提供する
 - ▶ キャンパス:最新のユースケースに適用可能な状態に保つため、実務者グループを組織する

文化 / 評判

- ・ <u>Translational Research、Innovation、Entrepreneurship</u>を、他のUCの取組や学術研究と同等に重視し、奨励する環境を創出する
- ・ Regents Innovation Awardsを設けUCのI&Eの卓越した成果を称える
 - ▶ 学生・教員・研究者からなるUCコミュニティに対し、用途志向型研究、公共性に配慮した起業活動、学術研究の社会実装を通じて、世界の最重要課題の解決に挑むことを促す
 - ▶ 人間の状況の向上を目指す新技術・製品・サービスの創出を通じ、卓越したイノベーション精神を示したUCの発明者・起業家を顕彰する
 - > UCコミュニティの情熱を喚起し、実践的な解決策の創出を目的として学術探究を力強く推進するイノベーション文化を醸成する

E イノベーション マネジメント システム

- 最先端のイノベーション管理システムの運用・維持に努める
 - > マーケティングおよび事業開発、特許出願・権利化手続(Patent Prosecution)、知的財産の追跡・管理、会計・請求・収益分配、ステークホルダー/クライアント関係管理、を最低限含む


: パフォーマンスおよび公共的影響の測定と報告

- パフォーマンスおよびインパクトレビューを実施する
 - ▶ 年次:主要な取引活動の測定
 - » 隔年: Translational Research/Innovation/Entrepreneurshipの女性・有色人種等の参加率測定
- ・ 年次の技術商業化レポートにより発信を行う
 - ▶ 掲載: UCイノベーションの幅広さ、価値ある製品、サービス、スタートアップ
 - ▶ 強調:社会福祉の向上、地域・州・国家経済への利益、多様性
- Innovation spotlight の掲載・発信を行う
 - ▶ 特定のテーマ・トピック・イノベーション領域に焦点を当て、大学の取組と主導的役割を示す
- ・ 5年ごとに経済的影響に関する分析を委託する
 - ▶ 例:雇用創出、税収、各キャンパス周辺地域の経済発展、イノベーション/起業活動に触発されたUCへのフィランソロピー寄付、教員・ポスドク・学生の採用と定着

ペンシルベニア大学

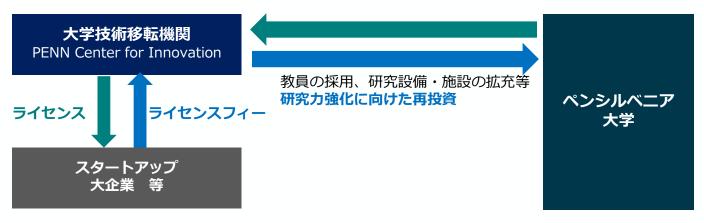
使途の自由度の高いライセンス収入を増加させ、 これを研究力強化のために再投資する「好循環」を実現している。

ペンシルベニア大学 収益内訳

> 1大学で、日本の大学全体よりも多くの知財収入を獲得

■知財収入の推移

知財収入額 (億円)	2020	2021	2022	2023	2024	2025
ペンシルベニア大学	169	678	1,888	956 约30倍	460 L約17倍	841
(参考) 日本:大学等合計	51	56	61	65	_ 	-


※FY2020のペンシルベニア大学の知財収入は、財務報告書上は公開されていない。

表の数字は、ペンシルベニア大学の知財収入に関する記事にて記載されていた数字を利用している点に留意。

※米国のFYは会計期間の終了時の年を用いている。そのため、例えばFY2021の列の国内大学全体の数字は2020年度の数字を使用。

※日本国内大学等は、国公私立大学及び大学共同利用機関等を含む1,076機関

~ 得られた収益を、基礎研究費の拡大や研究施設の拡充等に再投資

2013年からライセンス収入を最大化するための戦略を策定し、組織構築を実施。 これを背景に、mRNA技術などにおいて、ライセンス収入を飛躍的に拡大。

組織(PCI)設置とライセンス戦略

2013年 ビジョン制定: PENN Compact 2020

▶ 学長のイニシアチブの下、次の10年においてもペンシルベニア大学を 世界有数の学術機関として導くための全学戦略ビジョンを2013年に選定

全学的な戦略のもと技術移転機関を集約

2014年 組織設置: PCI (PENN Center for Innovation)

