令和7年10月17日 算数・数学WG 資 料

算数·数学に関する 現状·課題と検討事項

● 算数科・数学科に関する現状と検討課題①

1. 現行教育課程の考え方

- 算数科・数学科は、「数学的活動を通して、数学的に考える資質・能力」を共通の目標として掲げ、資質・能力の育成を図ることとしている。 (P.20)
- 今次学習指導要領では、以下のような見直しを図った(P.18,19)
 - ▶ 日常生活や社会における事象を数理的に捉え、数学の問題を見いだし、問題を自立的・協働的に解決し、解決過程を振り返って概念を 形成・体系化する「数学的活動」を一層充実
 - ▶ 社会生活などの様々な場面でのニーズを踏まえ、「統計的な内容」を 改善・充実
 - ♪ 小学校算数では、全国学調等で課題となっていた「割合に関する内容」を充実するとともに、「領域の構成」を見直し 等

2. 理数系の素養を持つ人材を増やす必要性

【①国際調査の結果と進路動向】

- 国際的な学力調査において、日本の小中高生の理数リテラシーは世界トップクラスを維持。一方、大学の定員が文系偏重となっていることも相まって高等学校卒業後の進路として理工系が選択されない現状(学部生のうち理工系は17%) (P.36,37)
- また、我が国を含む成績上位10か国を比較すると、日常生活の問題を 数学でどう解決できるか考えさせる指導を受けたと回答した生徒の割合は 少なく、数学を使う職業につきたいと考える中学生の割合は最下位 (P.78)
- また、男女間で理数系科目のスコアには大きな差がない一方、算数・数学に関する自信や科学分野の志向には男女間で差が生じており (P.71,38)、大学学部で理工農系を専攻する割合は男性18%に対して女性が5%。アンコンシャスバイアスの影響も指摘されている。

【②高等教育政策における動き】

- こうした中、文部科学省は、意欲ある大学・高専のデジタル・グリーン 等の成長分野への学部転換等を推進する基金を創設(P.48,49)。
- また、文理を問わず、初年次教育等において数理・データサイエンス・AIの活用が必要となってきていることに鑑み、これらに関する大学等の優れた教育プログラムを認定/選定する制度を創設した(P.50)

①②を踏まえ

● 大学・院卒の理系人材は2040年に約100万人不足するとの推計もある中(P.40,41)、理数分野においても、義務教育段階での底上げを含め、ジェンダーギャップにも留意しつつ、初等中等教育と高等教育との接続の改善を図る必要。

3. 小・中・高等学校を通じた課題

【①指導上の課題】

- R7全国学調の結果(参考資料6-1) 等では以下の課題が顕在化
 - ▶ 小学校算数・中学校数学で、基本的概念(分数、割合、素数等)の理解・定着が不十分な児童生徒が見られたほか(P.63-66)、授業の内容が「よく分かる」と回答した児童生徒の割合が減少
 - 家庭の社会経済的背景 (SES)が低いほど平均正答率が低い傾向が出ており(P.61)、これらが与える影響をできる限り緩和する必要
 - 小・中学校とも、学校の授業時間外における勉強時間が平日・ 休日ともに減少傾向(P.82)。高等学校入試の倍率も下がる 中、学びの動機づけをアップデートする必要

血算数科・数学科に関する現状と検討課題②

- 算数科・数学科は学習内容の系統性・連続性が極めて強いことから、個々の単元における学習内容の習得・定着の不徹底が、その後の学習に大きな支障をもたらし、進学・進級に伴って、学習困難な事項が雪だるま式に増加していく傾向がある。
- この点について、例えば1コマで扱う問題数が極めて少ないなど、練習量が足りず、定着が十分図れないような指導計画や、既習事項の習得状況をまとめて確認したり、再学習をさせたりする機会が十分でない例が散見される。こうした傾向は、単元指導後に単元テストを行うだけの場合が多い小学校で特に顕著との指摘や、認知心理学等の知見の活用が不十分との指摘もある。

【認知心理学や学習科学の知見の例】

分散学習、自己説明、検索学習、デュアルコーディング、精緻化等

- 学習指導要領解説総則編では、学習習慣の向上や学習意欲の向上を図るための指導として、児童生徒が家庭において学習の見通しを立てて予習をしたり学習した内容を振り返って復習する機会を設けることが例示されているが(P.83,84)、こうした指導が算数・数学科の授業において十分なされていないケースが見られるとの指摘がある。
- 日常生活や社会の事象について、既習事項を基に、数学的に分析したり、考えたりしようとする児童生徒が少ないのではないか、既習内容や今後学習する内容との繋がり・関係を意識せずに学んでいる児童生徒が多いのではないかとの指摘がある。
- これらが相まって、学校段階・学年が進むにつれ、算数・数学が好き・楽しいと感じる児童生徒が減少したり算数・数学の学習を諦めてしまう児童生徒が増えたりしているとの指摘がある(P.79)。

【②学習内容に関わる課題】

- 市民生活や職業生活における数学の重要性の高まりに見合った数学的素養の習得に課題のある生徒が少なからず存在するとの指摘がある。
- 生成AI技術の進展・変化に対応して全国民が身に付けるべき数学的素養や、我が国で足りないデジタル・理工系分野に必要な資質・能力を習得させる観点から、AIやデータサイエンスなどの基礎を成す解析学・線型代数学・統計学の取扱いが十分でないとの指摘がある。

4. 小学校・算数科に関する課題

- 割合・比・分数など、特定の単元については、概念を理解することが 困難であることなどから、習得・定着が十分でない児童が相当数存 在するとの指摘がある(参考: P.63,64)。
- 認知特性などから算数・数学の学習に困難を感じている児童生徒への対応も含め、ある単元を理解するための既習事項の習得状況(レディネス)に関するアセスメントが教育課程全体の中で十分行われていないとの指摘がある。

5. 中学校・数学科に関する課題

● 数学的推論や論証(証明)など、論理的に考察し説明する 学習内容を多くの児童生徒が不得意としている状況が改善し ていない(参考: P.66)。

●算数科・数学科に関する現状と検討課題③

6. 高等学校・数学科に関する課題

- 高等教育で理数の素養が求められる中、高等学校の進路選択 を契機に、私大文系志望者や高等教育非進学層が数学の学習 を諦めてしまうとの指摘がある。
- 選択科目の区分や履修の仕方が多様化する高等学校の生徒の 実態に即していないとの指摘がある。

7. 高等学校・理数科に関する課題

● 共通教科「理数科」については、現行学習指導要領で新たに設置された教科科目であることから、開講・履修の状況については引き続き注視する必要がある。一方で、学習対象とする事象等としては、本来、科学的・数学的なもの以外にも、社会的事象や学際的領域に関するものも想定されているが(P.34)、学校現場でこうした課題が選択されにくいとの指摘があることから、文理横断・文理融合(STEAM)を一層推進する観点からも、これらの扱いを充実してはどうか。

● 高等学校の共通教科「理数科」については、理科WGとの 合同開催等により、集中的な検討が必要。

♀ ワーキンググループにおける検討事項・論点①

I. 教育課程企画特別部会の議論を踏まえた検討事項

1. 算数科・数学科を通じて育成する資質・能力のあり方・示し方

- 「学びに向かう力・人間性等」や「見方・考え方」の新しい整理を 踏まえた目標の示し方
- 中核的な概念等に基づく内容の一層の構造化や、その過程における必要に応じた精選のあり方
- 算数科・数学科の特質を踏まえた、表形式を活用した目標・内容の分かりやすい示し方

2. 算数科・数学科の指導と評価の改善・充実のあり方

- デジタル学習基盤の活用や情報活用能力の育成強化を前提とした、算数科・数学科における「主体的・対話的で深い学び」の一層の充実を図るための方策(詳しくは II 参照)
- 資質・能力の育成のために効果的かつ過度な負担が生じにくい算数科・数学科の評価のあり方

3. 柔軟な教育課程のあり方

- 義務教育における調整授業時数制度や、高等学校における科目の柔軟な組み替えを可能とする仕組※を前提とした場合に、考えられる教育課程・学習指導の工夫のあり方
- ※必履修を含む科目の一部又は全部を、一定の要件の下、他科目等で取り扱うことを可能とする/単位数を細分化し、きめ細かく増単・減単を可能とする 等
- 高等学校の選択科目については、進路希望や学習ニーズに合わせ、学習内容をより柔軟に選択して履修できるようにしてはどうか。
- 教育課程の柔軟化に伴って生じうる課題とそれらの防止策

Ⅱ. 算数科・数学科に関する課題を踏まえた固有の検討事項

1. 学習内容の系統性・一貫性に関する課題

● 児童生徒が学習内容同士の繋がりを意識できるよう、また、高校卒業時に数学的な概念が理解できるよう、学習内容の構造化とあわせて、小・中・高等学校を通貫した系統性確保という観点から、学習内容について見直し・再整理が必要な点はないか。

2. 定着に課題のある事項に関する課題

- SESの影響を緩和する指導計画・指導方法のあり方についてどう考えるか。
- 認知心理学、学習科学の知見も踏まえた指導計画や指導方法の 改善についてどう考えるか。
- いわゆる記号接地や概念の理解にデジタル教材が果たす役割についてどう考えるか。いわゆるAIドリルの効果的活用のあり方や望ましくない活用事例についてどう考えるか。
- 柔軟な教育課程の編成により、ある程度まとまった時間をつくり、学校段階や学年を超え、定着に課題のある単元の学び直し等を実施できる可能性をどう考えるか。
- 学習指導要領解説総則編では、学習習慣の向上や学習意欲の向上を図るための指導として、予習・復習が例示されていることを踏まえ、過度な負担を生じさせず、個別最適な学びの観点にも配意した授業と授業外の学習との連携・往還を図る工夫やICTが果たすべき役割についてどう考えるか。

3. 社会変化に対応した学習内容に関する課題

小・中・高等学校において、基本的な概念等の理解や基礎的・基本的な計算技能等の着実な習得を図りつつ、推論や数学的論証 (証明)等、論理的に考察する学習を充実してはどうか。

♥ ワーキンググループにおける検討事項・論点②

- 学習に対する興味・関心が低下している傾向を踏まえ、児童生徒が日常生活や社会の事象を数学的に考えられるようにするため、小・中・高等学校の授業において、数学における探究的な学習を充実してはどうか。
- 児童生徒の興味関心・認知特性に応じた学習や、つまずきの解消など、個別最適な学びの一層の充実を図る観点から、生成AIの活用の可能性をどう考えるか。
- ●中・高等学校では、市民生活や職業生活における数学の重要性の高まりを踏まえ、生徒が数学を学習する意義を実感できるよう、数学と社会や職業とのつながり等についての学習内容を充実してはどうか。また、高等学校においては、科学技術の創り手として必要な数学的素養や、社会において求められる数学的素養の変化を踏まえ、微積・行列・確率や統計の基礎的な学習をさらに充実してはどうか。
- 以下の課題を解消するため、進路指導や教育課程上どのような工夫が考えられるか。
- ▶ 高等学校の進路選択を契機に、私大文系志望者や高等教育 非進学層の一部が数学の学習を諦めてしまう状況。
- 算数・数学に関する自信における男女差

4. 高等学校・理数科に関する課題【同、WG】

- 探究的な学習の対象とする事象等を数学的なものに偏重せず、文理横断・文理融合(STEAM)的な課題も含めることについてどう考えるか。
 - 高等学校の共通教科「理数科」については、理科WGとの合同開催等により、集中的な検討が必要。

5. 高等学校教育終了後の進路に関する課題(男女差を含む)

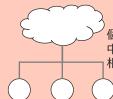
- 15歳段階で理数リテラシーが世界トップクラスであるにもかかわらず、 高等学校教育修了後の進路としても理工系が選択されない問題 について、どのような改善方策が考えられるか。
- 児童生徒・保護者・教師のアンコンシャスバイアスにも起因する、理工系進学における男女間の格差解消に向けてどのような対応が考えられるか。

「タテ・ヨコの関係」の可視化による「深い学び」の具現化

【参考】教育課程企画特別部会 論点整理 抜粋

- 知識の理解も、それが生きて働くように深く学ぶことが重要(タテの関係①)。思考力・判断力・表現力等も、社会や生活で直面する 未知の状況でも課題解決に繋げていけるよう「質」を高めることが重要(タテの関係②)
- <u>ある程度の知識・技能なしに思考・判断・表現することは難しい</u>し、<u>思考・判断・表現を伴う学習活動なしに、知識の深い理解と技能の</u>確かな定着は難しい(∃コの関係)
 - ➡こうした「タテ・ヨコの関係」を学習指導要領上で可視化することにより、資質・能力の関係性の理解や、それらを一体的に育成するための教師の単元づくりを助け、「深い学び」を授業で具現化しやすくする

<生きて働く>


知識及び技能

他の学習や生活の場面でも活用できる

中核的な概念の深い理解

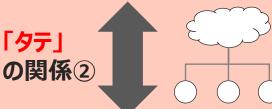
(例) 関数を使えば未知の状況を予測できる

個別の知識や技能が 中核的な概念と結びついて 相互に関連付けられる

「ヨコ」の関係

個別の知識や技能

- (例)・比例・反比例の理解
 - ・一次方程式の解き方
 - ・二元一次方程式を関数としてみなせることの理解
 - ・現実の事象を関数でモデル化できることの理解
 - ・二次関数でモデル化できる事象があることの理解


<未知の状況にも対応できる>

思考力、判断力、表現力等

知識・技能を活用しながら、未知の場面でも課題を解決できる

複雑な課題の解決

(例) 現実の事象を数式でモデル化し、未知の状況を 予測して、具体的な解決策を選択する

を 複雑な課題の解決に向けて、個別の思考力・判断 か・表現力等を総合的に 働かせる

個別の思考力、判断力、表現力等

- (例) ・二つの数量の変化・対応関係を見いだし、式やグラフ を用いて考察する
 - ・現実の事象にある二つの数量の関係を関数と仮定して処理したりその結果に基づいて判断する

学習指導要領の構造化・表形式化イメージ (中学校数学「数と式」の例)

【参考】教育課程企画特別部会 論点整理 抜粋

資質・能力の一体的育成の可視化(「ヨコ」の関係の可視化)

知識及び技能の系列

思考力、判断力、表現力等の系列

内容区分の中核的な概 念理解へと至るために、個 別の知識や技能といった資 質・能力が結集・統合され

中核的な概念の深い理解 (仮称)

この内容のまとまりを通じて理解して欲しい主要 な概念等を示す

例:数の範囲を拡張することにより、より広範な事象 を一般的かつ明確に表し、計算が能率的にできるよ うになることを理解する。

複雑な課題の解決 (仮称)

この内容のまとまりにおける知識・技能を総合的に 使いこなして、思考・判断・表現できる力を示す

例:数の範囲を拡張し、それらの新たな数を用いて、日 常生活や社会におけるより広範な問題を解決することが できる。

1年 相当

個別の知識及び技能

教科の主要な概念の深い理解を獲得し、思 考・判断・表現する上で必要な要素となる知 識・技能を示す

例:下の数と負 の数

例:下の数と負 の数の四則計

例:具体的な場 面で正の数と負 の数を用いて表 すること

したり処理したり

3年 相当

例:数の平方根

を含む簡単な式 の計算

:例:数の平方根:例:具体的な場面 で数の平方根を用 いて表したり処理 したりすること

個別の思考力、判断力、表現力等

複雑な課題の解決をする上で必要な要素となる 思考力・判断力・表現力等を示す。

例:既に学習した計算の方法と関連付けて、拡張した数につい て四則計算の方法を考察し、表現する。

例:様々な事象における問題解決の場面において、新たに学 んだ数を活用して問題を解決することができる。

資質·能力 の柱ごとの 「深まり」の 可視化 (「タテ」の 関係の可 視化)

知とスキルを結 集・統合して、知

識・技能を総合

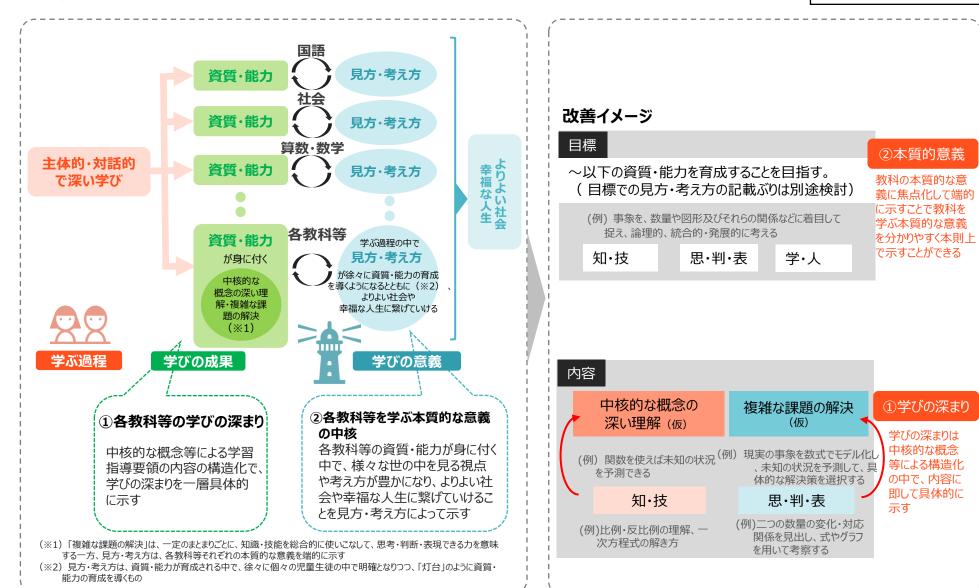
的に使いこなす

力。実践志向の

プロセスを追記。

(内容の 取扱い)

内容の取扱い


各教科の内容を学習する上での取扱上の留意点等を示す

※本イメージは現行学習指導要領を基に構造化・表形式化のイメージとして作成したものであり、実際の次期学習指導要領の構造化案は、今後、総則・評価特別部会や各WGで 具体的に検討するもの。本イメージは、あくまで構造化や表形式化の意義を分かりやすくするための一例であることに留意

※令和7年2月17日 第2回教育課程企画特別部会 石井委員提出資料を基に文部科学省作成

今後の見方・考え方の役割の改善イメージ

【参考】教育課程企画特別部会 論点整理 抜粋 (黄色マーカーのみ追加)

※従前の見方・考え方の整理は、見方・考え方が資質・能力の一部と誤解される遠因となっていたことから改善を図り、<mark>見方・考え方は、資質・能力(中核的な概</mark> 念等を含む)の育成を的確な方向性に導くとともに、よりよい社会や幸福な人生に繋げていける学びの本質的な意義として整理する

参考資料・データ

1. 学習指導要領について

学習指導要領について

- 全国的に一定の教育水準を確保するとともに、実質的な教育の機会均 等を保障するため、国が学校教育法に基づき定めている大綱的基準。
- 各学校段階ごとに、それぞれの教科等の目標や最低限教えるべき教育 内容を定めている。時代の変化や社会や子供の実態等に対応し、これま で概ね10年に一度改訂が行われてきた。
 - ※幼稚園については幼稚園教育要領、特別支援学校については、特別支援学校幼稚部教育要領、小学部・中学部 学習指導要領及び高等部学習指導要領をそれぞれ定めている。

