資料4

科学技術・学術審議会 研究計画・評価分科会 原子力科学技術委員会 原子力研究開発・基盤・人材作業部会(第 27 回) R7.11.12

国際原子力人材育成イニシアティブ事業の 中間評価結果 (案)

令和7年 月 原子力科学技術委員会 原子力研究開発·基盤·人材作業部会

原子力科学技術委員会 委員

氏名 所属:職名

主査 山本 章夫(※) 名古屋大学大学院工学研究科教授

主査代理 石川 顕一 東京大学大学院工学系研究科教授

浅沼 徳子 東海大学工学部准教授

大場 恭子(※) 長岡技術科学大学准教授

葛西 賀子 フリージャーナリスト

絹谷 清剛 金沢大学医薬保健研究域教授

黒﨑 健 (※) 京都大学複合原子力科学研究所教授

竹内 純子 NPO 法人国際環境経済研究所理事

吉橋 幸子 名古屋大学核燃料管理施設教授

中嶋 哲也 一般社団法人日本電機工業会専務理事

中西 英夫 電気事業連合会専務理事

增井 秀企 一般社団法人日本原子力産業協会理事長

原子力研究開発・基盤・人材作業部会 委員

氏名 所属:職名

主查 黒﨑 健 (※) 京都大学複合原子力科学研究所教授

主査代理 村上 健太 東京大学大学院工学系研究科准教授

秋山 庸子 大阪大学大学院工学研究科准教授

上田 欽一 一般社団法人日本原子力産業協会

企画部課長

岡田 融 電気事業連合会原子力部長

尾崎 弘之 早稲田大学ビジネス・ファイナンス研究

センター研究院教授

小澤隆一一般社団法人日本電機工業会原子力部長

高木 利恵子 エネルギー広報企画舎代表

中島 宏 (※) 北海道大学大学院工学研究院原子力安全

先端研究・教育センター副センター長

松浦 敬三 福井工業大学工学部教授

(※):国際原子力人材育成イニシアティブ事業における運営もしくは個別課題に参画し、 利害関係を有するため、本評価には参画していない。

国際原子力人材育成イニシアティブ事業の概要

1. 課題実施期間及び評価時期

課題実施期間:平成22年度~

評価時期:中間評価 平成27年度、令和2年度及び令和7年度

(今回の評価対象期間はR2年度~R7年度)

2. 研究開発概要:目的

原子力関連学科・専攻の減少により、原子力教育を行うことのできる教員や放射性物質を扱うことのできる原子力施設が減少。この結果、大学における人材育成機能は脆弱化し、個別の大学で一貫した原子力人材育成を行うことが困難な状況に直面している。このため本事業(令和2年度~)では、原子力分野の人材育成のため、全国大で関係機関の教育基盤、施設・装置、技術等の資源を結集し、共通基盤的な教育機能を補い合うことで、拠点として一体的に人材を育成する体制を構築。複数の機関が中長期的な視点で我が国の原子力分野の人材育成機能の維持・強化を図る。

具体的には、4つのプログラムを実施する。

- ①機関の相互補完による体系的な専門教育カリキュラムの共用
- ②大型実験施設・原子力施設等における実験・実習の実施
- ③国際機関や海外大学との組織的連携による国際研鑽
- ④産業界との連携

3. 研究開発の必要性等(前回中間評価時の指摘事項)

(1)必要性

原子力分野の人材確保の必要性については、様々な政策文書等において指摘されているが、原子力に係る学部・学科の改組等により、原子力分野の人材育成機能が脆弱化する中で、緩やかな協力の下で個別の大学等が人材育成を行うという従来の体制を越え、今後は、我が国全体として原子力分野の人材育成機能を維持・充実していくことが課題となっており、本事業の「必要性」は引き続き高いと評価できる。