組織体制の整備と、商業化を促すライセンス戦略によって基礎を築く

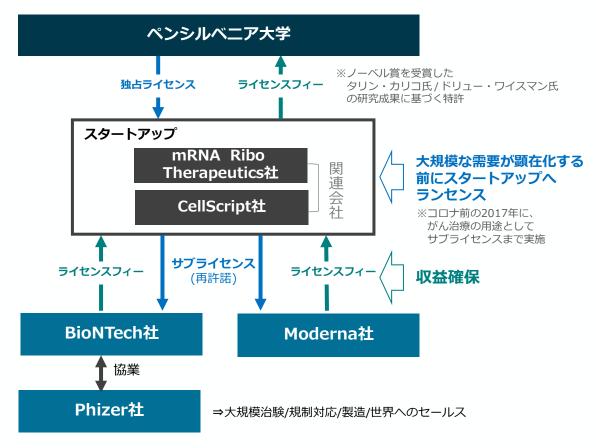
ミッション

▶ 大学シーズの技術移転を通して「商業化」につなげる。

組織

※ 窓口を一本化 ※ハブアンドスポークモデル

戦略

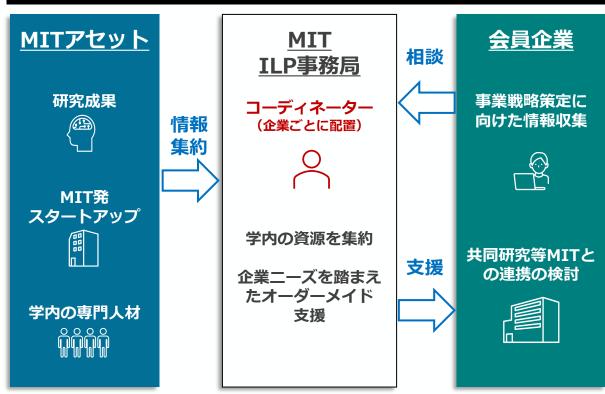

- ► 需要が顕在化していない技術のライセンス推進
- ▶ 商業化を促すライセンススキーム ※商業化マイルストーンを達成しない場合ライセンスを終了(企業に死蔵させない)
- **> サブライセンス(再許諾)を許容するスキーム**

スタートアップへのライセンスについて、以下のような利点が挙げられる。

- ・需要/利益が不確実な中で、一時金を現金ではなく株式を対価として渡すことが可能(リスクを取れる)
- ・市場化を最命題とし、優先度を下げたり、防衛特許として死蔵させるといったリスクを低減させられる

mRNA改変技術のライセンス例 (コロナ禍前~)

▶ コロナ禍前からスタートアップへライセンスし、 需要が顕在化した結果、多額のライセンス収入を獲得



マサチューセッツ工科大学 (MIT)