学習指導要領 前文

…教育課程を通して、これからの時代に求められる教育を実現していくためには、よりよい学校教育を通してよりよい社会を創るという理念を学校と社会とが共有し、それぞれの学校において、必要な学習内容をどのように学び、どのような資質・能力を身に付けられるようにするのかを教育課程において明確にしながら、社会との連携及び協働によりその実現を図っていくという、社会に開かれた教育課程の実現が重要となる。

学習指導要領とは,こうした理念の実現に向けて必要となる教育課程の基準を**大綱的**に 定めるものである。…

教育課程編成の基本的な考え方

玉

・学習指導要領など、学校が 編成する教育課程の大綱的 な基準を制定 教育委員会 (設置者)

・教育課程など学校の管理運 営の基本的事項について規 則を制定 学 校(校長)

・教育課程を編成・実施

学習指導要領の法的な位置付け

教育基本法

教育の目的及び目標、 義務教育の目的、学校 教育の基本的な性格な どについて規定 学校教育法

学校教育法 施行規則 (文部科学省令)

- 義務教育の目標、幼稚園、小学校、中学校、 高等学校、特別支援学校の目的及び目標について規定
- ・小学校等の教科構成、授業時数について規定
- ・各学校の教育課程は、教育課程の基準として 文部科学大臣が公示する学習指導要領による ことについて規定

学習指導要領(文部科学省告示)

- ・教育課程の編成、教育課程の実施と学習評価、児童生徒の発達の支援、学校 運営上の留意事項、各教科等の目標及 び内容などについて規定
- ・学校種(幼稚園、小学校、中学校、高等学校、特別支援学校)ごとに作成

学習指導要領の変遷

平成元年 改訂

社会の変化に自ら対応できる心豊かな人間の育成 (生活科の新設、道徳教育の充実)

平成10~ 11年改訂 基礎・基本を確実に身に付けさせ、自ら学び自ら考える力などの 「生きる力]の育成(教育内容の厳選、「総合的な学習の時間」の新設)

平成15年 一部改正 学習指導要領のねらいの一層の実現(例:学習指導要領に示していない内容を指導できることを明確化、個に応じた指導の例示に小学校の習熟度別指導や小・中学校の補充・発展学習を追加)

平成20~ 21年改訂 「生きる力」の育成、基礎的・基本的な知識・技能の習得、思考力・判断力・表現力等の育成のバランス

(授業時数の増、指導内容の充実、小学校外国語活動の導入)

平成27年一部改正

道徳の「特別の教科」化「答えが一つではない課題に子供たちが道徳的に向き合い、考え、議論する」道徳教育への転換

平成29~ 30年改訂 「生きる力」の育成を目指し資質・能力を三つの柱で整理、社会に開かれた教育課程の実現

学習指導要領の全体構造

新しい時代に必要となる資質・能力の育成と、学習評価の充実

学びを人生や社会に生かそうとする 学びに向かう力・人間性等の涵養

生きて働く**知識・技能**の習得

未知の状況にも対応できる **思考力・判断力・表現力**等の育成

何ができるようになるか

よりよい学校教育を通じてよりよい社会を創るという目標を共有し、 社会と連携・協働しながら、未来の創り手となるために必要な資質・能力を育む 「社会に開かれた教育課程 | の実現

各学校における「カリキュラム・マネジメント」の実現

何を学ぶか

新しい時代に必要となる資質・能力を踏まえた 教科・科目等の新設や目標・内容の見直し

小学校の外国語教育の教科化、高校の新科目「公共」の 新設など

各教科等で育む資質·能力を明確化し、目標や内容を構造 的に示す

どのように学ぶか

主体的・対話的で深い学び(「アクティブ・ラーニング」)の視点からの学習過程の改善

生きて働く知識・技能の習得など、新しい時代に求められる資質・能力を育成

知識の量を削減せず、質の高い理解を図るための 学習過程の質的改善

主体的・対話的で深い学びの実現 (「アクティブ・ラーニング」の視点からの授業改善) について (イメージ)

「主体的・対話的で深い学び」の視点に立った授業改善を行うことで、学校教育における質の高い学びを実現し、学習内容を深く理解し、資質・能力を身に付け、生涯にわたって能動的(アクティブ)に学び続けるようにすること

【主体的な学び】の視点

学ぶことに興味や関心を持ち、自己のキャリア形成の方向性と関連付けながら、見通しを持って粘り強く取り組み、自己の学習活動を振り返って次につなげる「主体的な学び」が実現できているか。

学びを人生や社会に 生かそうとする **学びに向かう力・ 人間性**等の涵養

生きて働く **知識・技能**の 習得 未知の状況にも 対応できる思考力・判断力・表現力 等の育成

【対話的な学び】の視点

子供同士の協働、教職員や地域の人との対話、先哲の考え方を手掛かりに考えること等を通じ、自己の考えを広げ深める「対話的な学び」が実現できているか。

【深い学び】の視点

習得・活用・探究という学びの過程の中で、各 教科等の特質に応じた「見方・考え方」を働かせ ながら、知識を相互に関連付けてより深く理解し たり、情報を精査して考えを形成したり、問題を 見いだして解決策を考えたり、思いや考えを基に 創造したりすることに向かう「深い学び」が実現 できているか。

学習指導要領の構成 一小学校の例一

第1章 総 則

第3章 特別の教科 道 徳

第2章 各 教 科

第1節 国 語

第2節 社 会

第3節 算 数

第4節 理 科

第5節 生 活

第6節 音 楽

第7節 図画工作

第8節 家 庭

第9節 体 育

第10節 外国語

第4章 外国語活動

第5章 総合的な学習の時間

第6章 特別活動

2. 算数・数学の教育課程について

(小学校 算数科)前回の改訂のポイント

- 算数科で育成を目指す資質・能力を明確にするために、 目標及び内容を資質・能力の3つの柱で整理
- 算数科で目指す資質・能力を育成する観点から、<u>数学</u>
 <u>的活動の一層の充実</u>
- 数学的活動を通して働かせる数学的な見方・考え方や 育成する資質・能力に基づき、領域の構成を見直し
- 複数のグループの比較を可能とするなど統計に関する 内容を充実
- 簡単な割合を用いた比較の仕方を新たに取り扱うなど、 全国学力・学習状況調査などで課題として挙げられて いた割合に関する内容を充実

(中学校・高等学校 数学科)前回の改訂のポイント

- 数学科で育成を目指す資質・能力を明確にするために、 目標及び内容を資質・能力の3つの柱で整理
- 数学的に考える資質・能力を育成する観点から、現実の世界と数学の世界における問題発見・解決の過程を学習過程に反映させることを意図して数学的活動を一層の充実
- ・ 社会生活などの様々な場面において、必要なデータを 収集して分析し、その傾向を踏まえて課題を解決したり 意思決定をしたりすることが求められており、そのよう な能力を育成するため、**統計的な内容等を改善・充実**

学習指導要領(平成29年3月31日公示)における「目標」及び「内容」の構成

各教科等の「目標」「内容」の記述を、「知識及び技能」「思考力、判断力、表現力等」「学びに向かう力、人間性等」の資質・能力の3つの柱で再整理

目 標

中学校学習指導要領 <平成20年改訂> 第2章 各 教 科 第3節 数 学 第1 目 標

数学的活動を通して,数量や図形などに関する基礎的な概念や原理・法則についての理解を深め,数学的な表現や処理の仕方を習得し,事象を数理的に考察し表現する能力を高めるとともに,数学的活動の楽しさや数学のよさを実感し,それらを活用して考えたり判断したりしようとする態度を育てる。

内 容

中学校学習指導要領 〈平成20年改訂〉

第3節数学

第2 各学年の目標及び内容

〔第1学年〕

2 内容

A 数と式

- (1) 具体的な場面を通して正の数と負の数について理解し、その四則計算ができるようにするとともに、正の数と負の数を用いて表現し考察することができるようにする。
- ア 正の数と負の数の必要性と意味を理解すること。
- イ 小学校で学習した数の四則計算と関連付けて,正の数と 負の数の四則計算の意味を理解すること。
- ウ 正の数と負の数の四則計算をすること。
- エ 具体的な場面で正の数と負の数を用いて表したり処理したりすること。

中学校学習指導要領 〈改訂後〉

第2章 各 教 科 第3節 数 学

第1 目 標

数学的な見方・考え方を働かせ、数学的活動を通して、数学的に考える資質・能力を次の とおり育成することを目指す。

- (1)数量や図形などについての基礎的な概念や原理・法則などを理解するとともに、事象を 数学化したり、数学的に解釈したり、数学的に表現・処理したれらを活用して考えたり 判断したりしようとする態度を育てる。【知識及び技能】
- (2)数学を活用して事象を論理的に考察する力,数量や図形などの性質を見いだし統合的 ・発展的に考察する力,数学的な表現を用いて事象を簡潔・明瞭・的確に表現する力を 養う。【思考力,判断力,表現力等】
- (3)数学的活動の楽しさや数学のよさを実感して粘り強く考え,数学を生活や学習に生かす態度,問題解決の過程を振り返って評価・改善する態度を養う。【学びに向かう力,人間性等】

中学校学習指導要領 〈改訂後〉

第3節 数 学

第2 各学年の目標及び内容

[第1学年]

2 内容

A 数と式

- (1) 正の数と負の数について、数学的活動を通して、次の事項を身に付けることができるよう指導する。
- ア次のような知識及び技能を身に付けること。【知識及び技能】
- (ア) 正の数と負の数の必要性と意味を理解すること。
- (イ) 正の数と負の数の四則計算をすること。
- (ウ) 具体的な場面で正の数と負の数を用いて表したり処理したりすること。
- イ 次のような思考力、判断力、表現力等を身に付けること。

【思考力, 判断力, 表現力等】

- (ア) 算数で学習した数の四則計算と関連付けて、正の数と負の数の四則計算の方法を考察し表現すること。
- (イ) 正の数と負の数を具体的な場面で活用すること。

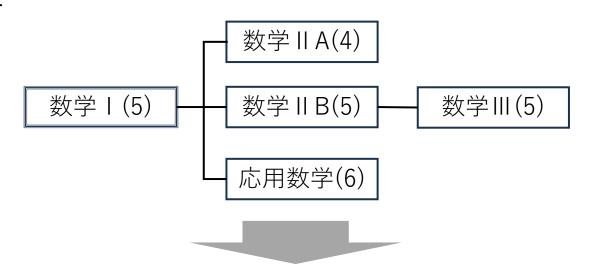
小学校 算数科の教科の構成①

	A 数と式	B 図形	C 測定	D データの活用	(数学的活動)
第1学年	1 数の構成と表し方 個数を比べること/個数や順番を数えること/数の大小、順序 と数直線/2位数の表し方/簡単な場合の3位数の表し方/十 を単位とした数の見方/まとめて数えたり等分したりすること 2 加法、減法 加法、減法が用いられる場合とそれらの意味/加法、減法の式 /1位数の加法とその逆の減法の計算/簡単な場合の2位数な どの加法、減法	1 図形についての理解 の基礎 形とその特徴の捉え方 /形の構成と分解/方 向やものの位置	1 量と測定について の理解の基礎 量の大きさの直接比 較、間接比較/任意 単位を用いた大きさ の比べ方 2 時刻の読み方 時刻の読み方	1 絵や図を用いた数量の表現 絵や図を用いた数量 の表現	ア 身の回りの事象を観察したり、具体物を操作したりして、数量や形を見いだす活動 4 日常生活の問題を具体物などを用いて解決したり結果を確かめたりする活動 ウ 算数の問題を具体物などを用いて解決したり結果を確かめたりする活動 エ 問題解決の過程や結果を、具体物や図などを用いて表現する活動
第2学年	1 数の構成と表し方 まとめて数えたり、分類して数えたりすること/十進位取り記 数法/数の相対的な大きさ/一つの数をほかの数の積としてみ ること/数による分類整理/1/2、1/3 など簡単な分数 2 加法、減法 2位数の加法とその逆の減法/簡単な場合の3位数などの加法、 減法/加法や減法に関して成り立つ性質/加法と減法との相互 関係 3 乗法 乗法が用いられる場合とその意味/乗法の式/乗法に関して成 り立つ簡単な性質/乗法九九/簡単な場合の2位数と1位数と の乗法	1 三角形や四角形などの図形 三角形,四角形/正方形,長方形と直角三角形/正方形や長方形の面で構成される箱の形	と測定	1 簡単な表やグラフ 簡単な表やグラフ	ア 身の回りの事象を観察したり、具体物を操作したりして、数量や図形に進んで関わる活動 イ 日常の事象から見いだした算数の問題を、具体物、図、数、式などを用いて解決し、結果を確かめる活動 ウ 算数の学習場面から見いだした算数の問題を、具体物、図、数、式などを用いて解決し、結果を確かめる活動 エ 問題解決の過程や結果を、具体物、図、数、式などを用いて表現し伝え合う活動
第3学年	1 数の表し方 万の単位/10 倍, 100 倍, 1000 倍, 1 10 の大きさ/数の相対的な大きさ 2 加法, 減法 3 位数や4 位数の加法, 減法の計算の仕方/加法, 減法の計算の確実な習得/ 3 乗法 2 位数や3 位数に1 位数や2 位数をかける乗法の計算/乗法の計算が確実にでき、用いること/乗法に関して成り立つ性質 4 除法 除法が用いられる場合とその意味/除法の式/除法と乗法,減法との関係/除数と商が1 位数の場合の除法の計算/簡単な場合の除数が1 位数で商が2 位数の除法 5 小数の意味と表し方/小数の加法,減法 6 分数の意味と表し方/小数の加法,減法 6 分数の意味と表し方/単位分数の幾つ分/簡単な場合の分数の加法,減法 7 数量の関係を表す式 □を用いた式 8 そろばん そろばんによる数の表し方/そろばんによる計算の仕方	1 二等辺三角形, 正三 角形などの図形 二等辺三角形, 正三角 形/角/円, 球	1 長さ、重さの単位 と測定 長さや重さの単位と 測定/適切な単位と 計器の選択 (メート ル法の単位の仕組み (・小6)) 2 時刻と時間 時間の単位(秒)/ 時刻や時間を求める こと	1 表と棒グラフ データの分類整理と 表/棒グラフの特徴 と用い方 (内容の取 扱いに、最小目盛り が2、5 などの棒グ ラフや複数の棒グラ フを組み合わせたグ ラフを追加)	イ 日常の事象から見いだした算数の問題 を, 具体物, 図, 数, 式などを用いて解決し, 結果を確かめる活動

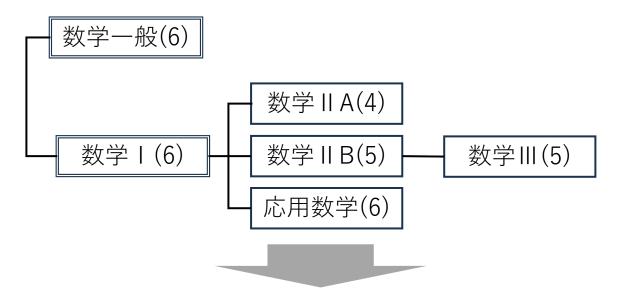
小学校 算数科の教科の構成②

	A 数と計算	B 図形	C 変化と関係	D データの活用	(数学的活動)			
第4学年	1 整数の表し方 億、兆の単位 2 概数と四捨五入 概数が用いられる場合/四捨五入/四則計算の結果 の見積り 3 整数の除法 除数が1位数や2位数で被除数が2位数や3位数の 除法の計算の仕方/除法の計算を用いること/被除 数、除数、商及び余りの間の関係/除法に関して成 り立つ性質 4 小数の仕組みとその計算 小数を用いた倍/小数と数の相対的な大きさ/小数 の加法、減法/乗数や除数が整数である場合の小数 の乗法及び除法 5 同分母の分数の加法、減法 大きさの等しい分数/分数の加法、減法 大きさの等しい分数/分数の加法、減法 6 数量の関係を表す式 四則を混合した式や()を用いた式/公式/□、 △などを用いた式 7 四則に関して成り立つ性質 四則に関して成り立つ性質 四則に関して成り立つ性質 8 そろばんによる計算の仕方		1 伴って変わる二つ の数量 変化の様子と表や式、 折れ線グラフ 2 簡単な場合につい での割合 簡単な場合について の割合	ラフの特徴と用い方 (内容の取扱いに、 複数系列のグラフや 組み合わせたグラフ を追加)	だして解決し、結果を確かめたり、発展的に考察したりする活動 ウ 問題解決の過程や結果を、図や式などを用いて数学的に表現し伝え合う活動			
第5学年	1 整数の性質 偶数、奇数/約数、倍数 2 整数、小数の記数法 10 倍、100 倍、1000 倍、 10、100 などの大きさ 3 小数の乗法、除法 小数の乗法、除法の意味/小数の乗法、除法の計算 /計算に関して成り立つ性質の小数への適用 4 分数の意味と表し方 分数と整数、小数の関係/除法の結果と分数/同じ 大きさを表す分数/分数の相等と大小 5 分数の加法、減法 異分母の分数の加法、減法 異分母の分数の加法、減法 数量の関係を表す式 数量の関係を表す式	1 平面図形の性質 図形の形や大きさが決まる要素と 図形の合同/多角形についての簡単な性質/正多角形/円周率 2 立体図形の性質 角柱や円柱 3 平面図形の面積 三角形、平行四辺形、ひし形及び 台形の面積の計算による求め方 4 立体図形の体積 体積の単位 (cml, ml) と測定 立方体及び直方体の体積の計算による求め方 (メートル法の単位の 仕組み (←小6))	1 伴って変わる二つ の数量の関係 簡単な場合の比例の 関係 2 異種の二つの量の 割合 速さなど単位量当た りの大きさ(速さ(← 小6)) 3 割合 (百分率) 割合	1 円グラフや帯グラフ アログラフや帯グラフ の特徴と用い方 <u>/統</u> 計的な問題解決の方 法 (内容の取扱いに, 複数の帯グラフを比 べることを追加) 2 測定値の平均 平均の意味	だして解決し、結果を確かめたり、発展 的に考察したりする活動			
第6学年	1 分数の乗法、除法 分数の乗法及び除法の意味/分数の乗法及び除法の 計算/計算に関して成り立つ性質の分数への適用(分 数×整数、分数÷整数 (←小5)) 2 文字を用いた式 文字を用いた式	1 縮図や拡大図、対称な図形 縮図や拡大図/対称な図形 2 概形とおよその面積 概形とおよその面積 3 円の面積 円の面積の求め方 4 角柱及び円柱の体積 角柱及び円柱の体積の求め方	1 比例 比例の関係の意味や 性質/比例の関係を 用いた問題解決の方 法/反比例の関係 2 比 比	1 データの考察 代表値の意味や求め 方 (一中1) / 度数 分布を表す表やグラ フの特徴と用い方/ 目的に応じた統計的 な問題解決の方法 2 起こり得る場合 起こり得る場合	ア 日常の事象を数理的に捉え問題を見いだして解決し、解決過程を振り返り、結果や方法を改善したり、日常生活等に生かしたりする活動 イ 算数の学習場面から算数の問題を見いだして解決し、解決過程を振り返り統合的・発展的に考察する活動 ウ 問題解決の過程や結果を、目的に応じて図や式などを用いて数学的に表現し伝え合う活動			