(2)有効性

これまで各個別課題で多様な人材育成プログラムを実施しており、多様な学習機会を学生に提供できたと評価できる。令和2年度以降は、複数の機関が連携してコンソーシアムを形成することにより、より効果的に各教育機関の人材育成機能の共有や補完を図ることとしており、本事業の「有効性」は高いと評価できる。

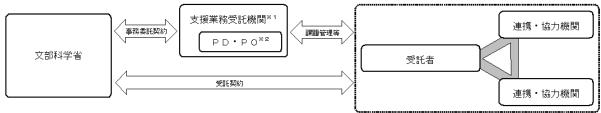
(3) 効率性

令和2年度からは、外部有識者によるFS評価や中間評価を実施する予定であるとともに、PD・POによる各課題のヒアリングや各課題が参加するワークショップが実施されており、進捗管理を強化している。以上のことから、事業の「効率性」を確保できていると評価できる。

(4) 今後の研究開発の方向性

本課題は「継続」、「中止」、「方向転換」する(いずれかに丸をつける)。

理由:原子方分野の人材育成の必要性は引き続き高く、本事業の寄与に期待するところは大きい。令和2年度には、事業スキームを大きく変え、我が国全体として原子力分野の人材育成機能を維持・充実を図るため、複数の機関によるコンソーシアムの形成に着手したところである。この方向性については、人材育成を取巻く課題や大学等のニーズにあったものと評価できる。今後は、この目標が達成できるよう着実に事業を進めるとともに、多様な人材養成ニーズに対応していくことも期待される。なお、これまでアウトカム指標としてきた研修等の延べ受講者数以外にも、事業の成果を評価するために適切な指標が考えられる。育成された人材や取組の定着等を評価するための方策についての検討も求めたい。


4. 予算(執行額)の変遷

年度	R2	R3	R4	R5	R6	R7	R8
予算額(百万円)	229	229	223	223	249	241	261 (要求額)
執行額(百万円)	178	209	219	217	244		

5. 課題実施機関・体制

大学、独立行政法人、公益社団・財団法人、民間企業等

< 令和2年度以降 課題実施機関·体制>

- (※1)原子力安全研究協会
- (※2) 令和2年度よりPD・PO体制を導入

PD:山本 章夫(名古屋大学大学院工学研究科総合エネルギー工学専攻教授)

P〇: 黒崎 健(京都大学複合原子力科学研究所教授)

6. その他

特になし

中間評価票

(令和7年11月現在)

- 1. 課題名 国際原子力人材育成イニシアティブ事業
- 2. 研究開発計画との関係

施策目標:国家戦略上重要な基幹技術の推進

- 大目標(概要): 我が国全体の研究開発や人材育成に貢献するプラットフォーム機能の充実 のため、国内外の研究機関や大学、産業界、立地自治体と連携して、原子力人材の育 成に取り組む。
- 中目標(概要):原子力分野の人材育成のため、全国大で関係機関の教育基盤、施設・装置、 技術等の資源を結集し、共通基盤的な教育機能を補い合うことで、拠点として一体的 に人材を育成する体制を構築。複数機関が中長期的な視点で我が国の原子力分野の人 材育成機能の維持・強化を図る。
- 重点的に推進すべき研究開発の取組(概要):原子力研究開発・人材育成基盤の維持・強化のために、全国大で複数機関が連携した「未来社会に向けた先進的原子力教育コンソーシアム(ANEC)」を設立。このANECを中核として、①機関の相互補完による体系的な専門教育カリキュラムの共用、②大型実験施設・原子力施設等における実験・実習の実施、③国際機関や海外大学との組織的連携による国際研鑽、④産業界との連携の4分野の教育プログラムを推進するとともに、持続的な活動のためのマネジメントシステムを構築する。

本課題が関係するアウトプット指標:

•課題件数(件)

年度		R2	R3	R4	R5 ※	R6	R7	
課	題件	数 (合計)	15	16	21	21	22	22
	内	新規採択課題数	15	2	5	_	3	2
	内	継続課題数	0(12) 💥	14(6) 🔆	16	21	19	20