産学連携組織で企業向け会員制サービスを実施。 企業ごとの担当者を配置し、ソリューション・価値を提供。

ILP(Industrial Liaison Program): 売上高5億ドル以上の大企業を対象とする有償の会員制プログラム。260を超える企業等が加盟。

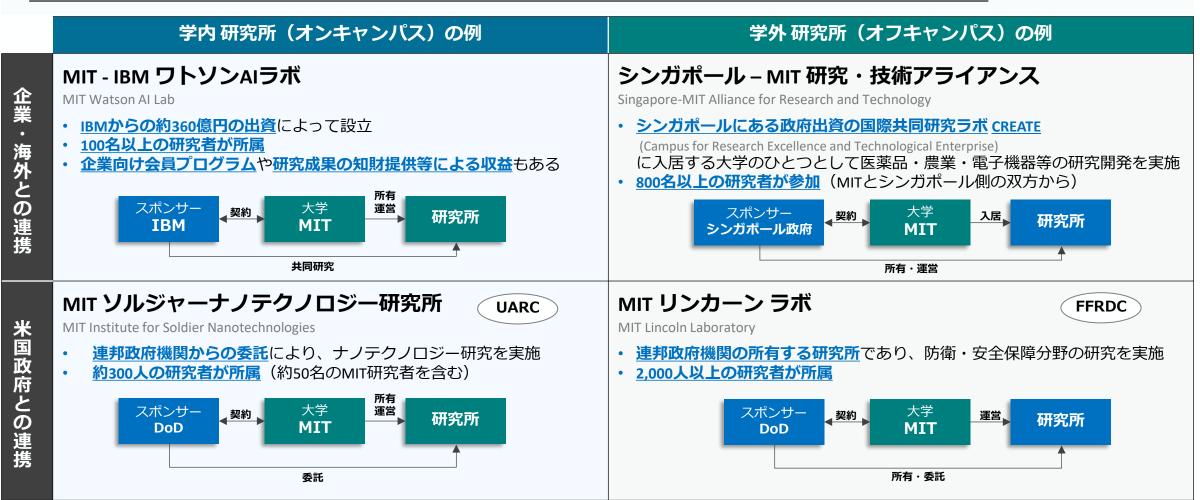
有償会員制プログラム(ILP)の仕組み

有償会員制プログラム(ILP)の特徴

①産学連携の入口(関係構築・案件組成)に注力

- ▶ 企業との関係構築や連携のあり方の提案に注力、 連携スキームが固まった後は学内機関へ橋渡し
- 企業からの寄附や共同研究の約4割が会員企業

②豊富なビジネス経験を有する人材による戦略提案

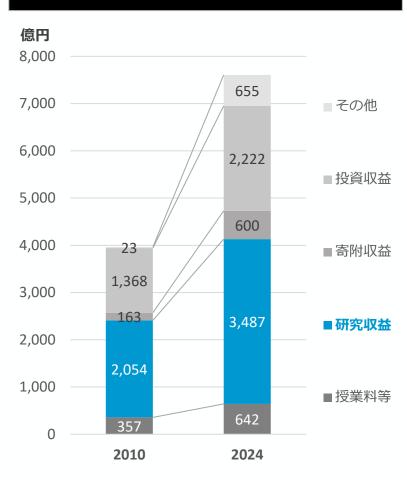

- ▶ 企業課題に精通したILO (Industrial Liaison Officer) によって、 MITとの連携戦略や今後のアクションプランの策定支援
- ▶ 戦略コンサルタントやアナリスト等、各業界における ビジネス経験と知見を持つスタッフが在籍

③グローバル企業との連携を見据えた人材配置

- ➢ 各国の文化的・技術的背景や言語に知悉した人材が、 コーディネーターとして幅広く在籍
- ▶ 例えば日本企業との連携に向けて、日本語対応コーディネーターも在籍
- ✓ 企業ごとに担当コーディネーターを配置し、個社のニーズに応じた戦略提案や人材・SUのマッチング支援など、多様な支援メニューを整備。
- ✓ MITの研究成果やMIT発SUの情報、技術シーズ等、企業が関心を持ちうる情報を集約。

多様な研究所の設置・運営スキームのもとで米国政府だけでなく、民間企業や外国政府からも投資を呼び込んでいる。

・蓄積した研究力や研究所の運営ノウハウが、民間企業や外国政府からも投資を呼び込むことにも寄与



18

政府・企業がスポンサーとなる研究所を運営し、大型かつ長期的な連携を推進することで、収益を拡大。

• 2025年時点で、約700社と、**65以上の研究所や共同プログラムを運営**

MIT 収益内訳

MITの研究収益の内訳と関連する研究所の例

研究場所	スポンサー	研究収益の内訳		研究所の例			
<u> </u>		FY2010	FY2024	連携機関例	研究所例	主な研究分野	
	企業等	249億円	429億円	IBM	MIT ワトソンAIラボ MIT Watson AI Lab	人工知能	
学内				トヨタ自動車	トヨターCSAIL 共同研究センター TOYOTA-CSAIL Joint Research Center	自動運転	
	米国政府	657億円	971億円	連邦政府 (DoD)	MITソルジャー・ナノ テクノロジー研究所 MIT Institute for Soldier Nanotechnologies	材料科学 エネルギー 医療	
学外	海外政府等	23億円	103億円	シンガポール 政府	シンガポール・ MITアライアンス Singapore-MIT Alliance	医薬品 農業 電子機器	
7 71	米国政府	1,125億円	1,983億円	連邦政府 (DoD)	MIT リンカーン ラボ MIT Lincoln Lab	防衛 通信 安全保障	
合計		2,054億円	3,487億円	-			

参考:米国では連邦政府の研究推進に大学や企業が深く関わる。

第2次世界大戦中に国家として必要な研究開発を大学に委託、現在に至るまで企業も含めその連携を拡大させてきた

米国連邦政府による研究所運営方式

分類

方式

連邦政府研究所

政府所有 政府運営 GOGO方式

Government-Owned, Government-Operated

研究所例

特徴

• **DoE (エネルギー省)** 国立エネルギー研究所 など

- DoD (国防総省) 海軍研究所 など
- NASA ケネディ宇宙センターなど
- **商務省** NIST(国立標準技術研究所) など

参考:連邦政府 R&D予算 (億ドル) 使用部門別 非営利機関・その他 131 7% 連邦機関 455 23% FFRDC 167 (約2.5兆円) 9% 449 23%

FFRDC

Federally Funded Research and Development Center

政府所有 大学/民間運営 GOCO方式

Government-Owned, Contractor-Operated

41の研究所・センター

DoE: 16 □-レンスバークレー国立研究所(UC運営)など

DoD: 10 リンカーン研究所(MIT運営) など**NASA: 1** ジェット推進研究所(Caltech運営)

・NSF:5 国土安全保障省:3 保健福祉省:2

商務省:1財務省:1運輸省:1

原子力規制委員会:1

- 1943年:ロスアラモス研究所が最初(UC運営) ※FFRDCの制度としては1967年から
- 政府として必要な研究開発~生産を行う
- 政府が保有するデータや施設にアクセス可能
- 重要分野技術の長期確保、新技術開発・技術移転
- 政策立案や重要課題検討の分析やアドバイザリー
- 複雑なシステムの運用に係る技術・エンジニアリング能力支援