中学校 数学科の教科の構成


Г	8 WL 1 - B	D ==	0 88**	D = 40×H	/出上 34.44 .7.マエL)
	A 数と式	B 図形	C 関数	D データの活用	(数学的活動)
L				←現行「D資料の活用」の名称を変更	
01). 41-44	- 正の粉し色の粉の立面料し辛吐	平面図形 ・基本的な作図の方法 ・図形の移動 ・作図の方法を考察すること 空間図形 ・直線や平面の位置関係 ・基本的な図形の計量 ・空間図形の構成と平面上 の表現	比例,反比例 ・関数関係の意味 ・比例,反比例 ・座標の意味 ・比例,反比例の表,式, グラフ	データの分布の傾向 ・ヒストグラムや相対度数の必要性と意味 多数の観察や多数回の試行によって得られる確率 ・多数の観察や多数回の試行によって得られる確率の必要性と意味 (←中2) (用語に累積度数を追加) (用語から、代表値、(平均値、中央値、最頻値)、階級を削除)(→小6) (内容の取扱いから、誤差、近似値、a×10"の形の表現を削除(→中3)	各領域の学習やそれらを相互に関連付けた学習において、次のような数学的活動に取り組むものとする。 ア 日常の事象を数理的に捉え、数学的に表現・処理し、問題を解決したり、解決の過程や結果を振り返って考察したりする活動 イ 数学の事象から問題を見いだし解決したり、解決の過程や結果を振り返って統合的・発展的に考察したりする活動 ウ 数学的な表現を用いて筋道立てで説明し伝え合う活動
O1) - 4-61-44	文字を用いた式の四則計算 ・簡単な整式の加減及び単項式の乗除の計算 ・文字を用いた式で表したり読み取ったりすること ・文字を用いた式で捉え説明すること ・ 目的に応じた式変形 連立二元一次方程式 ・ 二元一次方程式の必要性と意味及びその解の意味 ・ 連立方程式とその解の意味 ・ 連立方程式を解くこと	基本的な平面図形と平行線の性質 ・平行線や角の性質 ・多角形の角についての性質 ・平面図形の性質を確かめること 図形の合同 ・平面図形の合同と三角形の合同条件 ・証明の必要性と意味及びその方法 (用語に「反例」を追加)	・事象と一次関数 ・二元一次方程式と関数	データの分布の比較 ・四分位範囲や箱ひげ図の必要性 と意味 (追加) ・箱ひげ図で表すこと (追加) 場合の数を基にして得られる確率 ・確率の必要性と意味 ・確率を求めること (「確率の必要性と意味」を一部 移行 (→中1))	各領域の学習やそれらを相互に関連付けた学習において、次のような数学的活動に取り組むものとする。 ア 日常の事象や社会の事象を数理的に捉え、数学的に表現・処理し、問題を解決したり、解決の過程や結果を振り返って考察したりする活動 イ 数学の事象から見通しをもって問題を見いだし解決したり、解決の過程や結果を振り返って統合的・発展的に考察したりすす
45. 14.4	平方根 ・平方根の必要性と意味 ・平方根を含む式の計算 ・平方根を含む式の計算 ・平方根を含む式の計算 ・平方根を含む式の計算 ・平方根を用いて表すこと (内容の取扱いに、誤差、近似値、a×10°の形の表現を追加 (←中1) 式の展開と因数分解 ・単項式と多項式の乗法と除法の計算 ・簡単な式の展開や因数分解 (内容の取扱いから、自然数を素因数に分解することを削除) (→中1) 二次方程式 ・二次方程式 ・二次方程式の必要性と意味及びその解の意味 ・因数分解や平方完成して二次方程式を解くこと ・解の公式を用いて二次方程式を解くこと	図形の相似 ・平面図形の相似と三角形の相似条件 ・相似な図形の相似比と面積比及び体積比の関係 ・平行線と線分の比 円周角と中心角 ・円周角と中心角の関係と その証明 三平方の定理 ・三平方の定理とその証明	・いろいろな事象と関数	標本調査 ・標本調査の必要性と意味 ・標本を取り出し整理すること	る活動 ウ 数学的な表現を用いて論理的 に説明し伝え合う活動

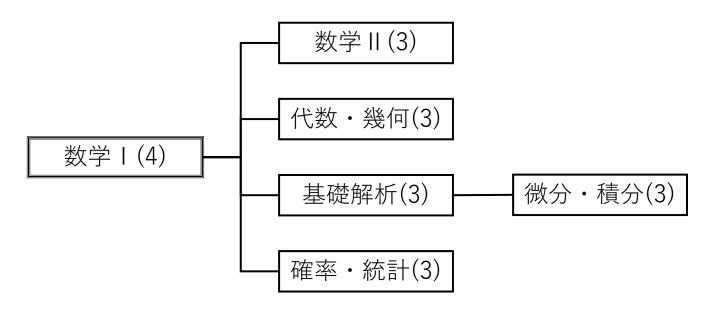
高等学校 数学科の教科科目の構成


数と集合・簡集な (2) (2) (2) (2) (2) (3) (3) (4) (4) (4) (4) (5) (5) (5) (5) (5) (5) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	数の	大数式 (2 性質 角関数の合成	・合三の関数数・ ・一合三の関数数に関数数に関数を ・一の関数線・水・ ・一の関数線・水・ ・一を表するでは ・一を表するでは ・一、表するでは ・一、表するでは ・一、表するでは ・一、表するでは ・一、表するでは ・一、表するでは ・一、表するでは ・一、表するでは ・一、表するでは ・一、表するでは ・一、表するでは ・一、表するでは ・一、表するでは ・一、表するでは ・一、表するでは ・一、表するでは ・一、表するでは ・一、表するでは ・一、表する ・一、表面を ・一、表面を ・一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、	数の和 限無理関数 機器 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	*余事象, ・独立な試行 ・条件付き確 (3) 数学と人間の 数量や図形と 遊びの中の数 *ユークリ	率 原せ 基排と率 基排と率 基排と率 活人学ッ面の の の の の の の の の の	(2)	数別 きかり きょう かい	列帰納法 率分布 平均,分散,標準 数 の考え 仮説検定	トル (2) 平面上の曲 平面上の曲曲 ・二次座画曲 ・二次座 整 ・媒座を要 を複を要 を複をでででである。 を変をできます。 を変がいる。 (3) 数学的な表 数学的な表	とその演算 の内を の内を の大のを のでのでする を を を を を を を を を を を を を

高等学校 数学科の科目構成の変遷①

昭和35年

昭和45年

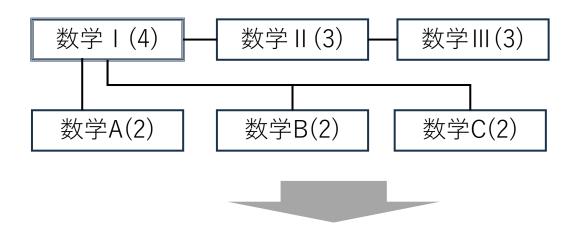


必履修科目

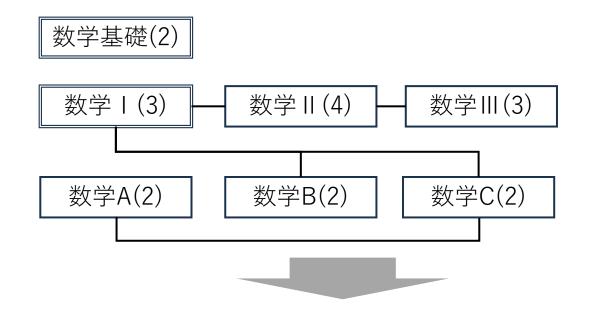
選択必履修科目

高等学校 数学科の科目構成の変遷②

<u>昭和53年</u>



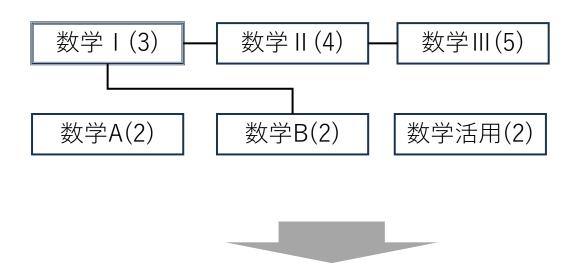
必履修科目


選択必履修科目

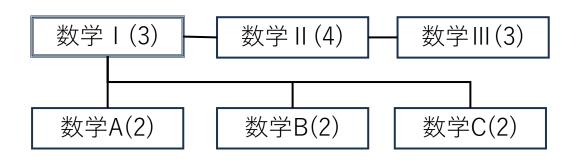
高等学校 数学科の科目構成の変遷③

<u>平成元年</u>

<u>平成10年</u>



必履修科目


選択必履修科目

高等学校 数学科の科目構成の変遷④

平成21年

<u>平成30年</u> 【現行】

必履修科目

選択必履修科目

高等学校 数学科の主な履修パターン

	コース	履修科目	総単位 数
1	理系・大学志望者コース	数Ⅰ、数A、数Ⅱ、数B、数C、数Ⅲ	1 6
2	文系・国公立大学志望者コース	数Ⅰ、数A、数Ⅱ、数B、数C	1 3
3		数Ⅰ、数A、数Ⅱ、数B、数C (ベクトルのみ)	1 2
4	- 文系・私立大学志望者コース	数Ⅰ、数A、数Ⅱ、数B、数C (ベクトルのみ)	1 2
(5)		数Ⅰ、数A、数Ⅱ、数B	1 1
6		数Ⅰ、数A、数Ⅱ	9
7		数I、数A	5
8	職業系専門学科	数I、数A	5
9	上产光光光 ** ** ** ** ** ** ** ** ** ** ** **	数I、数A	5
10	大学進学を希望しない	数I	3

(注) 高等学校・数学科の内容 数 [[3単位] … 数と式、図形と計量、二次関数、データの分析 ← 数 [のみ必履修科目

数 Ⅱ [4単位] … いろいろな式、図形と方程式、指数関数・対数関数、三角関数、微分・積分の考え

数Ⅲ[3単位] … 極限、微分法、積分法

数A [2単位] … 図形の性質、場合の数と確率、数学と人間の活動

数B[2単位] … 数列、統計的な推測、数学と社会生活

数C[2単位] … ベクトル、平面状の曲線と複素数平面、数学的な表現の工夫

高等学校 数学科の履修状況 (推計)

【平成20年改訂】

科目	履修率
数学I	100%
数学Ⅱ	77%
数学川	21%
数学A	86%
数学B	50%
数学活用	2%

【現行】

科目	履修率
数学I	100%
数学	70%
数学川	18%
数学A	87%
数学B	45%
数学C	34%

教科書の需要数を元に、文部科学省で推計(必履修科目の「数学 I 」の需要数を履修率100%として、他科目の履修率を推計) H20年改訂:R1~3年度の平均値、現行:R6,7年度の平均値

高等学校の数学・理科にわたる探究的科目 - 「理数探究基礎」、「理数探究」-

背景等

- 中央教育審議会答申において、将来、学術研究を通じた知の創出をもたらすことができる創造性豊かな人材の育成を目指し、そのための基礎的な 資質・能力を身に付けることができる数学・理科にわたる新たな探究的科目の設定が提言されたことを受けて新設。
- 数学的な見方・考え方や理科の見方・考え方を組み合わせるなどして働かせ、探究の過程を通して、課題を解決するために必要な資質・能力を育成。
- 様々な事象や課題に知的好奇心や主体性をもって向き合い、教科・科目の枠にとらわれない多角的、複合的な視点で事象を捉える力などを養う。
- 粘り強く考え行動し、課題の解決や新たな価値の創造に向けて積極的に挑戦しようとする態度などを養う。

概要

内容

理数探究 基礎

基礎を習得する段階

- 探究の意義や過程についての理解や研究倫理について の理解
- 事象を分析するための基本的な技能、課題を設定する ための基礎的な力、探究の過程を遂行する力、探究した 結果をまとめ、適切に表現する力などを育成

理数探究

探究を深める段階

- 生徒が興味・関心等に応じて主体的に課題を設定
- 「理数探究基礎」で学習する内容に加え、多角的、複合的に事象を捉え、課題を設定する力や探究の過程を整理し、成果などを適切に表現する力などを育成

探究の手法について学習

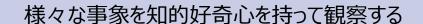
教師の指導のもと、観察、 実験、調査など、数学的な 手法や科学的な手法を用 いて探究

研究倫理についての理解の ための学習

生徒が興味・関心等に応じて主体的に課題を設定

観察、実験、調査など、数 学的な手法や科学的な手 法を用いて探究

探究の過程を振り返る機会を設け、意見交換や議論を通して質の向上を図る


学習過程の例

- 「理数探究基礎」又は「理数探究」の履修をもって<mark>総合的な探究の時間の一部又は全部に替えることが可能</mark>。
- 「理数探究基礎 |及び「理数探究 |は選択履修科目であるが、<mark>理数に関する学科においては、原則として「理数探究」を全ての生徒が必履修</mark>。

次の課題の発見、次の探究の過程

共通教科「理数科」の学習過程(探究の過程)のイメージ

多角的・多面的、複合的な視点で事象をとらえ問題を見出す

数学的な見方・考え方

見通

数学的な見方・考え方や理科の見 方・考え方を豊かな発想で活用したり、 組み合わせたりする。

理科の 見方・考え方

振り返り

情報収集と分類

発想の拡大、思考の深化

数学や理科に関する課題として設定(課題化)

課題解決の過程

仮説の設定→検証計画の立案→観察・実験→結果の処理

分析·考察·推論

表現•伝達(報告書作成、発表等)

共通教科「理数科」と「総合的な探究の時間」との比較(解説p39)

理数科	総合的な探究の時間
① 課題の設定	① 課題の設定
自然や社会の様々な事象に関わり、そこ	体験活動などを通して、課題を設定し課
から数学や理科などに関する課題を設定す	題意識をもつ。
る。	
② 課題解決の過程	② 情報の収集
数学的な手法や科学的な手法などを用い	必要な情報を取り出したり収集したりす
て, 仮説の設定, 検証計画の立案, 観察,	る。
実験,調査等,結果の処理などを行う。	
③ 分析・考察・推論	③ 整理·分析
得られた結果を分析し, 先行研究や理論	収集した情報を、整理したり分析したり
なども考慮しながら考察し推論する。	して思考する。
④ 表現・伝達	④ まとめ・表現
課題解決の過程と結果や成果などをまと	気付きや発見,自分の考えなどをまと
め、発表する。	め, 判断し, 表現する。

理数探究において探究課題として取り組む事象等 (解説P.35)

ア 自然事象や社会的事象に関すること

(参考例)

- ・ 振り子の運動に関する探究
- ・ 成分物質の抽出・単離の手法を活用した探究
- ・ 光合成速度に関する探究
- コンピュータウイルスの拡散過程に関する探究

イ 先端科学や学際的領域に関すること

(参考例)

- ・ 楽器の音の鳴り方に関する探究
- ・ 銅樹のフラクタル成長の規則性に関する探究
- DNA による品種判定に関する探究

ウ 自然環境に関すること

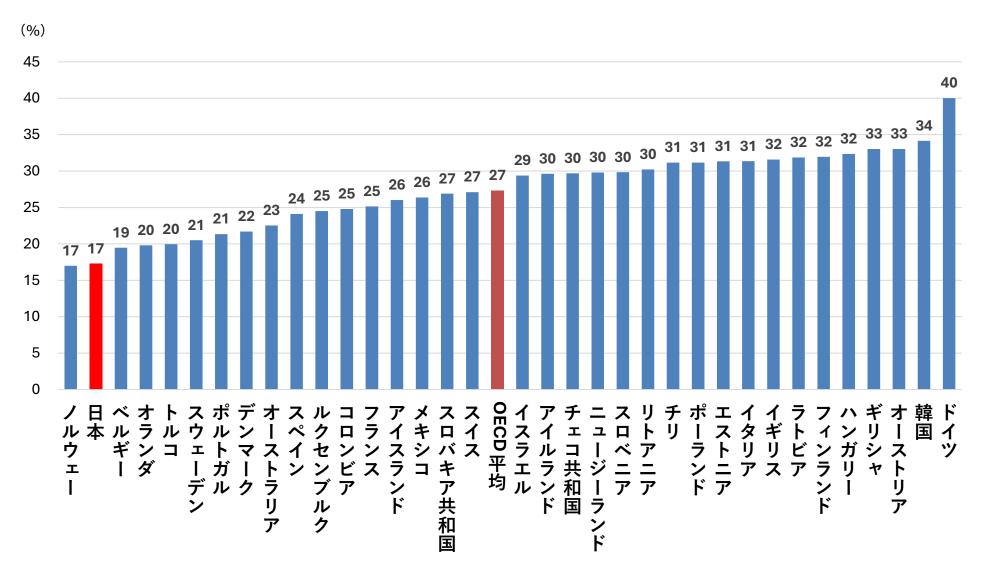
(参考例)

- ・ 身近な環境を活用した発電に関する探究
- ・ 地域の自然環境と人間生活の影響についての探究
- ・ 水質浄化に関する探究
- ・ 地域気象に関する探究

エ 科学技術に関すること

(参考例)

- ・ 空気による揚力や抵抗力に関する探究
- ・ 高分子化合物,染料,指示薬,洗剤などの合成に 関する探究
- ・ 新たな DNA 抽出方法に関する探究

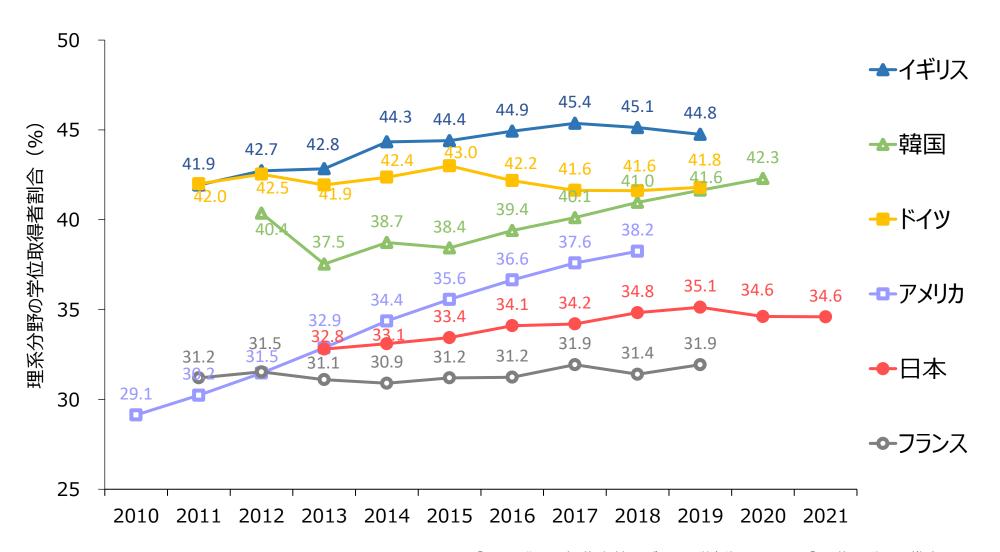

オ 数学的事象に関すること

(参考例)