※括弧書きはANEC創設前の採択課題

・ANEC4分野ごとの課題件数(件)

年度	R2※	R3 ※	R4	R5	R6	R7
①専門教育カリキュラムの共用	6	7	9	9	10	9
②実験・実習の実施	4	6	7	7	7	8
③国際研鑽	1	1	2	2	2	2
④産業界との連携	2	2	3	3	3	3

※ANEC創設前の採択課題は上記4分野に分類不可のため対象外とする。

本課題が関係するアウトカム指標:

・短期アウトカム:実施課題における研修等の延べ受講者数(人)

年度	R2	R3	R4	R5	R6	R7 (見込み)
①専門教育カリキュラムの共用	392	546	473	593	624	477
②実験・実習の実施	109	193	301	377	389	357
③国際研鑽※	0	12	10	9	10	11
④産業界との連携	12	177	179	179	203	144

[※]③の課題は受け入れ可能人数が少なく実数確認が可能なため、受講者実数を記録。

・中期アウトカム:各活動に参加した学生の就職者・進学者のうち、原子力関連へ 就職・進学をした学生の累積人数及び割合(令和3~6年度のうち捕捉可能なもの)

	進学者総数	原子力関連 進学者数	原子力関連 進学率	就職者総数	原子力業界 就職者数	原子力業界 就職率
①専門教育カリキュラムの共用	275 名	138 名	50%	283 名	103 名	36%
②実験・実習の実施	284 名	244 名	86%	279 名	206 名	74%
③国際研鑽※2	7名	7名	100%	17 名	14 名	82%
④産業界との連携	83 名	57 名	69%	146 名	113 名	77%

3. 評価結果

(1)課題の進捗状況

ANECの下で実施する4分野の取組状況は以下のとおり。

- ①機関の相互補完による体系的な専門教育カリキュラムの共用
 - (R2~R8 北海道大学・東北大学・静岡大学・高専機構・長岡技大など)
 - ・実験・実習の基礎となる講義、協力大学の特色ある講義を収録し、北海道大学プラットフォーム(オープンエデュケーションセンター: OEC) 上でオープン化。オープン教材の収録数は191件(うち公開数は147件)。毎年1.6万件のアクセスがある。なお、令和7年度に我が国から初めて高校生4名が国際原子力科学オリンピックに参加し、全員がメダル受賞という輝かしい成果を挙げたが、彼らの事前トレーニングにも本教材が活用された。
 - MOOC (Massive Open Online Courses) による大規模公開オンライン講座「放射線・放射能の科学」を開講。10~70代の幅広い年齢層で計4,432名の登録があり、理解度向上やリカレント・リスキリングにも有効と考えられる。
 - ・高専生向け講義教材及び演習プログラムを共同開発し高専に提供するとともに、国内10以上の教員養成大学の教員志望学生を対象にSTEAM手法を活用した放射線等の授業案の研究・考察を実施。
 - ・その他にも、高校生・高専生向けの全国の大学や企業における原子力関連の活動を 紹介するイベントをコンソーシアム主催で実施。令和5年度は30名、令和6年度

は173名、令和7年度は142名の高校生・高専生が全国から参加。

オープン教材公開サイト (北海道大学 OEC) R2~R6: 収録 191 公開 147

◆ 登録者数	: 4	,432名	$\Rightarrow $	修了	者:	875名
--------	-----	-------	----------------	----	----	------

受講者年代	10代以下	20代	30代	40代	50代	60代	70代	その他	合計
受講登録数	333	569	493	555	658	671	436	717	4,432
受講登録構成比	7.5%	12.8%	11.1%	12.5%	14.8%	15.1%	9.8%	16%	