UARC

University Affiliated Research Center

政府契約 大学所有/運営

15の研究所・センター(DoDのみ)

・**海軍:5** 応用物理学研究所(ジョンズホプキンス大学)など

• **陸軍:4** 兵士ナノテクノロジー研究所 (MIT) など

• 空軍:1 戦略自立研究所 (ハワード大学等 9大学コンソ) ※2023年設立

・米国戦略軍:1

・ミサイル防衛局:1 など

- 1942年:海軍の研究開発拠点としてのジョンズ・ホプキンス大学 応用物理研究所が最初 ※UARCの制度としては1996年から
- FFRDCに比べよりカッティングエッジな新興科学を対象にしていると言われている
- 新しい脅威に対応。DoDの要求に迅速に対応
- UARC1機関の政府予算(中央値)は約4,800万ドル ※FY2021実績:500万~8.3億ドル

ケンブリッジ大学

2015年から2024年にかけてサービス部門(英語試験・評価・出版) の収益規模が拡大。

• 英語試験のIELTSの運営などにより収益を確保

出典:ケンブリッジ大学財務諸表、ケンブリッジ大学試験・出版局統合報告書及び、各種webサイトより作成。1ポンド:200円で計算。

コロナ禍に対応し、抜本的にデジタルへの移行(試験・教材など)を強化した結果、 収益が拡大。獲得した収益を学内の教育・研究などに再投資。

• 外部環境や顧客ニーズの変化を受け、2021年に試験・出版局を統合。統合後は、試験・出版事業の収益拡大ペースの加速を実現。

ケンブリッジ大学試験・出版局の統合による改革の実施

▶ ケンブリッジ大学を取り巻く課題と好機が存在

課題

- ・ コロナ禍による、既存事業の収益低下
- ・ 試験と学習の運営組織が別で、機動的な対応が難しい

好機

- ・ <u>デジタルコンテンツ(オンライン)ニーズ</u>の高まり
- ・ 試験に関連する学習コンテンツの潜在的ニーズの存在

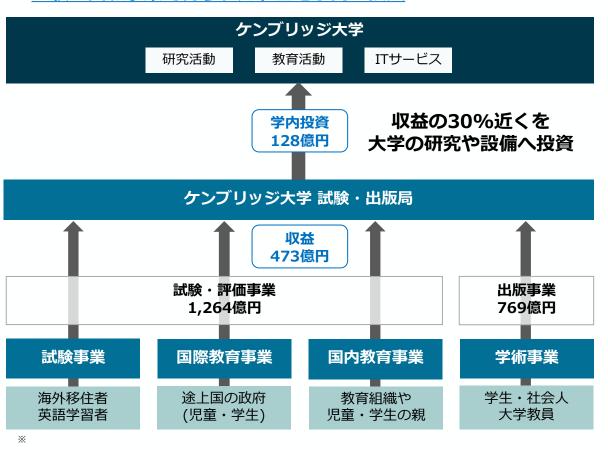
"Single strategy. Single organization."と呼ばれる 全学的な統合戦略を推進

>2021年:組織統合とサービスのデジタル化などの改革を推進

ミッション

• 国際的に最高水準の教育/学習/研究を追求し社会に貢献

統合の効果


- ・ 顧客ニーズへ機動的に対応
- 財務・技術部門の統合による<u>効率化</u>

主な取組

- **オンライン試験の拡大**(デジタル化)
- ・ デジタル関連の新規事業の開発(収益源の拡大)
- ・ 生成AIを活用したプログラム開発の着手

試験・出版局の収入と収益の学内投資の関係 (2024年)

> 試験・出版事業で得られた収益を学内へ投資

チューリッヒ工科大学 (ETH)

スイスでは、大学によって研究開発と教育の役割を明確に分担。 国立大学(2校)に国費を集中投資し、国家戦略に基づく研究開発に注力。

スイスにおける高等教育機関

スイスの高等教育機関は 明確な役割分担がなされている

研究開発中

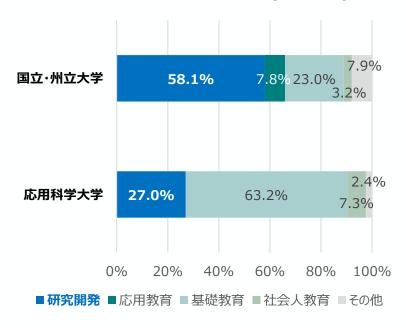
国立大学 (2校) ETH: チューリッヒ工科大学 (2校) EPFL: ローザンヌエ科大学

- ✓ 科学技術イノベーションの拠点として STEM分野に特化
- ✓ 政府の定める戦略目標に沿って予算が 配分される

州立大学(10校)