- べき a^bに関する探究
- ・ 金平糖の角の形成過程の数理モデルに関する探究

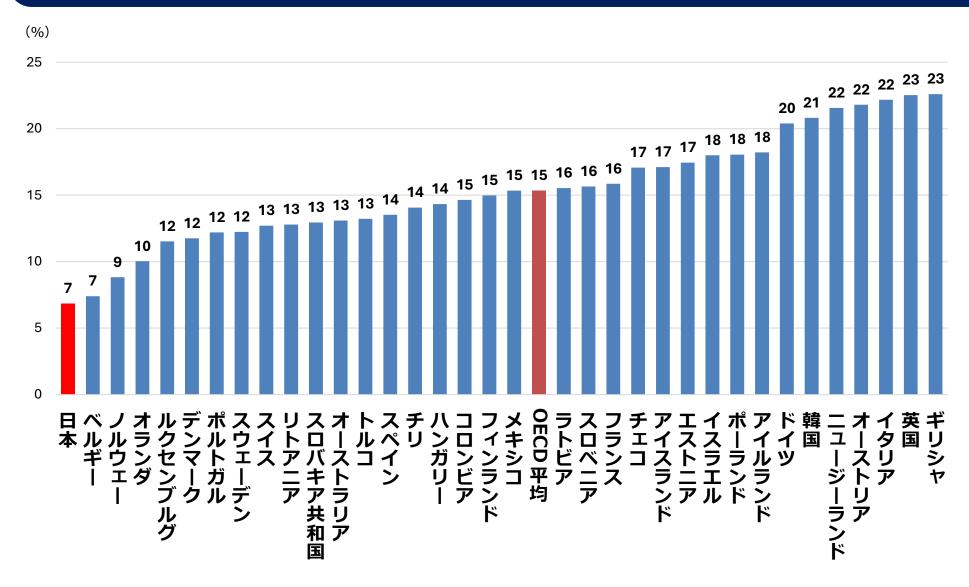
3. 社会や高等教育との接続、進路選択

日本は理工系入学者が17%(OECD諸国ワースト2位)



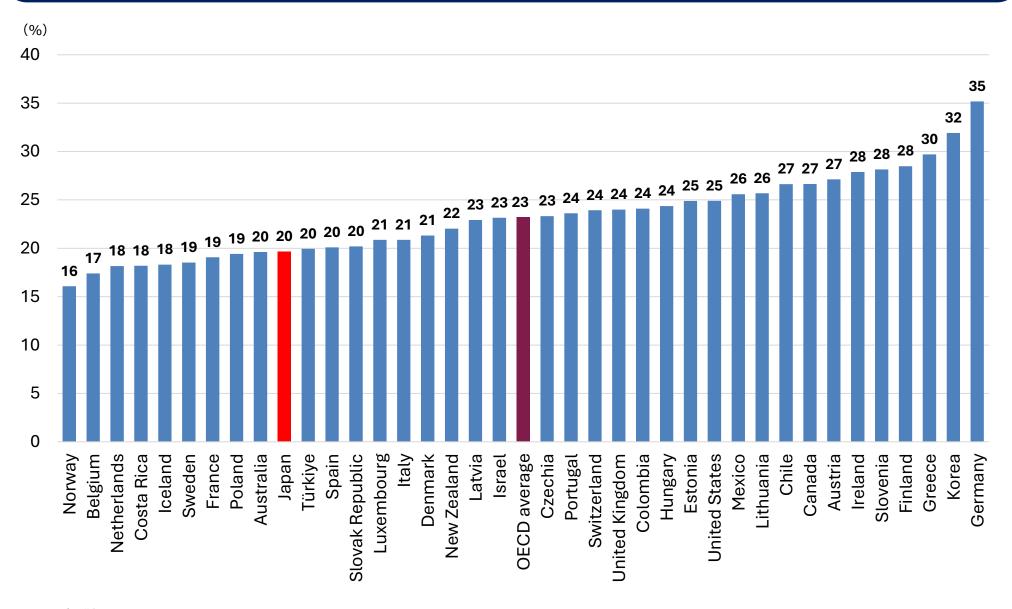
⁽備考) "Natural sciences, mathematics and statistics", "" Information and Communication Technologies, "Engineering, manufacturing and construction"を「理工系」に分類される学部系統としてカウント。データは2019年時点。

(出所) OECD.stat「New entrants by field」より作成。


成長分野を支える理系人材の輩出状況

各国の自然科学(理系)学部の学位(学部段階)取得者割合(※)の推移

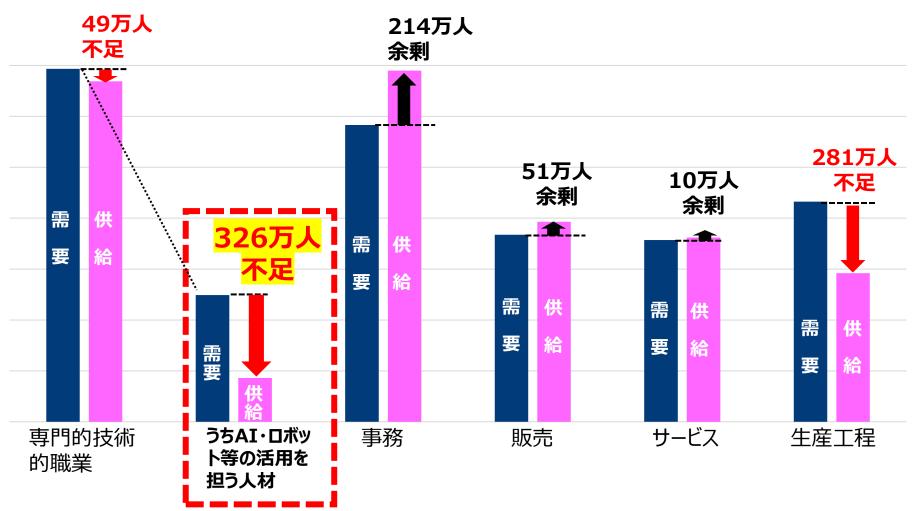
※「理・工・農・医・歯・薬・保健」及びこれらの学際的なものについて「その他」区分のうち推計 【出典】文部科学省「諸外国の教育統計」より作成


理工系学部入学者の女性比率は7%(OECD最下位)

⁽備考) "Natural sciences, mathematics and statistics", "" Information and Communication Technologies, "Engineering, manufacturing and construction"を「理工系」に分類される学部系統としてカウント。データは2019年時点。

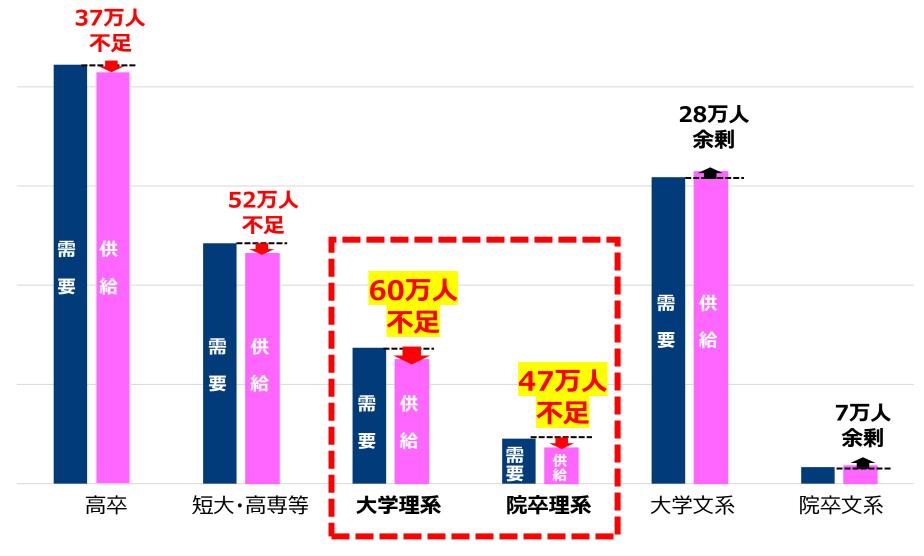
⁽出所) OECD.stat「New entrants by field」より作成。

学部卒業者中のSTEM分野の比率(OECD諸国ワースト10位)

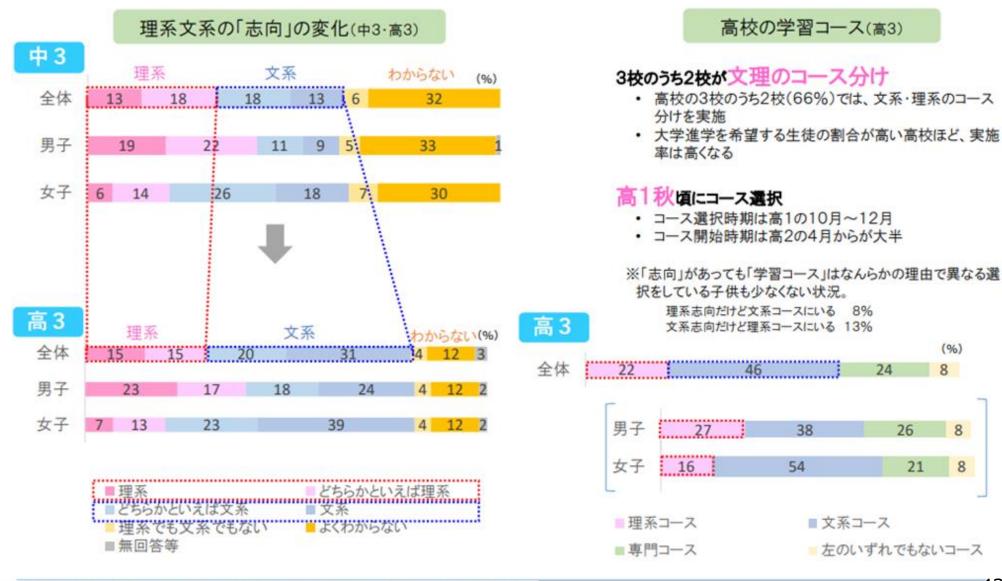


(出典)OECD, Education at a Glance 2025 OECD INDICATORS, Table B4.2 Distribution of tertiary graduates, by level of education and selected field of study (2023) を元に、文部科学省で作成。

STEM分野: Science, technology, engineering and mathematics

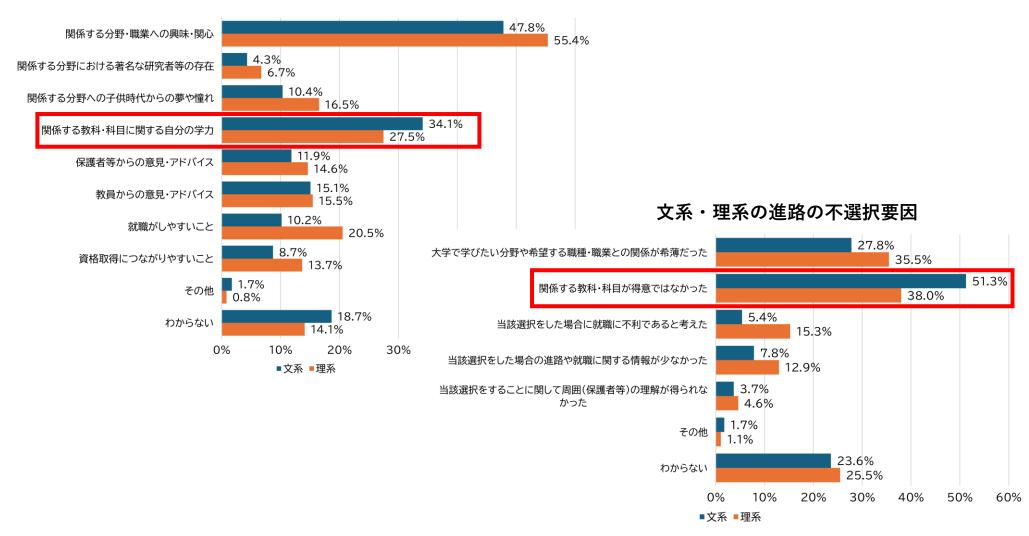

産業界における人材の需給予測①(職種別)

- 2040年には、AI・ロボット等の活用を担う人材が約326万人不足。
- 一方で、事務、販売、サービス等の従事者は<u>約**300万人余剰</u>する**リスク。</u>

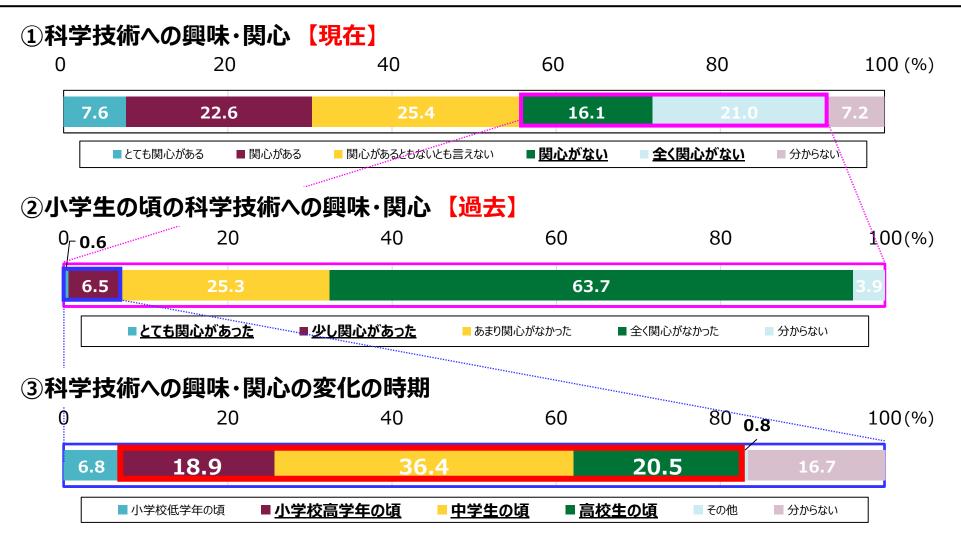


産業界における人材の需給予測②(学歴別)

○ 同じく、大学・院卒の理系学生が約50万人前後ずつ不足。


高校進学段階では理系志向は増えず。 中3で「分からない」層が、高校コース分けで文系に

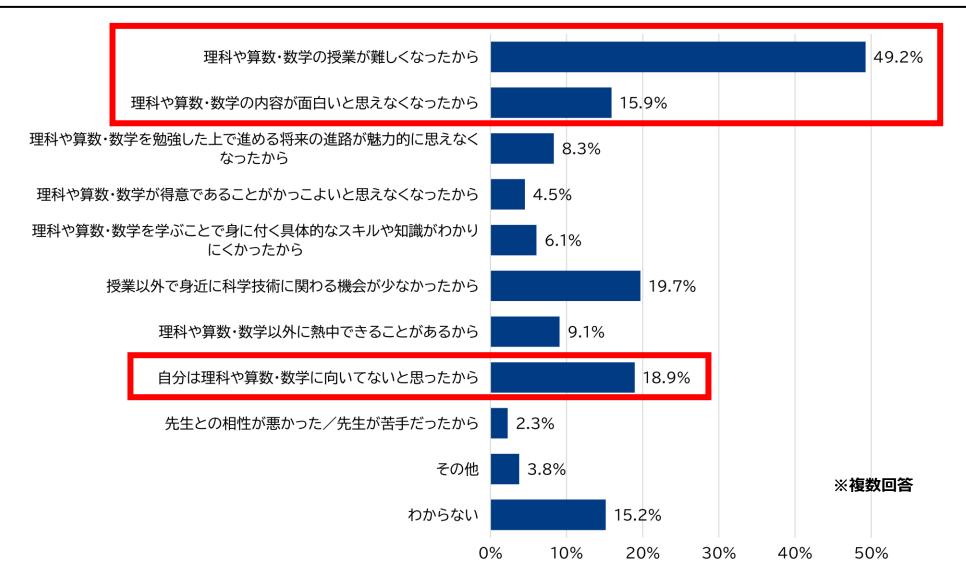
文系・理系の進路選択理由


○ また、文系選択(進学)者・理系選択(進学)者それぞれに質問したところ、関係する教科・科目に関する学力や得意・不得 意が、(不)選択理由の上位となっていた。

文系・理系の進路の選択要因

科学技術への興味・関心とその変化

○ 15~69歳の国民を対象とした抽出調査によると、現在科学技術への興味・関心が薄い層(①37.1%)も、小学生時代には7.1%が興味・関心を有していた(②)。興味・関心を失った時期を調査したところ、約8割が小学校高学年~高校生の頃と回答(③)。



【出典】文部科学省令和6年度科学技術調査資料作成委託事業「今後の科学技術・人材政策のための次世代人材育成等に係る基盤的調査分析」報告書を元に文部科学省作成

※年代:10代(15歳、高校生)~60代(~69歳)、サンプル数:5,000件(男性:2,500件、女性:2,500件)

科学技術への興味・関心が変化した理由

○ さらに、科学技術への興味・関心が変化した理由としては、理科や算数・数学の授業・学習を理由とする回答が上位を占めた。

大学学部の女性入学者に占める理工系分野の割合

(備考) "Natural sciences, mathematics and statistics", "" Information and Communication Technologies, "Engineering, manufacturing and construction"を「理工系」に分類される学部系統としてカウント。データは2019年時点。

(出所) OECD.stat「New entrants by field」より作成。

高等教育進学時に理工系進学のジェンダーギャップが存在。 各学校段階においてボトルネックが指摘されている。

「Society 5.0の実現に向けた教育・人材育成に関する政策パッケージ」(令和4年6月2日より抜粋

現状·課題

ライフイベントとの両立のしづらさ

研究者として就職した際のライフイベントに伴う研究中断やキャリアパスへの不安

ハラスメントへの不安

研究室におけるハラスメントの事例とその不安

経済的不安

博士課程に准学しない理由のトップは「経済的な不安」

高校段階の学びの変化に対応した学部段階の受け皿がない

例えば、現在のジェンダーバイアスが解消され、高校段階で理数科目を中心に 学ぶ女子高校生が増えたとしても、学部段階の受け皿がない

学部教育段階の文理分断

理数の学力は世界トップレベル

♂♀:ジェンダーギャップ関係

約57元人

人社系

47 %

PISA2018(高1)

科学的リテラシー2位/37か国 数学的リテラシー**1**位/37か国

高1 66.3%➡ 高2 56.4% 自分で社会や国を変えられると思う

18.3% (中国65.6%、印83.7%)

楽しいと思える授業が沢山ある

理系 22%

博

士

修

士

学

由

学

小

学

校

文系 46%

その他

21%

理数の学力は世界トップレベル 理科や算数・数学はあまり楽しくない TIMSS2019 (中2)

理科 3位/39か国 数学 4位/39か国

理科楽しい 92% _ 70% **算数・数学楽しい**

理系_{志向} 31%

理数の学力は世界トップレベル TIMSS2019 (小4)

理科 4位/58か国

算数 **5**位/58 か国

理数への苦手意識が強い

物理・地学は約6割、化学 は約5割の小学校教員が苦 手意識が強い傾向。

「女の子は女の子らしく育てるべき」

男性保護者:64.1%

女性保護者:40.4%

約100元人

一学年あたりの児童・生徒・学生数

高校段階の文理分断

文理の志向が「わからない」中学生が、 高校段階で「文系」に流れる

理系の職業にイメージがわかない

例:安定した准路として薬学・看護学を志向

- 理数はできるが楽しくない・好きでなくなる
- 「理数を使う職業」につきたいと思わない
- 教員の物理・地学・化学への苦手意識
- 抽象度が上がっていく高学年の理科