10代以下~70代まで幅広い年齢層の受講者。理解度向上、リカレント・リスキリングにも有効。

大規模公開オンライン講座「放射線・放射能の科学」

②大型実験施設・原子力施設等における実験・実習の実施

(R2~R8 近畿大学・京都大学・東京都市大学・東海大学・名古屋大学、東北大など)

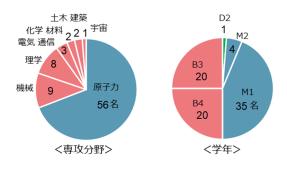
- ・国内の限られた原子力教育リソースである研究用原子炉(UTR-KINKI、KUCA)を連携させ、実習コンテンツを体系的に整備。学部生・大学院生向けとして、基礎・中級・上級の3コースを設け、各レベルに応じた実習を提供。
- ・また、廃棄物の扱いに関する実習プログラム(東京都市大学)、発電炉シミュレータ を用いた演習(東海大学)、研究炉とシミュレータを融合させた高専生向けの実習(近 畿大学・東海大学・高専機構) も各大学の連携の下で提供している。
- ・近畿大学の研修コースについては、長期間にわたる枠組みで、安定的にプログラムを提供できたことから、参加大学内で単位化が進展(13大学)。実習コースに参加した学生の理解度が大幅に改善(平均2.5 \rightarrow 4.0 \times 5段階)

近大炉 UTR-KINKI での実習の様子

		験·実習
原子炉実習/	基礎コース	近畿大学
実習教科書の整備	中級コース	京都大学·近畿大学
	上級コース	京都大学·名古屋大学·近畿大学
廃棄物計測·信頼性工	学実習	東京都市大学
発電炉シミュレータ実習		東海大学
高専生のための原子力	実習	近畿大学·東海大学·高専機構

各大学で取り組まれている実験・実習メニュー

- ③国際機関や海外大学との組織的連携による国際研鑽(R2~R8 東京科学大学など)
 - ・原子カイノベーター養成キャンプ (NICC) 米国学生を招聘して国内学生と共同でグループワーク、福島第一原子力発電所研修 等の合宿セミナーを行い、グループ単位での事業計画コンペティションを行う。
 - ・原子カイノベーション留学(SANI) 国内博士課程の学生を米国の原子カ分野トップクラスの大学へ約4か月間留学派遣


- し、共同研究を行う。
- 一部の派遣プログラムでは国際共同研究へ発展。

年度	参加者
R3	12名(国内:東工大、東海大、富山高専、 福島高専、12名)
R4	10名(国内:東工大、6名)
R5	29名(国内:東工大、4名)
R6	13名(国内:東工大、福井大、日立、7名)

年度	派遣先	派遣時所属	現所属
R4	マサチューセッツエ 科大学	京都大学博士後期課程	Brookhaven National Lab
	ミシガン大学	東北大学 博士後期課程	Oak Ridge National Lab
R5	マサチューセッツエ 科大学	東京工業大学 博士後期課程	博士後期課程 在籍中
	テキサスA&M大学	大阪大学 博士後期課程	博士後期課程 在籍中
R6	応募者なし		

原子カイノベーション留学受講者実績

- ④産業界との連携(R2~R8 福井大学、福井工業大学、R4~R8 三菱重工など)
 - ・福井県の大学、研究機関、電力会社等が連携して、様々な原子力関連施設を利用した実習・研修(つるが原子力セミナー)を実施。
 - ・三菱重工と関西電力が連携し、将来を担う人材育成のため、プラント・燃料の設計、 製造から発電所の運用までの幅広い技術・業務について、講義・実習・現場見学を 通じて実践的に学ぶ研修プログラムを実施。参加した学生の満足度が100%。

(三菱重工) R4~R6 年度の受講者分類

成果報告の様子

また、各課題に参加した学部、修士、博士の学生の進路追跡調査結果は以下のとおりであり、それぞれの教育プログラムの有効性・原子力業界への貢献について、行政事業レビュー等においても一定の評価がなされている。