- ✓ 各州の知の拠点として幅広い研究を行 う総合大学
- ✓ 政府も助成を行うが、経営方針は州政 府が決定

実務教育中


応用科学大学(10校)

- ✓ 実務分野における職業教育を中心とする州立の大学
- ✓ 工学、ビジネス、ヘルスケア等、分野 は多岐にわたる

各機関における注力分野

- ・ 国立・州立大学は支出の60%近くが研究開発
- ・ 応用科学大学は60%以上が基礎教育

機関種類別の支出の構成割合(FY2022)

チューリッヒ工科大学(ETH) 収益内訳

• 現状は政府からの資金割合が高いが、**将来的にそ** の割合は減少していくことが公表されている

(出所)スイス連邦政府HP、ETH HPより作成。1スイスフラン:180円で計算。

国立大学であるETHは、政府の戦略的目標を実現するための枠組の下で研究開発等を実行。今後は外部収入獲得も視野に入れていく。

- ETHをはじめとするスイスの主要な研究機関は、政府の戦略的目標に基づいて予算が策定されており、学長も政府により任命される。
- ETHの執行委員会は、政府およびETH評議会の監督のもと、学内の最高意思決定機関として教育・研究に関する意思決定を行う。

連邦参事会: ドメイン全体の戦略目標を策定

- 四年に一度、ドメインの目標と全体予算を策定。
- 2025-2028年のETHドメイン予算総額は約2.2兆円。

ETHドメインにおける6つの戦略目標(2025-2028)

目標1:教育
能力志向の教育を提供目標4:知識・技術移転
イノベーションの競争力を強化目標2:研究
研究の国際的な地位を維持目標5:協働と調整
高等教育圏の形成に協力目標3:研究インフラ
研究インフラ運用を活発化目標6:国際的な協働
研究の国際的な協働を強化

ETH評議会: ETHへの予算を分配

- 政府の戦略的目標を踏まえて、ETHドメイン(以下の6機関)全体に関する意思決定を行う。
- 各機関への予算分配や人事の決定権を持つ。

ETH チューリッヒ 工科大学 EPFL ローザンヌ 工科大学 **PSI** パウル・シェ ラー研究所 EMPA 国立物質科学 研究所

EAWAG 水科学技術 研究所

WSL 森林・雪氷・ 景観研究所

執行委員会: 戦略と予算を踏まえて取組を実行

- 連邦参事会の戦略的目標およびETH評議会の諸決定を踏まえて学内の教育・研究の意思決定および執行を行う。
- 社会貢献のための取組みを積極的に行うとともに、その成果の対外的な広報を合わせて実施。

研究を通じた社会貢献のための取組事例

産業創出

•

スピンオフ企業の創出

• 研究成果の活用によるスピンオフ企業の創出に積極的に取り組んでおり、2024年には新たに37社のスピンオフがETHから設立された。

エネルギ

2000ワット社会構想

エネルギーの大半を輸入に依存するスイスにおいて、 持続可能なエネルギー目標を2000ワットに設定し、 実現のための取組について政策提言を実施。

地方自治

ETHモビリティイニシアティヴ

• 地方自治体と連携した公共交通のシミュレーション 等を行い、信頼性が高く環境にやさしい交通システ ムの構築の面から地方自治体の取組を支援。

台湾

1980年から新竹サイエンスパークにて、当局/大学/研究所/企業が一体となり半導体産業を育成。世界トップレベルの半導体産業クラスターを形成。

- **■新竹サイエンスパーク**:1980年~
- 当局戦略のもと半導体産業を育成。現国家科学技術委員会(NSTC)が牽引する形で、
 「生産/就労/生活/余暇を統合した世界水準の研究開発拠点を構築しトップ人材を惹きつけ、
 台湾のハイテク産業発展の拠点となること」を目指した。
- 半導体ファンドリ企業であるTSMCを中心に、サプライチェーンに関わる関連企業/ スタートアップ等が集積しエコシステムを形成している。※AIや通信などの関連産業も発展
- ・ 大学やITRI・その他研究所が企業と連携しながら、エコシステムの重要な役割を果している

企業

TSMC

- ITRIスピンオフ、1987年設立

- 民間や台湾当局からの出資

• MediaTek、AMDNVIDIA ಜ೭

エコシステム

17.5万人 以上

大学・企業・ITRIなど 相互の研究施設を利用可能

行政関係機関

· ITRI:工業技術研究院

• TSRI:台湾半導体研究所

NCHC: 国家高速計算センターNSRRC: 国家放射光研究センター

NCIR: 国家精密計測研究センター

TASA:台湾宇宙庁NML:国家計測研究所

⇒最先端・即戦力の学生/研究者を育成

大学

- **清華大学** (QS:176位) ⇒研究重視
- 陽明交通大学 (QS:199位)-⇒産学連携重視

"産学共栄" TSMC×陽明交通大学 産学連携協定の配念プレート(半導体ウエア)