ジェンダーバイアスがかかり始める

- 女の子は女の子「らしく」
 - ・女子は理系には向いていない
 - 女の子なのに算数できてすごいね

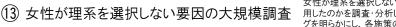
苦手意識が 生まれる

目指す姿

- ライフイベントと両立できる研究環境 の整備による不安解消
- ハラスメントの徹底防止 透明性の高い大学運営の確立
 - 博士課程学生への継続的な 経済的支援の着実な実施
 - (9) 学部や修士・博士課程の再編・拡充

ダブルメジャーやバランスの取れた

- (8) 文理選択科目の確保等による文 理分断からの脱却
- 入試における探究力の多面的・ 総合的な評価
- 高校段階の早期の学習コース分けか らの転換による文理分断からの脱却
- 高校普通科改革
- 産学双方からのロールモデルの発 信・職業に関する情報不足の解消


理数の博士号取得者などの専門的

- な知見のある教師による教科本来 の深い学びや実社会につながる学 びや探究活動を展開
- (2) 専門性を持った教師が理数科目を担当

保護者や学校、社会によるジェ ンダーバイアスの排除

子供が主体的に進路選択できる 環境、社会的ムーブメントの醸成

女性が理系を選択しない各要因が、それぞれの段階で具体にどう作 用したのかを調査・分析し、文理の選択や志向が傾いた要因やタイミン グを明らかにし、各施策の立案や改善に活用するための調査を実施

大学・高専機能強化支援事業(成長分野をけん引する大学・高専の機能強化に向けた基金)

令和4年度第2次補正予算額

3.002億円

事業創設の背景

- ・デジタル化の加速度的な進展や脱炭素の世界的な潮流は、労働需要の在り方にも根源的な変化をもたらすと予想。
- デジタル・グリーン等の成長分野を担うのは理系人材であるが、日本は理系を専攻する学生割合が諸外国に比べて低い。
 - ※ 理系学部の学位取得者割合

【国際比較】 <u>日本 35%</u>、仏 32%、米 39%、韓 43%、独 41%、英 44%(出典:文部科学省「諸外国の教育統計」令和 5 (2023) 年版)

【国内比較】 国立大学 60%、公立大学 47%、私立大学 29%(出典:文部科学省「令和5年度学校基本調査」)

(注)「理・エ・農・医・歯・薬・保健」及びこれらの学際的なものについて「その他」区分のうち推計

・<u>デジタル・グリーン等の成長分野をけん引する高度専門人材の育成</u>に向けて、**意欲ある大学・高専が**成長分野への学部転換等の 改革を行うためには、大学・高専が予見可能性をもって取り組めるよう、基金を創設し、安定的で機動的かつ継続的な支援を行う。

支援の内容

- ① 学部再編等による特定成長分野(デジタル・グリーン等)への転換等(支援1)
 - 支援対象:私立・公立の大学の学部・学科(理工農の学位分野が対象)
 - 支援内容:学部再編等に必要な経費(検討・準備段階から完成年度まで)
 - 定率補助・20億円程度まで、原則8年以内(最長10年)支援
 - ●受付期間:令和14年度まで
- ② 高度情報専門人材の確保に向けた機能強化(支援2)
 - ●支援対象:国公私立の大学・高専(情報系分野が対象。大学院段階の取組を必須)
 - ●支援内容:大学の学部・研究科の定員増等に伴う体制強化、

高専の学科・コースの新設・拡充に必要な経費

定額補助・10億円程度まで、最長10年支援

※ハイレベル枠 (規模や質の観点から極めて効果が見込まれる) は20億円程度まで支援

受付期間:原則令和7年度まで

文部科学省 基金造成 (独)大学改革支援・学位授与機構 (NIAD-QE) 助成金交付 大学・高専

大学·高専機能強化支援事業

(成長分野をけん引する大学・高専の機能強化に向けた基金)

令和8年度要求·要望額

9 億円 (新規)

※令和4年度第2次補下予算額

St. Andrew's University

3.002億円

事業実績・成果

(例)桃山学院大学

桃山学院大学 St. Andrew's I Iniversity 工学部地域連携DX学科 ●これまで3回の公募により、合計261件を選定 合計約2.2万人(※)の理系分野の入学定員増 (令和8年度改組予定)

※学部名は基金申請時のもの

現状·課題

(※) 既存の理系分野から成長分野への転換も含む

< 2040年における就業構造の推計 >

- ●少子高齢化に加え、2040年には、生産年齢人口の減少による働き手不足により、 我が国の社会経済構造は大きく転換。
- ●一方で、今後求められる理系人材を輩出する理系学部定員が未だ少ない状況。

⇒ 地方大学を中心に**全国的な成長分野に係る定員の増加に寄与**

- ●特に、定員のボリュームゾーンである大都市圏の大規模大学における理系転換が求 められるが、現状の基金事業では十分には対応しきれていない課題もあり、進んでい ない状況。(主な課題:理系学部設置のための高額な施設・設備投資や土地確保、 教員確保(人件費含む)、受験生確保、文系学部の規模・質の適正化等)
- ●成長分野における即戦力となる人材育成を行う高専について、公立高専の新設の動き もある状況。

将来の社会・産業構造変化を見据え、大規模大学を含めて、成長分野への学部等転換を一層強力に推進

取組内容

① 学部再編等による特定成長分野(デジタル・グリーン等)への転換等(支援1)

○支援対象:私立・公立の大学の学部・学科(理工農の学位分野が対象) ※原則8年以内(最長10年)支援

○支援内容:①「成長分野転換枠」(継続分)・学部再編等に必要な経費20億円程度まで(定額補助)

- ②「大規模文理横断転換枠」【新設】 大規模大学を含め、文理横断の学部再編等を対象にした支援枠を新設
- ・施設設備等の上限額を引き上げるとともに、支援対象経費に「新設理系学部の教員人件費」、「土地取得費」、「定員減の文系学 部の質向上支援(例:ST比改善支援等)」等を追加
- ・高校改革を行う自治体、DXハイスクール・SSHとの継続的な連携や、大学院の設置・拡充、産業界との連携実施の場合に上限額・ 助成率引き上げ
- ・理系・文系学部の定員増減数、収容定員の理系比率、教育課程や入学者選抜における工夫等の要件・確認を実施

○受付期間:令和14年度まで

② 高度情報専門人材の確保に向けた機能強化(支援2)

※国公私立の高専(情報系分野)を対象に、受付期間を**原則令和10年度まで延長** 大学・高専

(支援内容は原則継続(10億円程度まで(定額補助)、最長10年支援等))

|大規模大学の学部再編等も契機にしつつ、我が国の大学等の文理分断からの脱却を含む成長分野への組織転換を図ることで、社会 経済構造の変化に対応できる人材を育成・輩出し、一人一人の豊かさや我が国の国際競争力の向上、新たな価値の創造等に資する

(担当:高等教育局専門教育課)

期待される効果

数理・データサイエンス・AI教育プログラム(MDASH)認定制度

AI戦略2019

(令和元年6月統合イノベーション戦略推進会議決定)

AIに関連する産業競争力強化や技術開発等についての総合 戦略を策定。この中で2025年までの人材育成目標を設定

育成目標【2025年】

トップクラス育成 100人程度/年 2,000人/年 25万人/年 (高校の一部、高専・大学の50%)

> 100万人/年 (高校卒業者**全員**)

50万人/年

(大学・高専卒業者全員)

(小中学生**全員**)

https://www.mext.go.jp/a_menu/koutou/suuri_datascience_ai/00001.htm

制度概要

大学・高等専門学校の数理・データサイエンス・AI教育に関する正規課程教育のうち、一定の要件を満たした優れた教育プログラムを政府が認定し、取り組みを後押し!

大学,高専

学生に選ばれる

企業に選ばれる

企

数理・データサイエンス・AIの 素養のある学生を輩出

【 応用基礎レベル 】

文理を問わず、自らの専門分野で、数理・データサイエンス・AIを活用して課題を解決するための実践

的な能力を育成

2022年度より、応用基礎レベルの認定開始

→ **366件 (249校)** の教育プログラムを認定 (2025年8月時点) ※1 学年あたりの受講可能な学生数:約25万人

【 リテラシーレベル 】

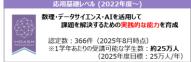
2021年度より、リテラシーレベルの認定開始

→ **592件 (590校)** の教育プログラムを認定 (2025年8月時点)

※1学年あたりの受講可能な学生数:約55万人

5億円 (新規)

現状・課題


- 人丁知能関連技術の研究開発及び活用の推進に関する法律(令和7年6月 4日施行)をはじめ、我が国として、様々な場面での生成AIやロボットの積極的 な利活用を推進しており、文系理系問わず、一定の素養を有した人材の確保・ 育成が急務
- 経済産業省が推計した2040年の就業構造を踏まえると、AIやロボットを適切に 活用できる人材の不足が見込まれる中、高等教育機関においても産業界に適 切な規模で人材を輩出するために、文系学生に理系的素養を身に付ける教育 の質的な変換を加速化していくことが必要
- 数理・データサイエンス・AI教育プログラム認定制度により、全国の大学において、 様々なデータやAIを活用するための素養を身に付ける環境は整ってきたが、プログ ラムの履修率・修了率の向上や、急速な技術革新や社会の変容に適切に 対応できる人材を輩出するための教育の質的な向上が課題。

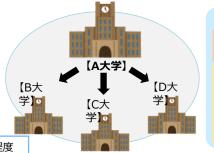
< 2040年における就業構造の推計 >

く 数理・データサイエンス・AI教育プログラム認定制度 >

各大学で実施している数理・データサイエンス・AI教育の高度化を通じて、文系学生も含めて様々な職種で活躍できる教育の質的な転換を図る

事業内容

- ◆ 文系学部も含めた各学部の教育カリキュラムに、数理・データサイエンス・AI 教育プログラムを卒業要件上必須と位置付ける教育改革を進める大学に おいて、プログラムの構成内容や大学の規模感等を踏まえつつ、改革を推進 するための必要な環境整備を実施
- ◆ 選定大学においては、教育改革に伴う課題や必修化に伴って、学生の身に 付けた能力や進路状況を検証し、他大学においても導入可能な教育モデ ル等を作成し、横展開を図る


事業実施期間

令和8年度~令和12年度(予定)

件数·単価

5 拠点 × 0.8~1億円程度

く社会科学系における教育モデルの展開イメージ>

【A大学におけるプログラム構成科目】 データ・AIリテラシー (2単位) 数学•統計学基礎 (2単位) 生成AI活用 (2単位) サイバーセキュリティ入門(2単位) 発展 データサイエンス演習 (1単位) 科目 ビックデータ分析 (1単位) 統計学演習 (1単位)

期待される効果

選定大学を中心に、専門分野に応じて数理・データサイエンス・AI教育が 必修化されたカリキュラムを形成し、文系学生も含めてこれらの実践的な 能力を有した人材を育成・輩出

併せて、数理・データサイエンス・AI教育プログラム認定制度を通じて、 全学での応用基礎レベルの認定を行うことで、大学の取組を後押し

(担当:高等教育局専門教育課)

コンピュテーショナル・シンキングについて

Oコンピュテーショナル・シンキング (Computational Thinking)の定義

問題を定式化し、その解決策を情報処理エージェント(コンピュータなど)によって効果的に実行可能な形で表現するために含まれる思考プロセス

(出典) Jeannette M. Wing, "Research notebook: Computational thinking—What and why.", The Link Magazine **6**, 20–23 (2011)を元に、文部科学省で仮訳

〇数学・科学におけるコンピュテーショナル・シンキングの分類

データ プラクティス	モデル化&シミュレーション プラクティス	計算問題解決 プラクティス	システム思考 プラクティス
データ収集	概念理解のための計算モデルの 使用	計算論的解決のための問題準 備	複雑なシステムの全体調査
データ作成	解の発見と検証のための計算モ デルの使用	プログラミング	システム内の関係性の理解
データ操作	計算モデルの評価	効果的な計算ツールの選択	階層的思考
データ分析	計算モデルの構築	異なるアプローチ/解の評価	システムに関する情報の伝 達
データ可視化		モジュール式の計算論的解の 開発	システムの定義と複雑性の 管理
	-	計算論的抽象化の生成	
		トラブルシューティングと	

(出典) David Weintrop, et al., "Defining Computational Thinking for Mathematics and Science Classrooms", J Sci Educ Technol 25, 127–147 (2016)を元に、文部科学省で仮訳 ※我が国の教育課程においては情報科など他教科における指導内容も含まれることに留意が必要

OECD LEARNING COMPASS 2030 for Mathematics

- **>エージェンシー**
- ○中核的基盤:読み書き能力,ニューメラシー, データリテラシー,デジタルリテラシー,健康的 基盤,社会的・情緒的基盤
 - ○「中核的な基盤のうち、ニューメラシー、データリテラシー、 デジタルリテラシーが、数学リテラシーという広範な能力 の育成に最も関連していることが明らかになっている」 (OECD(2023)p.10)
- ○複合コンピテンシー: コンピュテーショナル(計算 論的)思考,持続可能な開発のためのリテラ シー/環境リテラシー,金融リテラシー

[□] OECD(2023). THE FUTURE OF EDUCATIONAND SKILLS : OECD Learning Compass for Mathematics.

21世紀型コンピテンシーと数学的リテラシー

- いわゆる21世紀型コンピテンシーを組み込んでカリキュラムを再設計することを支援するため、OECD E2030プロジェクトは、カリキュラム・コンテンツ・マッピング (CCM)を開発。
 - ※CCMは、数学を含む主要教科において、将来必要な能力を育成するために、自国のカリキュラムが設計上どの程度意図されているかを、各国がよりよく理解できるように支援するもの。
- ➤ CCMに含まれる主な構成要素には, 生徒エージェンシー, 共同エージェンシー, 読み書き能力, ニューメラシー, 情報通信技術(ICT)/デジタル・リテラシー, データ・リテラシー, 身体/健康リテラシー, 創造性, 責任感, 葛藤解決, 批判的思考, 問題解決, 協調/協働, 自己規制/自己統制, 共感, 尊重, 粘り強さ/レジリエンス, 信頼, 学び方の学習, グローバル・コンピテンシー, メディア・リテラシー, 持続可能な開発のためのリテラシー, 計算論的思考/プログラミング/コーディング, 金融リテラシー, アントレプレナーシップなどがある。(OECD,2024,p.18)
 - □ OECD(2024). An Evolution of Mathematics Curriculum : WHERE IT WAS, WHERE IT STANDS AND WHEREIT IS GOING

CCMにより、各国が21世紀型コンピテンシーをどのように数学カリキュラムに統合しているかが明らかにされた。

ニューメラシー, 批判的思考, 問題解決など, 明らかに基礎となる能力のいくつかは, 数学教育の中で広範囲に組み込まれ, 非常に強調されている。これらは, 認知能力の発達や数学的推論の実社会への応用に必要な基礎的能力を反映している。

興味深いことに、読み書き能力など、伝統的に数学とは結びつかないような能力も、国や地域によっては数学に組み込まれており、数学をより学際的で多様な文脈に関連したものにしようという広範なシフトを反映している。

OECD(2024). An Evolution of Mathematics Curriculum: WHERE IT WAS, WHERE IT STANDS AND WHEREIT IS GOING

4. 児童生徒の学力状況

PISA2022 (得点の国際比較) [] 日本の平均得点と統計的な有意差がない国

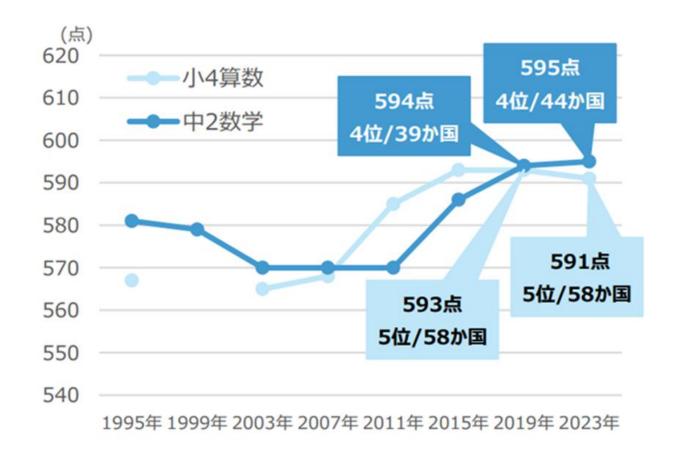
15歳段階での科学的リテラシーは世界トップレベルを維持。

OECD加盟国

順位	数学的リテラシー	平均得点	読解力	平均得点	科学的リテラシー	平均得点
1	日本	536	アイルランド*	516	日本	547
2	韓国	527	日本	516	韓国	528
3	エストニア	510	韓国	515	エストニア	526
4	スイス	508	エストニア	511	カナダ*	515
5	カナダ*	497	カナダ*	507	フィンランド	511
6	オランダ*	493	アメリカ*	504	オーストラリア*	507
7	アイルランド*	492	ニュージーランド*	501	ニュージーランド*	504
8	ベルギー	489	オーストラリア*	498	アイルランド*	504
9	デンマーク*	489	イギリス*	494	スイス	503
10	イギリス*	489	フィンランド	490	スロベニア	500
	OECD平均	472	OECD平均	476	OECD平均	485

全参加国·地域 (81か国・地域)

順位	数学的リテラシー	平均得点	読解力	平均得点	科学的リテラシー	平均得点
1	シンガポール	575	シンガポール	543	シンガポール	561
2	マカオ	552	アイルランド*	516	日本	547
3	ム湾口湾	547	日本	516	マカオ	543
4	香港*	540	韓国	515	ム 山 内 高	537
5	日本	536	ム游口湾	515	韓国	528
6	韓国	527	エストニア	511	エストニア	526
7	エストニア	510	マカオ	510	香港*	520
8	スイス	508	カナダ*	507	カナダ*	515
9	カナダ*	497	アメリカ*	504	フィンランド	511
10	オランダ*	493	ニュージーランド*	501	オーストラリア*	507


TIMSS2023 (日本の平均得点)

○ 小4・中2段階でも、年度による変動はあるが、引き続き高い水準を維持。

【2023平均得点】

小4算数:591点(**5**位/58か国)

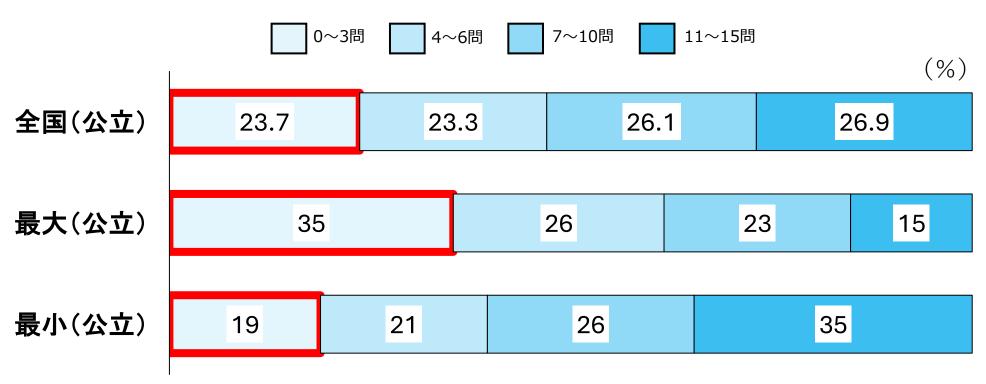
中2数学:595点(4位/44か国)