【再掲】各活動に参加した学生の就職者・進学者のうち、原子力関連へ就職・進学をした 学生の累積人数及び割合(令和3~6年度のうち捕捉可能なもの)

	進学者総数	原子力関連 進学者数	原子力関連 進学率	就職者総数	原子力業界 就職者数	原子力業界 就職率
①専門教育カリキュラムの共用	275 名	138 名	50%	283 名	103 名	36%
②実験・実習の実施	284 名	244 名	86%	279 名	206 名	74%
③国際研鑽※2	7名	7名	100%	17 名	14 名	82%
④産業界との連携	83 名	57 名	69%	146 名	113 名	77%

(2) 各観点の再評価

<必要性>

〇評価項目

国費を用いた人材育成としての意義

〇評価基準

国や社会のニーズに適合しているか、国が関与する必要性・緊急性はあるか

本事業はエネルギー基本計画を踏まえた事業であり、社会のニーズを的確に反映していると考える。第7次エネルギー基本計画(令和7年2月閣議決定)では、原子力を脱炭素電源として最大限活用していくこととし、そのために人材の維持・強化に取り組むことが必要とされた。特に人材育成については、「ANECなどの関係機関の協力枠組みを活用しつつ、スキル標準導入等の人材育成施策や産学官の交流を関係省庁が連携して進める」と記載され、原子力人材育成の拡充にANECが重要な役割を果たすことが示された。このことから、国として責任をもって効果的・効率的・戦略的に原子力人材育成を行う必要があり、本事業の「必要性」は、引き続き高いと評価できる。

一方、これまでは原子力分野の大学生を中心に人材育成事業を展開してきたものの、原子力研究開発利用の持続性を鑑みると、電気・電子工学、機械工学などの他分野の学生や高校生以下へ対象を拡げる取組を必要である。これまで取り組んでいたSTEAM教育や原子力オープンキャンパスなどを土台として、産業界との連携強化にも取り組みつつ、更なるすそ野拡大への取組を期待する。

<有効性>

〇評価項目

機関横断的な人材の養成

〇評価基準

本課題で採択した課題における研修等の延べ受講者数及び事業内容で、計画通りの成果が挙げられているか。

捕捉可能な原子力業界への進学者数・進学率、就職者数・就職率の値。

4分野の取組において、各中核機関が中心となって、全国の大学・高専等の学生に対して、多様な学習機会を提供することを成し遂げたと考える。各活動に参加した学生の就職・進学者のうち、原子力関連へ就職・進学をした学生の累積人数及び割合も非常に高い値を記録しており、本事業の「有効性」は高いと評価できる。

なお、補助期間が終了する令和8年度まではANECの活動を継続し、より効果的に 各教育機関の人材育成機能の共有や補完を図ることとしている。

<効率性>

〇評価項目

計画・実施体制の妥当性、目標・達成管理の向上方策の妥当性

〇評価基準

人材養成をより効率的かつ効果的に実施するための方策はとられているか

事業の実施に当たっては、外部有識者による評価に基づいて、優れた提案の採択を行っている。事業終了後には当初の目標が達成できたか等を評価する事後評価を実施しており、すべての課題が計画どおり又は計画以上の成果を挙げている。また、PD・POによる各課題の進捗状況をヒアリングする中間フォローや年度報告書の確認を通じて機動的に計画を変更するなど、進捗管理の強化に取り組んでおり、事業の「効率性」を確保できていると評価できる。

(3) 科学技術・イノベーション基本計画等への貢献状況

本事業はエネルギー基本計画を踏まえた事業であり、第7次エネルギー基本計画(令和7年2月閣議決定)において、「ANECなどの関係機関の協力枠組みを活用しつつ、スキル標準導入等の人材育成施策や産学官の交流を関係省庁が連携して進める」と記載されるなど、エネルギー基本計画に貢献する事業であると判断できる。