> 1960年台から半導体の研究に取り組む

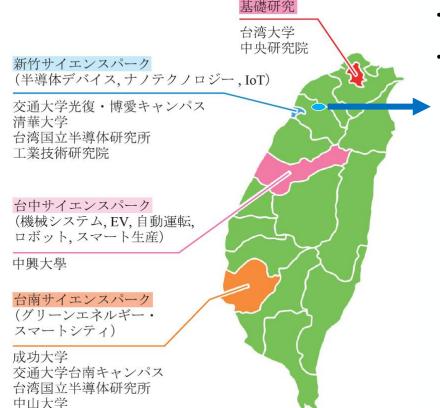
・ 1963年:台湾で初の点接触トランジスタの実証に成功。

• 1963年:台湾初の真空管式パーソナルコンピュータをIBMから購入

・ 1964年:台湾初の半導体研究所を設立

• 2015年:台湾初の半導体研究学部(ICST:国際半導体技術学院)を設立

- ▶ エコシステムの中において、研究・人材育成の場として機能
 - <u>半導体教員:160名</u>、<u>半導体専攻学生2,000名</u>(総学生数22,000名)
 - ナノファシリティセンター:24時間365日稼働、大学・研究機関に開放、年間1,000件以上の大学院卒業論文プロジェクトをホスト
 - 新竹サイエンスパーク企業のCEO・幹部の65%が陽明交通大学の卒業生 ←ハイテク産業のリーダー育成として機能



- 各省に関わる面倒な行政手続きをワンストップで支援
 - ※NSTC (国家科学技術委員会) が管理

新竹では次なる産業のひとつとしてバイオメディカルサイエンスパークを構想し、 台湾大学の病院(BIOMEDICAL PARK HOSPITAL)を中心にしたエコシステムを構築中。

台湾におけるサイエンスパーク(一部)

⇒ 当局戦略と地域や大学の特色等から、 役割分担で領域特性のあるサイエンスパークを整備

新竹バイオメディカルサイエンスパーク

- 2005年~計画、第1期工事~2008年、2025年現在:第2期として大学や企業の研究棟を拡張中
- 2007年開通の台湾新幹線・新竹駅前に台湾大学病院(BIOMEDICAL PARK HOSPITAL)を中心とし、 バイオ・医療機器・医薬品などの研究開発を行う企業や研究所等が入居できる施設を隣接地に整備
- 1画では<u>半導体大手のMediaTek(2024年売上約2.6兆円)</u>が研究開発・オープンイノベーション拠点の建設を進めており、大学や関連企業/機関と共に最先端技術の医工連携を加速させることが予測される
- 周辺にはインターナショナルスクールなども所在、生活面含めた海外人材を受け入れの環境も整備

台湾の国公立大学は法人化されていないが、 産学連携に向けたインセンティブ付与を進めている。

参考:台湾の大学に関わる基礎情報

- 2024年: 国公立47校、私立93校
- ・ <u>トップ層は国公立大学</u>。国公立大学は<u>法人化されていない</u>
- 授業料の引上げが出来ない等の要因により、<u>私立大学は財政状況が悪く競争力が弱い</u> ※授業料の引き上げは立法院を通す必要があり困難なことが多い
- ・ 少子高齢化が社会課題(18歳人口・・・2000年:約40万人→2024年:約21万人。2024年出生数:約14万人)
- 経営困難な大学の円滑な退出と学生保護の制度を整備。2023年→2024年で5校退出。

台湾の大学が変えてきたこと(インセンティブ付与)の例

产 産学連携推進を推奨

- 産学連携の推進を教員評価につなげるようにした
- 教育省は教員のマインドを変えるための取り組みを進めている

▶ 産学連携推進を教員のボーナスに繋げる

- 産学連携を推進をボーナスとして給与に反映できるようになった
- 台湾の大学教員の給与のベースは低く、規定で上げられない
- 教育省と大学との間で話し合われ合意されたこと

教員の兼業を許可し、大学収益に繋げる

- 教員による、取締役やコンサルティングなどの兼業を許可
- 企業は給与等の支払いのほか、大学に対してベース給以上の補填額 を支払う。時間や金額などは大学と企業との間で都度調整される
- 補填を原資に、大学は新しい教員を採用したりする

> 大学の株式投資を許可

(出典) 2025年10月 関係者ヒアリング結果に基づき作成 30

官民による投資と規制緩和による新たな大学院を設置するための新しい法を施行し、 企業ニーズに対応した先端人材の育成を試行的に実施。

法律

「国家重点領域産学協力及び人材育成革新(イノベーション)条例」 2021年施行

・正式名称:國家重點領域產學合作及人才培育創新條例 英語名称: Innovation Act for Industry-Academia Collaboration and Talent Cultivation in National Key Fields