小・算数は経年変化分析調査でスコアの低下


小学校

平均スコアの推移(小学校)

中学校


平均スコアの推移(中学校)

※平成28年度、令和3年度、令和6年度(PBT実施校)の結果を比較。なお、全国の本調査のスコア分布の状況に関する変化の有無は中長期的に継続して分析する必要があり、次回(令和9年度予定)以降の結果もあわせて引き続き分析が必要。

令和7年度全国学力・学習状況調査 【中学・数学科】の正答数 結果

- 各都道府県・指定都市の正答数の層分布は、**全国的な傾向と大きな差はみられない。**
- ただし、一部の都道府県・指定都市においては、全国(公立)と比べて、D層の割合が10ポイント以上多い

※各層は、児童生徒を正答数の大きい順に並べ、人数割合により約25%刻みで四つに分けている。

【出典】令和7年度全国学力・学習状況調査の結果公表③のポイント(令和7年9月)

令和7年度全国学力・学習状況調査 「社会経済的背景(SES)」×「正答数・スコア」の関係

○家庭の社会経済的背景(SES: Socio-Economic Status)*が低いグループほど、各教科の正答率が低い傾向が見られる。中央値、最頻値、標準偏差についても、SESにより差が見られた。

*本調査では、児童生徒質問調査〔22〕「家にある本の冊数」をSESの代替指標として利用

—— 26∼100⊞

 小学校算数

 20.0%

 15.0%

 10.0%

 5.0%

 0.0%

0~25冊

全国(国公私)

(33.4万人)

26~100冊 (29.8万人)

101冊以上 (29.1万人)

0 1 2 3	3 4 5 6 7	8 9 1011:	121314151
平均正答数	中央値	最頻値	標準偏差
7.9	8	8	4.0
9.7	10	11	3.8
10.7	11	14	3.8
0.3	10	11	4.0

中学校数学
15.0%
10.0%
5.0%
0.0%

—— 101冊以上

	平均正各数	中央値	最頻値	標準偏差
(33.6万人)	6.2	6	3	4.0
(27.1万人)	7.7	8	5	4.1
(24.4万人)	8.6	9	13	4.2
	7.4	7	4	4.2

0 1 2 3 4 5 6 7 8 9 101112131415

61

家庭の社会経済的背景(SES: Socio-Economic Status)*が低いグループほど、各教科の正答率が低い傾向が見られる中でも、「主体的・対話的で深い学び」(※)に取り組んだ児童生徒は、SESが低い状況にあっても、各教科の正答率が高い傾向が見られる。

(※)「児童生徒〔32〕課題の解決に向けて自分から取り組んだか」以外の「主体的・対話的で深い学び」に関する回答でも同様の傾向。

「家にある本の冊数]×「課題の解決に向けて自分から取り組んだ]×「各教科の正答率]

0. 226

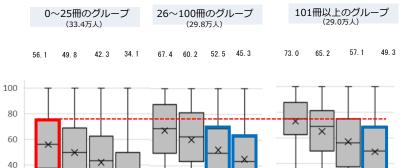
[授業では、課題の解決に向けて、自分で考え、自分から取り組んでいましたか。 児童生徒〔32〕]

各教科の正答率

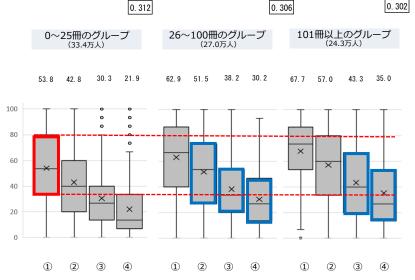
- ① 当てはまる
- ② どちらかといえば、当てはまる

0. 216

- ③ どちらかといえば、当てはまらない
- ④ 当てはまらない


0. 245

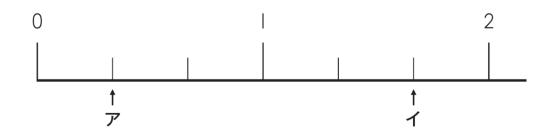
分析


例えば、中学校数学では、低SESグループ(本が0~25冊)で主体的・対話的で深い学びの質問に「①」と回答した生徒の箱ひげ図の箱は、中SESグループ(本が26~100冊)で「②」「③」「④」と回答した生徒及び高SESグループ(本が101冊以上)で「③」「④」と回答した生徒の箱より上の位置(正答率が高い位置)にある。

小学校算数

20

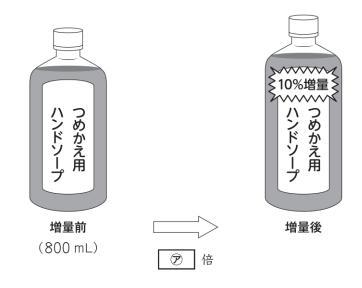
中学校数学



- (注)中・高SESグループの箱ひげ図のうち、低SESグループで 「①」と回答した児童生徒の箱ひげ図の箱(赤枠)の第1四分位 又は第3四分位を下回っているものの箱に青枠を付している。
- (参考) SESと正答率との関係等については、令和4年度文部科学省委託研究(受託者: 福岡教育大学、お茶の水女子大学)においても詳細に分析を行っている。
 - https://www.mext.go.jp/a menu/shotou/gakuryoku-chousa/1416304 00008.html

令和7年度全国学力・学習状況調査 小学校・算数の出題例① 【分数】

3 (3) 次の数直線のア、イの目もりが表す数を分数で書きましょう。


数直線上で、1の目盛りに着目し、分数を単位分数の幾つ分として捉えることができるかどうかをみる。

	解	反応率(%)	
	ア	1	
正解	$\frac{1}{3}$	$\frac{5}{3}$ 又は $1\frac{2}{3}$	35.4
	$\frac{1}{3}$	$\frac{5}{3}$ 又は $1\frac{2}{3}$ 以外	10.2
	1 以外	$\frac{5}{3}$ 又は $1\frac{2}{3}$	0.3
	上記	46.5	
	無角	7.8	

令和7年度全国学力・学習状況調査 小学校・算数の出題例② 【割合】

4 (4) 家に帰ったあさひさんは、つめかえ用のハンドソープがのっている広告を見ました。

広告には、つめかえ用のハンドソープが「|0%増量」と書かれています。 増量前のつめかえ用のハンドソープの量は800 mL です。

増量後のハンドソープの量は、増量前のハンドソープの量の何倍ですか。 上の⑦にあてはまる数を、下の **1** から **4** までの中から | つ選んで、 その番号を書きましょう。

- 1 0.1
- 2 |.|
- **3** | 0
- 4 | | 0

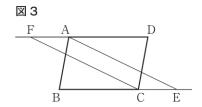
「10%増量」の意味を解釈し、「増量後の量」が 「増量前の量」の何倍になっているかを表すことが できるかどうかをみる。

	解答	反応率(%)
	1 と解答しているもの。	37. 4
正解	2 と解答しているもの。	41. 3
	3 と解答しているもの。	14. 6
	4 と解答しているもの。	2. 1
	上記以外	0. 5
	無回答	4. 1

令和7年度全国学力・学習状況調査 中学校・数学の出題例① 【素数】

1 下の1から9までの数の中から素数をすべて選び、選んだ数のマーク欄を黒く塗りつぶしなさい。

1 2 3 4 5 6 7 8 9


事象を数や式を用いて考察する場面において、次のことができるかどうかをみる。

- ・事象の特徴を的確に捉えること
- ・素数の意味を理解していること

		解答	反応率(%)
正解	1	2、3、5、7 と解答しているもの。	32. 2
	2	3、5、7 と解答しているもの。	2. 7
	3	2、3、5、7、9 と解答しているもの。	2. 6
	4	1、2、3、5、7 と解答しているもの。	19. 5
	5	1、3、5、7 と解答しているもの。	10. 1
	6	1、3、5、7、9 と解答しているもの。	8. 5
	7	上記4~6以外で、1を含んで解答しているもの。	11. 9
	99	上記以外	11.8
	0	無回答	0. 7

令和7年度全国学力・学習状況調査 中学校・数学の出題例② 【証明】

9(3) 次の**図3**のように、平行四辺形ABCDの辺BC、DAを延長した直線上に、BE = DFとなる点E、Fをそれぞれとります。

このとき、四角形FCEAは平行四辺形になります。このことは、次のように証明できます。

証明2

平行四辺形の向かい合う辺は平行だから、

AD // BC

よって、 FA // CE

······(1)

平行四辺形の向かい合う辺は等しいから、

$$AD = BC$$
2

仮定より、

$$DE = BE$$

.....3

②、③より、

$$DF - AD = BE - BC \qquad \cdots$$

④より、

$$FA = CE$$

·····(5)

①、⑤より、

1組の向かい合う辺が平行でその長さが等しいから、 四角形FCEAは平行四辺形である。 さらに、次の**図4**のように、辺ABと線分FCの交点をG、辺DCと 線分AEの交点をHとすると、四角形AGCHも平行四辺形になります。

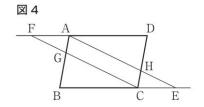


図4において、四角形AGCHが平行四辺形になることは、2組の向かい合う辺がそれぞれ平行であることを示すことで証明できます。四角形AGCHが平行四辺形になることを証明しなさい。ただし、四角形FCEAが平行四辺形であることはすでにわかっていることとします。

ある事柄が成り立つことを構想に基づいて証明することができるかどうかをみる。

	解答	反応率 (%)
正解例	平行四辺形 A B C D の向かい合う辺は平行であるから、 A B D C よって、 A G H C · · · · · ① 平行四辺形 F C E A の向かい合う辺は平行であるから、 F C A E よって、 G C A H · · · · · · ② ①、②より、 2 組の向かい合う辺がそれぞれ平行であるから、四角形 A G C H は平行四辺形である。	33.8
	上記以外	35.1
	無解答	31.2

教育課程企画特別部会 論点整理参考資料集より抜粋

有識者より、既存の情報から大量のアウトプットを出すことが得意な生成 AI が飛躍的に発展する近年の状況の下、今後の社会を生きる子供たちには、個別の知識の集積に止まらない、知識の概念としての習得や深い意味理解を促す指導が一層重要となるとの指摘。

今井むつみ 『学力喪失 一認知科学による回復への道筋』より抜粋

「**多くの子どもたちが、分数や小数の概念的な理解ができていない**ことがわかる。**1/2、1/3、0.5など、日常生活でも頻繁に聞く数 に対して、その『意味』が理解できないでいる子どもが多数いる**のである。これは、正答できない子どもたちの努力が足りないと片づけてよい問題ではない。分数・小数がいかに捉えどころがないもので、これまでのように数少ないわかりやすい事例とともに教えられても、理解できない学び手が、いかに多いかを示すデータなのである。」(p.91)

「分数の意味の理解にとって<u>『ひとしい』は前提になる重要な概念</u>である。2 年生で分数を導入する際に、『ひとしく分ける』ということの意味がわからないとしたらそれは大きな問題で、<u>『ひとしく』が抜け落ちてしまうと、ケーキをいびつに、不均等にしか分けられない『ケーキの</u>切れない子ども』になってしまうのである。」(p.119)

「人工知能は、膨大な量の情報から特徴を抽出することは得意だ(とはいえ、情報のどこに注目するか、どの情報を学習材料にするかを AIに指示するのは人間である。AIが自律的な意思をもって行うわけではない)。しかし、記号接地をしていない。そのため、統計的な計算はするが、『思考』はしない。『意味』も考えない。だから、途中まで正しいことを言っていても、最後に(人間にとって)意味不明な解答をすることもあるし、自律的に知識を体系化したり拡張したりすることはない。『生きた知識の学習』はしないのである。

人間は、AIとは違い一時に処理できる情報量は少ない。しかし、それを武器にして『生きた知識』の体系を構築することができる。 膨大な量の外界の情報に対して、非常に限られた情報処理能力を逆手に取り、記号接地をし、そこから抽象的な記号世界に自力 で果敢に踏み入り、登攀していく。それを可能にするのは、人間だけがもつ学習する力だ。

知識がなくても知覚・感覚的にアクセスできる概念を見つけ、そこに接地する。単に記号(ことば)と対象を結びつけるだけではない。そこから抽象化を行う。それを駆動するのは、誤りを犯す可能性もある、アブダクションという推論だ。乳幼児が自分で使える数少ない資源である、身体感覚的にわかる『似ている』という感覚(類似性)を手がかりに、目には見えないより本質的な類似性に注目できるように、ブートストラッピング・サイクルによって自分自身を育てていく。人間の記号接地とは、記号を外界の対象に紐づけすることだけではなく、そこから抽象的で本質的な概念に自分で到達していく過程なのである。その過程を経験することが『生きた知識』を生む。(略)この過程は私たち一人ひとりが学び、熟達し、達人になっていく過程に重ねることができる。その基礎をつくるための学校教育がある。子どもたちが学校で習得するべき基本的な概念について、この状態までもっていきたい。(略)」(p.231)

多くの子供たちが、分数や小数の 概念的な理解ができていない

教育課程企画特別部会 論点整理参考資料集 より抜粋

分数・小数の大小関係を問う問題 (大きい方を選ぶ)

(正答率 単位:%)

比較した数⇒	$\frac{1}{2}$ $\frac{1}{3}$	$\frac{1}{2}$ \geq 0.7
3年生	17. 6	31. 0
4年生	22. 4	50. 7
5年生	49. 7	54. 4

算数の学習の前提なのに、 実は意味がよくわかっていない言葉がある。

教育課程企画特別部会 論点整理参考資料集 より抜粋

問題

ひとしい

数字が<u>ひとしい</u>です。

(正答率 単位:%)

回答選択肢⇒	同じ	大きい	近い	無回答
2年生	36. 2	18. 8	31. 2	13. 8
3年生	32. 5	23. 1	38. 5	6. 0
4年生	95. 4	2. 0	2. 6	0. 0

令和7年度全国学力・学習状況調査 「文字式や証明を読んで理解する」×「正答率」の関係

○低いSES(社会経済的背景)でも「文字式や証明を読んで理解する」「説明活動をする」の両方に取り組んだ児童生徒は、高いSESで取り組めていない者よりも数学の正答率が高い。

*本調査では、児童生徒質問調査〔22〕「家にある本の冊数」をSESの代替指標として利用

◆ 文字式を用いた説明や図形の証明を読んで、書かれていることを理解できる生徒は67%。

文字式を用いた説明や図形の証明を読んで、書かれていることを理解することができる(新規)
※生徒質問調査 [59]

当てはまる □ どちらかといえば、当てはまる
□ どちらかといえば、当てはまる
□ どちらかといえば、当てはまらない □ 当てはまらない

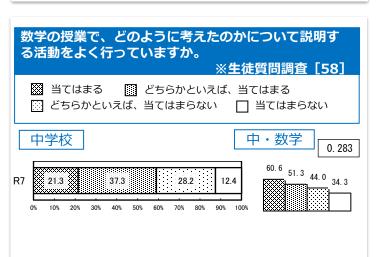
中学校

67. 4

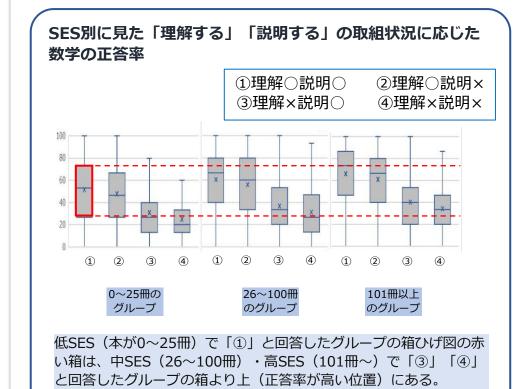
R7

28.03

39.41


39.41

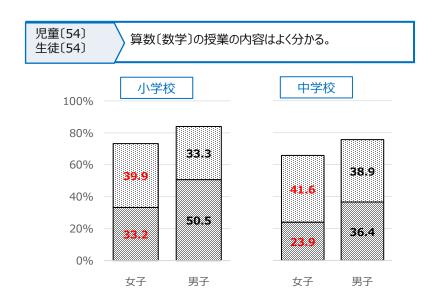
21.77


10.1

67.9

※国語、理科でも同様の傾向。

◆ 低いSES(社会経済的背景)でも「文字式や証明を読んで理解する」 「説明活動をする」の両方に取り組んだ児童生徒は、高いSESで取り組 めていない者よりも数学の正答率が高い。


令和7年度全国学力・学習状況調査 算数科・数学科に関する児童生徒質問調査結果(男女差)

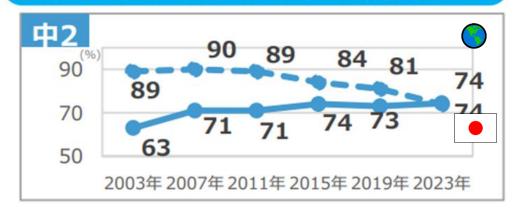
○ 平均正答率を比較すると、小・中学校とも男子が女子を上回った(ただし大きな男女差は見られない)。「好き」「授業の内容がよく分かる」「得意」と回答する割合は、女子が男子を下回った。

平均正答率 (男女別)

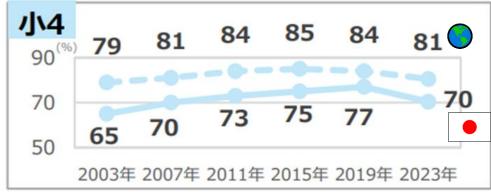
	小·算数	中·数学
男子(a)	59.0%	49.1%
女子 (b)	57.3%	48.6%
女子(b) – 男子(a)	-1.7	-0.4*

*差を算出した後に、小数第2位を四捨五入

【出典】令和7年度 全国学力・学習状況調査の結果(概要)(令和7年7月31日公表)


5. 児童生徒の学習状況等

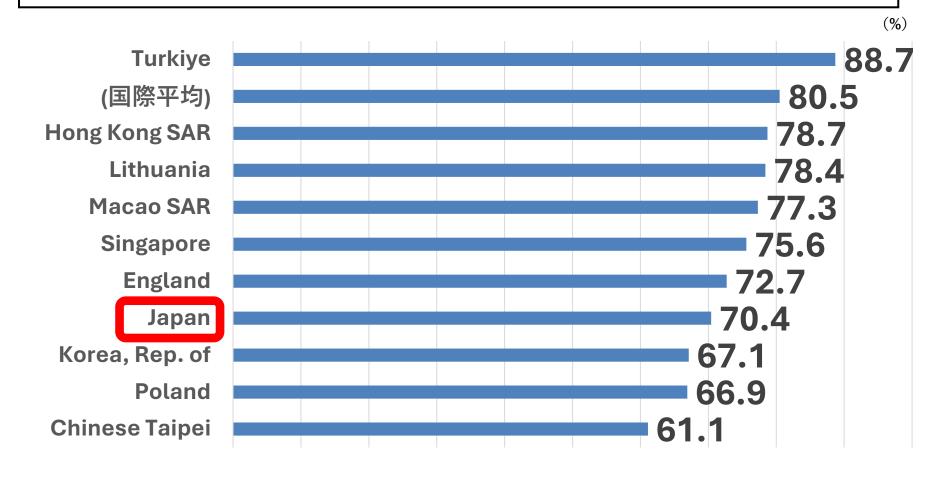
TIMSS2023(児童生徒の回答)