(4) 前回の中間評価結果時の指摘事項とその対応状況

<指摘事項>

これまでアウトカム指標としてきた研修等の延べ受講者数以外にも、事業の成果を評価するために適切な指標が考えられる。育成された人材や取組の定着等を評価するための方策についての検討も求めたい。

<対応状況>

研修等の延べ受講者数以外に、研修内容の理解度、研修満足度等、各活動に参加した 学生の就職者・進学者のうち、原子力関連へ就職・進学をした学生の累積人数及び割合 の追跡調査など、課題の質を評価する指標での効果測定も行った。

また、成果をオンライン教材として公開したり、実験系については本事業で作成した 教科書を無料公開するなどの形で成果の定着を図っている。

(5) 今後の研究開発の方向性

本課題は「(継続」)、「中止」、「方向転換」する(いずれかに丸をつける)。

理由:原子力分野の人材育成の必要性は引き続き高く、第7次エネルギー基本計画(令和7年2月閣議決定)でも示されたように本事業の寄与に期待するところは大きいと考える。令和2年度のフィージビリティスタディを経て、令和3年度から形成されているANECの下で推進された各課題では、前述の記載にある通り着実な成果を挙げており、原子力業界への一定の貢献があると評価できる。

補助期間が終了となる令和8年度までは、引き続き各課題のプログラムを推進していくことを期待される。並行して、ANECの中核的取組・成果・改善事項の分析、事業の制度・評価基準・目標の再検討、原子力人材を必要とする産業界・研究分野のニーズ把握を進めながら、令和9年度以降の次期事業の在り方についても引き続き検討されることを求めたい。

(6) その他

(参考)

採択事業一覧 (今回の中間評価の対象である令和2年度以降に実施していた事業)

令和2年度

代表機関	事業名
東京工業大学	原子力エネルギー高度人材育成統合拠点
東北大学	大型実験施設群を活用した実践的・持続的連携原子力教 育カリキュラムの構築
北海道大学	機関連携強化による未来社会に向けた新たな原子力教育 拠点の構築
福井大学	原子力技術の継承と継続的な人材育成を目指した福井県 嶺南地域の国際原子力人材育成拠点形成
近畿大学	大学研究炉を中心とした原子力教育拠点の形成
国立高等専門学校機構	ネットワーク形成を通じた高専における原子力人材育成 の高度化

令和3年度

代表機関	事業名
※東京大学	原子力施設の廃止措置を統括するグローバル人材の育成
※長岡技術科学大学	技術的専門性を要する社会課題の解決に寄与する実践的 人材の育成

令和 4 年度

代表機関	事業名
静岡大学	STEAM 教育手法を活用し、エネルギー・環境問題を基盤 とした理系教員養成原子力人材育成
日本原子力研究開発機構	核燃料サイクル及び核燃料取扱いに関する実践的な原子 カ人材育成システムの構築
東京工業大学	大学連合ネットワークによる初等学生への国際原子力基 礎教育
※筑波大学	原子力緊急時の環境影響評価と廃棄物処理・処分を支え る人材育成
※三菱重工業株式会社	メーカー/電力連携プログラム『原子カプラント技術実 践研修』

平成6年度

代表機関	事業名
東京大学	リサイクルの視点をもつ戦略的な廃止措置マネージメン ト人材育成
長岡技術科学大学	実践的人材の育成を目指した新しい原子力分野における 社会課題検討の場の設計と実践
東京工業大学	核燃料物質管理人材育成プラットフォームの構築

令和7年度

F 16 . 1 .	
代表機関	事業名
日本原子力研究開発機構	放射線・原子力に関する基礎的な実験・実習プログラム の提供
三菱重工業株式会社	プラントメーカー/電力会社の現場で学ぶ原子力技術実 践研修

※令和3年度に採択した2事業、令和4年度に採択した2事業の計4事業は、3年間の 補助期間を終えている。その他課題は令和8年度まで継続支援。