概要

- ・ 大学が企業と共同で、学内特区的に、自由度の高い大学院である「研究学院」を8~12年の期限付きで設立 可能(教育部が認可)
- 大学法などの適用除外を措置し既存の規制を緩和。研究学院は、通常大学に課せられる下記のような法の制限を受けない。
 - **教員の待遇/年限/任用方法、自己収入による予算/決算の作成・執行**、に係る関連法規
 - **大学法** (学位課程/受験資格/修業年限等)、**学位授与法** (学位名称/授与要件等)、**国有財産法** (国有資産を協力企業に提供する際)
- ・ 企業からの資金拠出を義務とする一方、同額の資金を当局から拠出して支援。資金はTSMC株の配当を原資にした国家発展基金から拠出

施行経緯

- 教育部(省)により条例案策定、1年で成立。※台湾の立法院においては異例の早さ
- ・ 企業 (特にTSMC) からの半導体に関わる人材育成の要望がきっかけ
- 当時の**当局トップのリーダーシップ**により制度整備

現状と今後

- 既存の大学院との関係性や学生へのブランディングなど課題も存在しているが、拡大の方向性
- ・ 当該法をベースにした大学法等の改正も企図
- 11大学 13研究学院
- 最新の学院設立は、2024年 台湾大学「国際政経学院: SPE (The School of Political Science and Economics)」金融機関やTSMCなどが資金拠出

設置学院

大学	所在地	学院名	重点領域
台湾大学	台北	重点科学技術研究学院	半導体
台湾大学	台北	国際政経学院	政治、経済、リーダーシップ
台湾科技大学	台北	産学イノベーション学院	AI、サイバーセキュリティ、半導体
台北科技大学	台北	イノベーション・先端科学技術研究学院	スマート製造、エネルギー
政治大学	台北	国家金融学院	金属工学、資産管理
中央大学	桃園	サステナブル農業・グリーン科学技術研究学院	カーボンニュートラル

大学	所在地	学院名	重点領域
陽明交通大学	新竹	産学イノベーション研究学院	半導体
清華大学	新竹	半導体研究学院	半導体
中興大学	台中	循環経済研究学院	バイオテクノロジー
成功大学	台南	スマート半導体・サステナブル製造学院	半導体
高雄師範大学	高雄	領域融合科学技術産業イノベーション研究学院	AI、グリーン技術
中山大学	高雄	半導体重点領域研究学院	半導体パッケージ、周辺部品
中山大学	高雄	国際産業研究学院	金融工学、資産管理

台湾トップ大学の考え「ベンチマークは、短期は東大、中長期はUCLA、将来は米国私立大学」

2025年10月に実施した関係者ヒアリングによって、台湾のトップ大学、科学技術大学から 「米国私立大学のような自由な経営が理想」といった想いを確認した。※先方担当者の個人的意見が含まれることには留意

台湾の大学関係者の経営マインド(例)

➢ 米国の私立大学のように自由度の高い経営を志向

- 台湾のトップ大学関係者のコメント
 - 経営戦略検討のベンチマーク先として短期で東京大学、中長期でUCLA を対象にしている
 - 学長は**将来的に米国私立大学のような経営を目指している**。ファンド運用など自由度の高い資金による大学経営が理想

■ 台湾の科学技術大学関係者のコメント

- 台湾からノーベル賞がでていない、日本の大学をリスペクトしている
- 日本は技術開発は強いが、商業化のスピードが遅い。他の所に取られて利益に繋がっていない
- 米国大学は産業界と親しい関係を持っている。 UCバークレーも産業界と強いコネクションを持っている
- 米国大学の経営環境は、日本・台湾とは全く異なる。規制緩和されているというより、そもそも規制がない。
- ・ 米国大学は企業化されている。有名なところは私立大学が中心。自分達で稼いでいるので強い。大学は国より立場が強い

・ 台湾の大学は自由になる必要がある

(出典) 2025年10月 関係者ヒアリング結果に基づき作成 32

陽明交通大学は、地元(新竹)以外での活動や海外との連携など、接点を増やしながら、 強みを活かした価値創造の幅を拡げている

■高雄(台湾南部)へ進出

- 「高雄半導体材料特区」に対する半導体人材育成の一環で、 清華大学(新竹)、陽明交通大学(新竹)、成功大学(台南) の3校が分校を設置
 ※高雄市には国公立大学の中山大学も所在
- 陽明交通大学はAI/半導体/ESGに関わるハイレベル人材の育成を 目的として、高雄市に産学共育人材学院と産学共同研究開発セン ターを新設し2025年から学生を募集
- 高雄では文化・アート・テクノロジーを組み合わせ、 アジアニューベイエリアとして再開発が進んでいる