- 数学の勉強が「日常生活に役立つ」と回答する中学生の割合は、増加傾向にあり、国際平均と同水準。
- 算数・数学の勉強が「楽しい」と回答する小学生・中学生の割合は、小学校・中学校とも国際平均を下回る状況。



数学を勉強すると、日常生活に役立つ

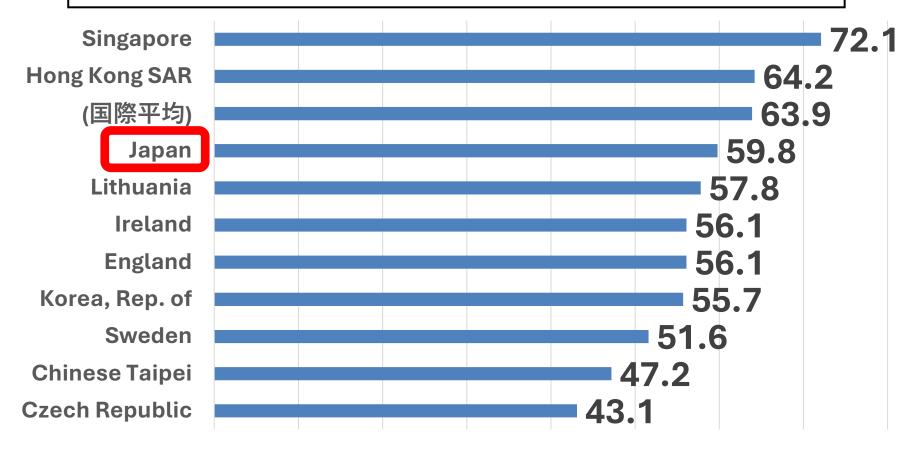
算数・数学の勉強は楽しい



TIMSS2023

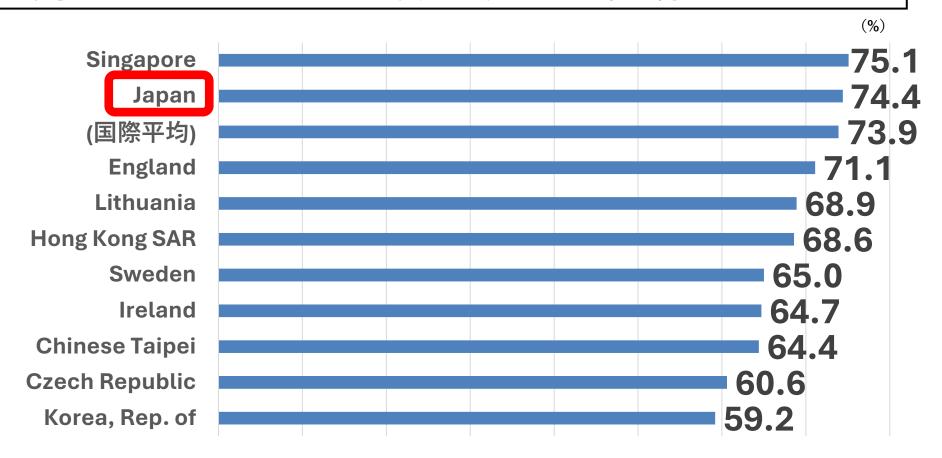
小・算数トップ10比較「算数の勉強は楽しい」

○ TIMSS2023の小・算数の「算数の勉強は楽しい」と回答する児童の割合は、 スコアトップ10か国・地域のなかで比較的下位に属する。

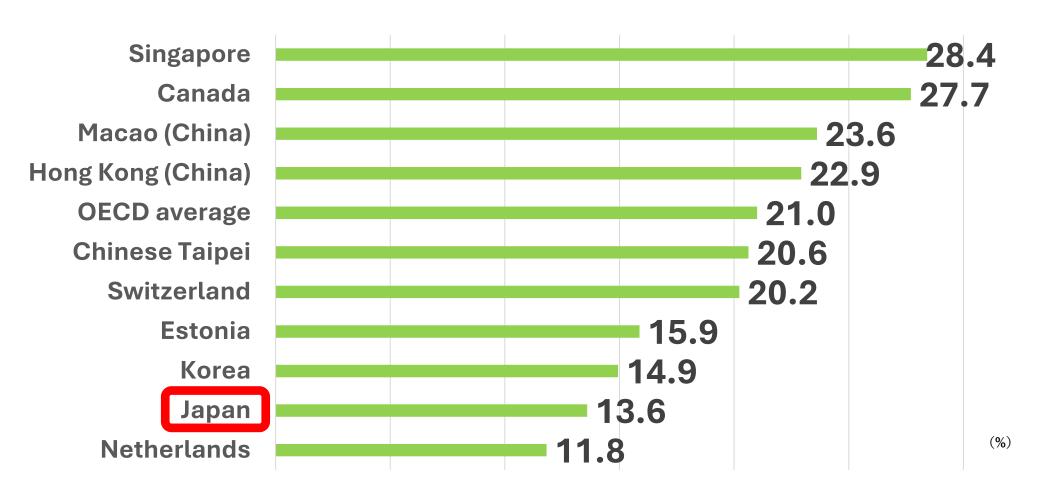


TIMSS2023

中・数学トップ10比較「数学の勉強は楽しい」

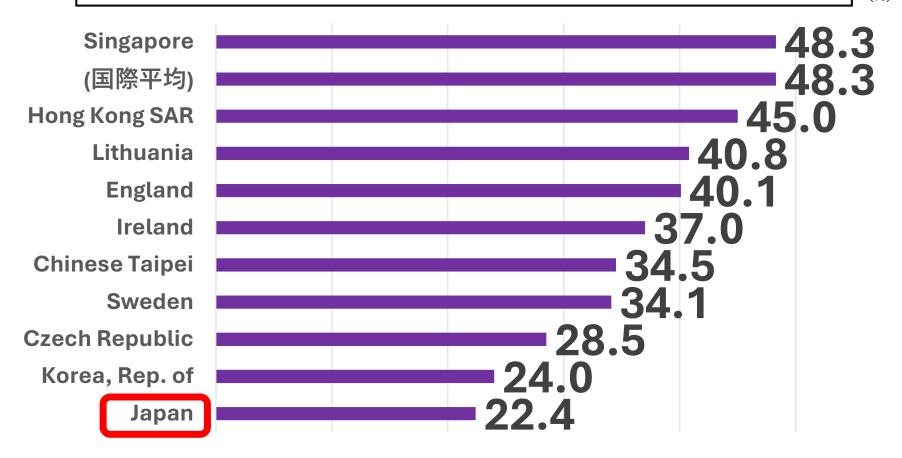

○ 中学生になると、「数学の勉強は楽しい」と回答する生徒の割合は、 スコアトップ10か国・地域のなかで中位に属する。

(%)

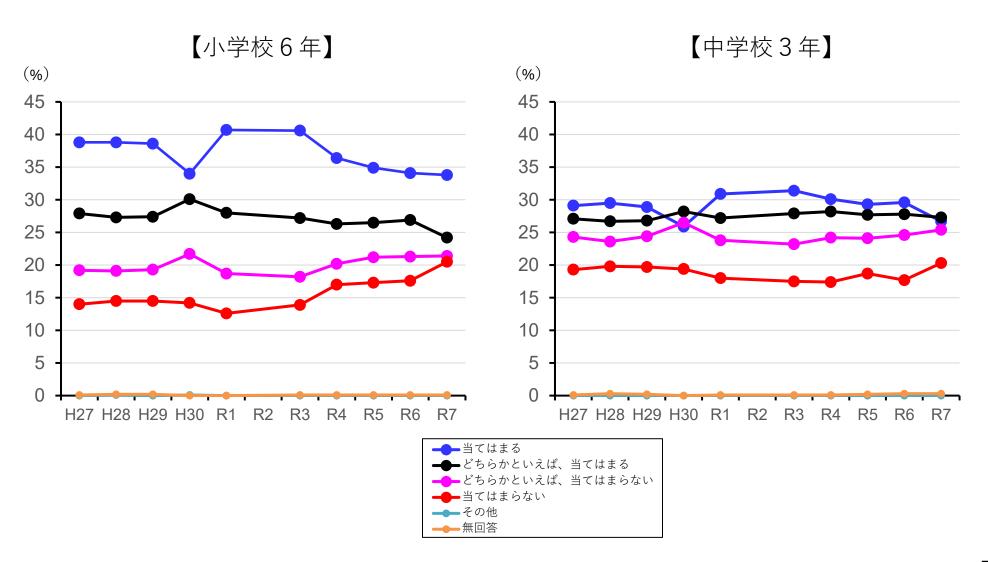


TIMSS2023 中・数学トップ10比較 「数学を勉強すると、日常生活に役に立つ」

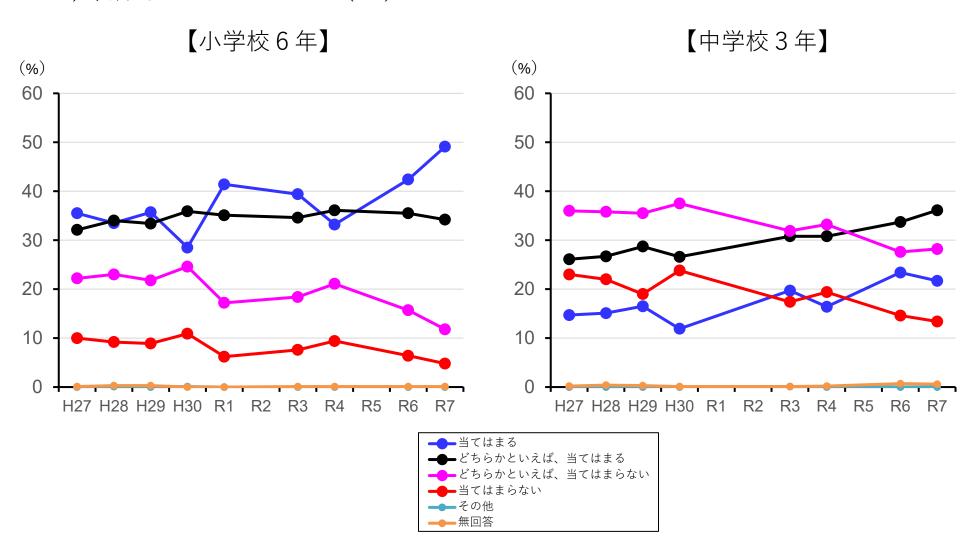
○ 「数学を勉強すると、日常生活に役に立つ」と回答する生徒の割合についても、 中学生については、スコアトップ10か国・地域のなかで上位に属する。


PISA2022 数学トップ10比較 先生は、日常生活の問題を数学でどう解決できるか考えさせたか

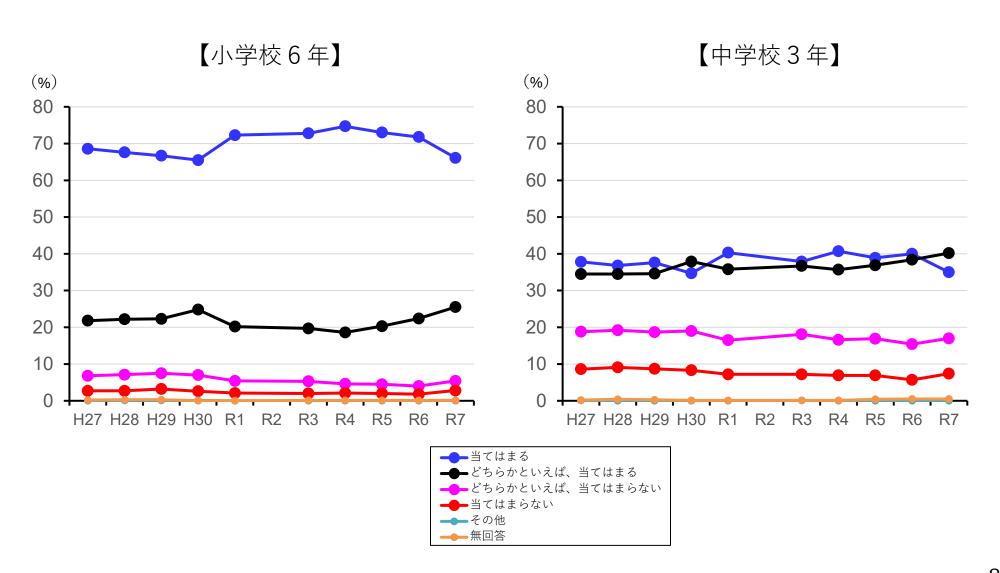
TIMSS2023 中・数学トップ 10比較 「数学を使う職業につきたい」最下位


○「数学を使う職業につきたい」と回答する中学生の割合については、 スコアトップ10か国・地域のなかで最下位。

(%)

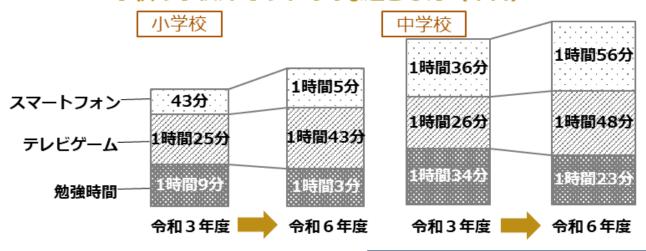

全国学力・学習状況調査のポイント①

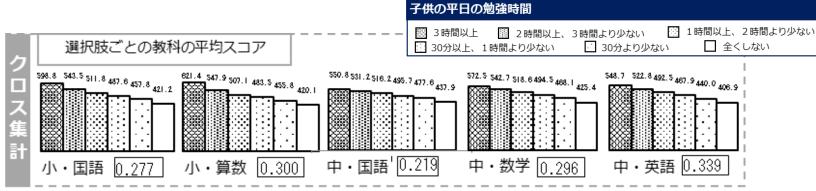
算数/数学の勉強は好きですか


全国学力・学習状況調査のポイント②

算数/数学の授業で学習したことを普段の生活の中で活用できないか考えますか (~R6) /活用できていますか (R7)

全国学力・学習状況調査のポイント③


算数/数学の授業で学習したことは、将来、社会に出たときに役に立つと思いますか



全国学力・学習状況調査 学校外での勉強時間の推移

学校外での**勉強時間**は前回調査から**減少。**学校外での**勉強時間が長いほど、**経年変 化分析調査のスコアが高い傾向。また、SESが低いグループほど、勉強時間が短く、 テレビゲーム・スマートフォンの使用時間が長い。

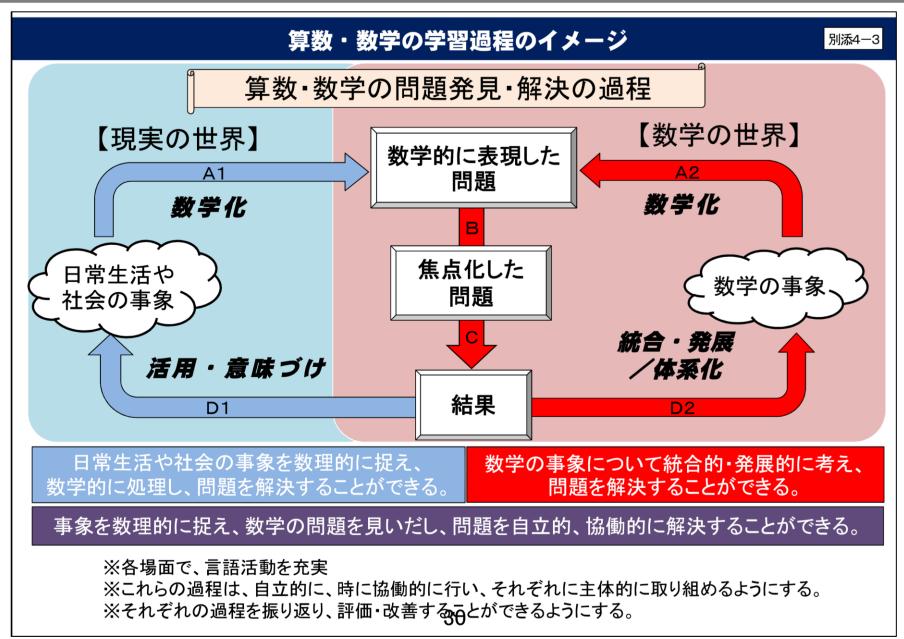
子供の学校外での平均的な過ごし方(平日)

(注)グラフの時間は令和3・6年度「保護者に対する調査」の以下の質問の各選択肢の中央値を基に、平均値を算出。

- ・お子さんは、学校の授業時間以外に、普段(学校のある日)、1日当たりどのくらいの時間、勉強しますか(学習塾で勉強して いる時間や家庭教師の先生に教わっている時間、ICT機器を活用してインターネットのコンテンツから学ぶ時間も含む)。
- ・お子さんは、普段(学校のある日)、1日のうち何時間程度、テレビゲーム(コンピュータゲーム・携帯式ゲーム・スマートフ
- オンなどのゲームを含む)をしていますか。 ・お子さんは、普段(学校のある日)、1日のうち何時間程度、携帯電話やスマートフォンを使っていますか。

82

【総則解説】見通しを立てたり、振り返ったりする学習活動 (第1章第3010 (4))


- (略)今回の改訂においても、引き続き児童の学習意欲の向上を重視しており、主体的・対話的で深い学びの実現に向けた授業改善を進めるに当たって、特に主体的な学びとの関係からは、児童が学ぶことに興味や関心をもってとや、見通しをもって粘り強く取り組むこと、自己の学習活動を振り返って次につなげることなどが重要になることから、各教科等の指導に当たり、本項の規定を踏まえる必要がある。
- 具体的には、例えば、各教科等の指導に当たっては、児童が学習の 見通しを立てたり、 児童が当該授業で学習した内容を振り返る機会 を設けることや、児童が家庭において学習の見通しを立てて予習をし たり学習した内容を振り返って復習する機会を設ける ことなどの取組 が重要である。これらの指導を通じ、児童の学習習慣の定着や学習 意欲の向上が図られ学習内容が確実に定着し、各教科等で目指す 資質・能力の育成にも資するものと考えられる。

【総則解説】学習習慣の確立 (第1章第1の2の(1))

基礎的・基本的な知識及び技能を確実に習得させ、これらを活用して課題を解決するために必要な思考力、判断力、表現力等を育むとともに、主体的に学習に取り組む態度を養い、個性を生かし多様な人々との協働を促す教育の充実に努めること。その際、児童の発達の段階を考慮して、児童の言語活動など、学習の基盤をつくる活動を充実するとともに、家庭との連携を図りながら、児童の学習習慣が確立するよう配慮すること。