■企業と共に海外へ進出

- ・ TSMCがアリゾナ州に進出するにあたり、陽明交通大学も一緒に 進出することを計画
- 北米タレント&イノベーション・ハブを アリゾナに設けるための協力宣言を2025年9月に締結
- 段階的に連携し、2030年までにアリゾナに
 正式な海外キャンパスを設け、研究・人材育成・産学連携を統合した Academic Innovation Center を設置すること企図

■グローバルパートナーシップの拡大

- 陽明交通大学のスタートアップ以外に、台湾内、さらには 海外大学や機関に対しても、起業家プログラムなどを提供
- 10年で1,200以上のスタートアップ支援
- 共同研究や技術移転などでも連携。日本やインド、欧州等と連携

■小/中/高の学生に対する半導体教育の提供

• 企業からの寄附を原資に、半導体に関わる仕組みを楽しく 理解できるプログラムや教材を開発し教育を提供

■企業と連携した産学イノベーション研究学院の設立

IAIS: Industry Academia Innovation School

- 企業と共同で設立(企業と当局の共同出資)
- ・ 実務性の高いカリキュラムを提供。TSMCなど最先端の 研究者による教育や、インターンシップの機会提供など
- **既存の大学法に縛られない高い自主性**の実現 ※2021年施行の法律に基づき設立

各大学はそれぞれ強みを活かした大学経営を実施している特に直近10年間においても、新しい試みが行われている

UCバークレー

17位

ペンシルベニア大学

15位

マサチューセッツ工科大学 (MIT)

1位

ケンブリッジ大学

6位

チューリッヒ工科大学 (ETH)

7位

シンガポール国立大学 (NUS)

8位

台湾大学 陽明交通大学

63位、199位

- 州立大学特有の公的資金依存型の収益構造から脱却するため、2010年頃以降、経営改革を実行。10年間で寄付を1 兆円獲得するなど多様な収益源を確保しつつ、社会/企業への価値の提供を実現するための仕組を構築。州立大学でありながら、収益規模を3倍程度に拡大し、成長。
- ・ 2013年、研究成果の商業化を促す知財戦略を策定し、組織を整備。
- 特に、スタートアップへのライセンスを戦略的に活用。結果的に多額のライセンス収入を大学にもたらすことに成功 (mRNAなど)。
- 産学連携部門に、**企業ごとの担当者を設置**し、きめ細かく対応し、ソリューション、価値を提供。
- 加えて、**多様な企業や連邦政府機関と契約し、それぞれのクライアントに対応した研究所を個別に学内外に設置**し、 研究開発プロジェクトを進行。
- 従来から、**外国人留学生の授業料を高く設定**し資金を獲得(英国の大学共通の特徴)。
- 近年、<u>もともと強みであった試験・出版等サービス事業のデジタル化を徹底し、強化した結果、事業のパイが拡大し、</u>収入が増大。試験出版サービス事業が収益の大きな柱となっている。
- **スイス政府は国内に2つしかない国立大学と国研に重点投資**し、戦略的に研究開発を実施する方針。ETHは、こうした政府の戦略に沿い、**主として政府資金を用いて大学を運営**。他方、**今後の成長に向け、外部資金の獲得を指向**。
- 政府と連携してグローバルにオープンイノベーションを推進。海外11都市へ拠点(BLOCK71)を設立し、インキュベーション支援や投資家との接続支援を実施するなど積極的に海外へ展開。
- 留学生に対する**授業料引き上げによる収入増**に加え、産業育成の観点から卒業後の**国内就業有無により支払額が変動**。
- 新竹サイエンスパークでは、大学教員が、パーク内の他大学、行政関係研究機関(ITRI)、企業を自由に行き来し、
 施設を使って研究を実施。
- <u>国公立大学への規制が多く存在</u>し、大学経営改革が進んでいなかったものの、2021年に<u>特別法を制定</u>し、<u>企業と当</u> <u>局のマッチングファンド形式で既存の大学法に縛られない大学院運営を可能とする制度を試行</u>。企業からの大学院教育への投資が増大。

ご議論いただきたい点(例)

- 世界で競い成長する大学を目指す上でベンチマークすべき海外大学の取組や好事例(ご紹介した事例の他のものがあれば)
- 海外のトップ大学から日本の大学が取り入れるべき要素
- 社会や産業界が大学に期待する役割・価値観
- 産業界等からの積極的な投資を呼び込むための大学経営のあり方
- 成長する大学に必要な外部資金の規模感や学内投資のあり方(研究環境整備、 人材投資等)
- 戦略的な大学経営を実現するために参考とすべき諸外国の制度や、改善すべき 日本の制度