(略) 小学校教育の早い段階で学習習慣を確立することは、その後の生涯にわたる学習に影響する極めて重要な課題であることから、家庭との連携を図りながら、宿題や予習・復習など家庭での学習課題を適切に課したり、発達の段階に応じた学習計画の立て方や学び方を促したりするなど家庭学習も視野に入れた指導を行う必要がある。

6. 探究的な学び、文理横断・文理融合

STEAM教育等に関する国の基本計画

我が国におけるイノベーションを担う人材の育成に向けて、小中学校段階からのSTEAM教育、理数教育の充実を図ることが、政府の諸計画に位置付けられている。

◎ (第4期)教育振興基本計画〔令和5年6月16日閣議決定〕

Ⅳ. 今後5年間の教育政策の目標と基本施策

目標 5 イノベーションを担う人材育成

複雑かつ困難な社会課題の解決や持続的な社会の発展に向けて、新たな知を創り出し、多様な知を持ち寄って「総合知」として活用し、新たな価値を生み出す創造性を有して既存の様々な枠を越えて活躍できる、イノベーションを担う人材を育成する。

【基本施策】

%STEAM= (Science, Technology, Engineering, Liberal Arts, Mathematics)

○探究·STEAM 教育の充実

- 学習指導要領を踏まえ、児童生徒が主体的に課題を自ら発見し、多様な人と協働しながら課題を 解決する探究学習や STEAM 教育等の教科等横断的な学習の充実を図る。
- 「社会に開かれた教育課程」の実現に向けて、普通科改革や先進的なグローバル・理数系教育、産業界と一体となった実践的な教育等を始めとした高等学校改革を通じて、地域、高等教育機関、行政機関等との連携を推進する。
- 生徒の探究力の育成に資する取組を充実・強化するため、先進的な理数教育を行う高等学校等を 支援するとともに、その成果の普及を図る。
- 探究・STEAM・アントレプレナーシップ教育を支える企業や大学、研究機関等と学校・子供をつなぐプラットフォームの構築や、日本科学未来館やサイエンスアゴラ等の対話・協働の場等を活用した STEAM 機能強化や地域展開等を推進する。

学校教育におけるSTEAM教育等の教科等横断的な学習の推進

令和3年7月15日 教育課程部会(第125回) 資料1 抜粋

○ AIなどの急速な技術の進展により社会が激しい変化が生じている今日、文系・理系といった枠にとらわれず、各教科等の学びを基盤としつつ、様々な情報を活用・統合しながら、課題の発見・解決や社会的な価値の創造に結び付けていく資質・能力の育成が求められている。

STEM(Science, Technology, Engineering, Mathematics)に加え、芸術、文化、生活、経済、法律、政治、倫理 等を含めた広い範囲でAを定義し、各教科等での学習を実社会での問題発見・解決に生かしていくための教科等横断的な学習 を推進することが重要

文理の枠を超えたカリキュラム・マネジメントの充実

- 文理の枠を超えた教科等横断的な視点で教育課程を編成・実施
- 各学校の教育目標と総合的な探究の時間等の目標との関連を図る
- 各教科の教師の専門性を生かした協働体制を構築
- 学校外リソースを活用するための連携体制を整備
- ICT活用のための環境を整備

各教科等における探究的な学習 活動の充実

• 各教科等の特質に応じた見方・考え方を働かせながら、実社会の課題を取り扱う探究的な学習活動を充実

統合

総合的な探究の時間、理数探究等を中心とした探究活動の充実

• 複数の教科等の見方・考え方を総合的・統合 的に働かせながら、実社会の課題を取り扱い 探究する活動を充実

外部関係機関による 支援

- 民間企業、大学、研究機関、社会教育施設、地域の団体等の関係機関との連携を推進
- 学校と外部専門人材、コンテンツ等とのマッチングを通じて、「社会に開かれた教育課程」の実現を促進

理学、工学、芸術、人文・社会科学等を横断した学際的なアプローチにより、実社会の問題を発見し解決策を考えることを通じた主体的・対話的で深い学びを実現

- ✓ 知的好奇心や探究心を引き出すとともに 学習の意義の実感により学習意欲を向 ト
- ✓ 文理の枠を超えた複合的な課題を解決 し新たな価値を創造するための資質・能力を育成

STEAMの各分野が複雑に関係する現代社会に生きる市民、新たな価値を創造し社会の創り手として必要な資質・能力を育成

7. ICT·AI関係

GIGAスクール構想のもとでの 小学校算数科の指導において ICTを活用する際のポイント

算数科で育成を目指す資質・能力とICT活用の関係

表やグラフが簡単にかける

多量なデータでも,表計算ソフトを用いて,目的に応じていろいろなグラフを一瞬で簡単に作成できる。

図形指導の充実

プログラミングソフトを用いて正多角形をかくことで、プログラミング的思考力を育成する。 図形を動的に変化させることで、図形に対する豊かな感覚を育成する。

算数科の学習過程とICT活用の関係

問題解決の流れの中で

- ・問題提示・・・問題を一瞬で配布できる。問題を拡大して見せることができる。
- ・自力解決時・・・ノート、ワークシートの代わりに使用できる。

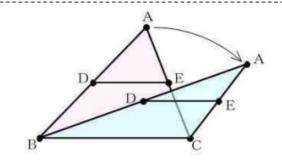
データであれば,教師はワークシートを前もって印刷する必要がなく,子 供は何枚も自由に使うことができるため,試行錯誤が可能。

教師は, クラウド上でクラス毎のワークシート等を管理するなどにより, 個人の問題解決の状況を把握できる。

- ・学び合い時・・・一瞬で記述内容が転送できる。一覧表示が可能。
- ・まとめ・振り返り・・・まとめ・振り返りの転送・一覧表示が可能。振り返りの記述の蓄積。

GIGAスクール構想のもとでの中学校数学科の指導において ICTを活用する際のポイント

文部科学省 ホームページ 掲 載 資 料


数学科の学習過程とICT活用の関係

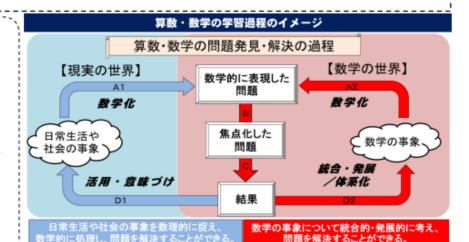
問題解決の流れの中で、例えば、次のような場面でICTを活用することが考えられる。

- ・事象から新たな問題を見いだしたり、解決の方法を見通したりする場面(シミュレーション、試行錯誤など)
- 新たな問題に出合い、問題の意図を明確に理解する場面(動画や図形作成ソフトなどでの課題提示など)
- 分類・整理する場面(図や表、グラフなどに表すなど)
- ・考えた結果や考察の過程をまとめ、共有する場面
- ・得られた結果を具体的に確認したり、検索して調べたりして内容の理解を深める場面

試行錯誤しながら数学的な性質の発見をする

・「B図形」の指導においては、三角形の2辺の中点を結んだ線分について、この「2辺の中点を結ぶ」という条件が当てはまる図形を、ディスプレイ上でいろいろな形に変形することにより、形は変わっても長さの比が一定であることに気付くなど、その中に含まれる図形の性質を見つけ、問題を設定することができる。

•「 C 関数」の指導においては、一次関数 y = ax + b について、b の値を固定し a の値を変化させる、あるいは a の値を固定し b の値を変化させることによってグラフの変化の様子を考察するなど、条件設定を状況に応じて自在に変えながら考えを進めることができる


GIGAスクール構想のもとでの【高等学校数学科】の指導において ICTを活用する際のポイント ^{文単科}

文部科学省 ホームページ 掲 載 資 料

新学習指導要領とICT活用の関係

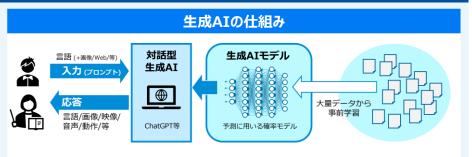
- 高等学校数学科では、数学的に考える資質・能力を育成するために、現実の世界と数学の世界における問題発見・解決の過程(右図)を学習過程に反映させることを意図して数学的活動の一層の充実を図っていることから、ICTは、日々の授業において数学的活動の充実を図っていくためのツールとして活用することが肝要である。したがって、全体的に次のような場面でICTを活用することが考えられる。
 - ▶ 事象の特徴を捉えたり、問題の意図を明確に理解する場面(A1・A2)
 - 対行錯誤しながら問題解決に向けた構想・見通しを立てる場面(B)

 - ▷ ICTを活用して得られた結果から、のような結果になった理由を共有しながら考察したり、理論的に得られた結果を具体的に確認したりする場面(D1・D2)
 - ▽ 解決過程を振り返って概念を広げたり深めたりする場面や (D2)、新たに問題を設定する場面(D1・D2)
- 高等学校数学科の各科目では、「コンピュータなどの情報機器を用いて~すること」という資質・能力を内容として位置づけている(右表)。また、この他にも、学習指導要領の解説では、ICTの積極的な活用が考えられる様々な学習場面を例示している。

事象を数理的に捉え、数学の問題を見いだし、問題を自立的、協働的に解決することができる。

科目 内容 項目 数学 I (2)二次関数 イ(ア) 数学 I (4)データの分析 ア(イ) 数学Ⅱ (2)図形と方程式 イ(イ) 数学Ⅲ (1)極限 イ(ウ) 数学A (1)図形の性質 イ(イ) 数学B (2)統計的な推測 イ(イ) 数学C (2)平面上の曲線と複素数平面 イ(ウ)

初等中等教育段階における生成AIの利活用に関するガイドライン(Ver. 2.0)【概要】



教職員や教育委員会等の学校教育関係者を主たる読み手として、学校現場における生成AIの適切な利活用を実現するための参考資料となるよう、生成AIの概要や基本的な考え方、場面や主体に応じて押さえておくべきポイントをまとめたもの。

1. 生成AIについて

- 生成AIは急速に普及し、文章だけでなく動画像や音声等、異なる種類の情報をまとめて扱えるようになり、人間の反応と遜色ないスピードで応答ができるようにもなっている
- 学校現場においても、汎用的なサービスが利用可能なだけでなく、標準仕様のブラウザや学習支援ソフトウェア等にも組み込まれ、利活用の幅が広がりつつある。
- 誤った出力(ハルシネーション)を完全に防ぐことは難しいとされているほか、学習過程・出力過程の信頼性・透明性への懸念、大量のデータに潜む偏見や差別等のバイアスをそのまま再生成することなど、様々なリスクも指摘されている。一方で、これらのリスクを軽減する技術等も進展している。

JST研究開発戦略センター「人工知能研究の新潮流2 ~基盤モデル・生成AIのインパクト~」(2023年7月)を基に文部科学省において作成

2. 基本的な考え方

①学校現場における人間中心の利活用

人間中心の原則

児童生徒の 学びと生成AI

教師の役割と 生成AI

- 生成AIを人間の能力を補助、拡張し、可能性を 広げてくれる有用な道具になり得るものと捉えるべきで ある。その上で、出力はあくまでも「参考の一つである」 ことを認識するとともに、リスクや懸念を踏まえつつ、最 後は人間が判断し、責任を持つことが重要である。
- 学習指導要領に示す資質・能力の育成に寄与するか、教育活動の目的を達成する観点から効果的であるかを吟味した上で利活用するべきであり、生成 AI を利活用することが目的であってはならない。
- 指導計画や学習環境の設定、丁寧な見取りと支援といった、学びの専門職としての教師の役割は、より重要なものになる。
- 生成AIの仕組みや特徴を理解するなど、教師には一 定のAIリテラシーを身に付けることが求められる。

②生成AIの存在を踏まえた情報活用能力の育成強化

学習の基盤となる 資質・能力としての 情報活用能力

情報活用能力の 育成強化

- 学習指導要領では、「情報活用能力」を学習の基盤 となる資質・能力として位置付け、情報を主体的に 捉え、活用すること、情報技術を学習や日常生活に 活用できるようにすることの重要性を強調している。
- 各学校においては、教科等横断的な視点からの教育 課程の編成を通じて、各教科等の学習の過程における指導の中で情報活用能力を育成することが期待される。
- 生成AIの仕組みの理解、学びに生かしていく視点、 近い将来生成AIを使いこなすための力を、各教科等 の中において意識的に育てていく姿勢は重要である。
- 生成AIが社会生活に組み込まれていくことを念頭に、 発達の段階等を踏まえつつ、情報モラルを含む情報 活用能力の育成を充実させていくことが必要である。

初等中等教育段階における生成AIの利活用に関するガイドライン(Ver. 2.0)【概要】

3. 学校現場において押さえておくべきポイント

学校現場で利活用する場面

具体的な利活用例

教職員の 校務

- 校務の効率化や質の向上等、働き方改革につなげていくことが期待される
- 新たな技術に慣れ親しみ、利便性や懸 念点を知っておくことは、児童生徒の学 びをより高度化する観点からも重要
- 内容の適切性を判断できる範囲内で 積極的に利活用することは有用
- 児童生徒の指導にかかわる業務への支援 (授業準備、部活動、生徒指導等) ex. 授業で取り扱う教材や確認テスト問題のたたき台を作成する
- 学校の運営にかかわる業務への支援 (教務管理、学校からの情報発信、校内研修等) ex.各種お便り・通知文・案内文のたたき台を作成する
- 外部対応への支援 ex. 保護者会・授業参観・保護者面談の日程調整に活用する

- AIサービスの最新の利用規約を確認・遵守する
- 原則、重要性の高い成績情報等を入力しない
- 個人情報保護法等を遵守すること、著作権侵害につ ながるような使い方をしないこと
- バイアス等の生成AIの特徴を理解した上で、出力された内容を採用するかどうかは必ず教職員が判断する
- 管理職は適切な利活用がなされているかを確認する

児童生徒の 学習活動

- 発達の段階や情報活用能力の育成状 況に留意しつつ、リスクや懸念に対策を 講じた上で利活用を検討すべき
- その際、学習指導要領に定める資質・ 能力の育成に寄与するか、教育活動の 目的を達成する観点から効果的である かを吟味することが必要
- 「生成AI自体を学ぶ場面」、「使い方を 学ぶ場面」、「各教科等の学びにおいて 積極的に用いる場面」を組み合わせたり 往還したりしながら、生成AIの仕組みへ の理解や学びに生かす力を高める

- 情報モラル教育の一環として、生成AIが生成する誤りを含む出力を教材に、その性質や限界に気付く
- グループの考えをまとめる、アイディアを出す活動の途中段階で、一定の議論やまとめをした上で、足りない視点を見つけ議論を深める目的で活用する
- 英会話の相手として活用したり、より自然な英語表現への改善や一人一人の興味関心に応じた単語リストや例文リストの作成に活用したりする
- プログラミングの授業において、児童生徒のアイディアを 実現するためのプログラムの制作に活用する 等

- 年齢制限等の最新の利用規約を確認・遵守し、教師の適切な指導監督の下で利活用させることが必要
- 教育情報セキュリティポリシーや教育情報セキュリティ管理者の指示等を遵守することが必要
- 氏名や写真等の個人情報を入力させないこと、著作 権侵害につながるような使い方をさせないこと
- 出力に偏りがないかなど、教育目的に照らして適切か を教師が随時判断することが必要
- 保護者に対し、利用目的や様態等の情報提供が重要

😯 🍨 教育委員会等が押さえておくべきポイント

- 教育委員会が主導して制度設計や利活用の方向性を示すことが重要
- 各学校の実態を十分に踏まえた柔軟な対応を講じることが必要であり、一律に禁止・義務付けるなどの硬直的な運用は望ましくない
- 先行事例や教材・ノウハウの周知・共有、効果的な活用を促進する研修の実施により、生成AIの適切な利活用を推進する環境を整備することが必要

Y'

適切な利活用のために考慮すべきポイント

- ▶ 各学校が適切に生成AIの利活用を行えるよう<mark>各学校の実態を十分に踏まえた柔軟な対応を講じる</mark>ことが必要
- 教育現場の実態に即した教育情報セキュリティポリシーを教育委員会が策定、必要に応じて見直すことが重要
- 個人情報の取扱いに関して必要かつ適切な措置が取られているか確認すること。著作権の侵害リスクを低減するため、適切な予防措置を講じているモデルやサービスを選択することも考えられる
- バイアス等のリスクや懸念を踏まえた教職員による最終的な判断が不可欠であることなど、適切な情報提供や研修等のサポートを行うことができるよう、体制の整備や知見の収集に努めることが重要
- 生成AIサービスを導入する際は、保護者の経済的な負担等に十分に配慮しつつ、適切な利活用を実現するための研修を実施するなど、丁寧な情報提供を行うことが必要94

初等中等教育段階における生成AIの利活用に関するガイドライン(Ver. 2.0)【概要】

参考資料編

利活用する際のチェック項目

- ■教育委員会の方針(情報セキュリティに関するルール・指示等も含む)に 基づき利用しているか
- ■業務端末又は教育情報セキュリティ管理者の許可を得た端末を利用しているか
- ■生成AIサービスの提供者が定める最新の利用規約を確認・遵守しているか
- ■ハルシネーションやバイアス等の生成AIの特徴を理解した上で、出力結果の 適切性を判断できる範囲内で利用し、出力された内容を採用するかどうか を自身で判断しているか
- □プロンプトに重要性の高い成績情報等の情報を入力していないか ※重要性の高い情報を扱う前提のセキュリティ対策が講じられている場合は除く (ただし、重要性の高い情報のうち個人情報に該当する情報については、以下「プロンプト
- □プロンプトに個人情報を入力していないか
 - ※教職員がプロンプトに入力した個人情報を、生成AIの提供者において応答結果の 出力以外の目的で取り扱わないことを確認している場合は除く
- □著作権の侵害につながるような使い方をしていないか

に個人情報を入力していないか」についても留意する必要がある。)

- ■教育活動の目的を達成する観点で効果的であることを確認しているか
- □児童生徒の発達の段階や情報活用能力の育成状況に十分留意しているか
- ■生成AIの性質やメリット・デメリット、情報の真偽を確かめる、自己の判断 や考えが重要であることを十分に認識できるような使い方等に関する学習 を実施しているか
- ■プロンプトに氏名や写真等の個人情報を入力しないよう十分な指導を行っているか
- □著作権の侵害につながるような使い方をしないよう十分に指導しているか

- ■生成AIサービスの提供者が定める最新の利用規約を確認・遵守しているか(年齢制限や保護者の同意の必要性、生成物のライセンスの所在など)
- ■生成AIによる生成物をそのまま自己の成果物として使用することは自分のためにならないこと、使用方法によっては不適切又は不正な行為になることを十分に指導しているか。
- □学習課題に生成AIの回答を引用している場合、出典・引用を記載することを 理解させているか
- □保護者の経済的負担に十分に配慮して生成AIツールを選択しているか
- □児童生徒が学校外で生成AIを利活用する可能性も踏まえ、生成AIの 不適切な利活用が行われないよう、保護者に対し周知し、理解を得ているか

生成AIパイロット校における先行取組事例

「教職員による校務での利活用例」や「学習場面において利活用が考えられる例」に即した生成AIパイロット校の先行取組事例を掲載している。

学校現場で活用可能な研修教材等

文部科学省等が実施してきた研修(アーカイブ公開含む)や利用可能なコンテンツ等の例を掲載している。

