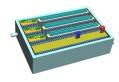
研究開発目標と体制・運営方針

- 次世代半導体の優れた材料特性を最大限活かしたパワーデバイス (SiC,GaN 等)
- 次世代パワーデバイスの特徴を活かせるパワエレ回路システム、受動素子等

中小容量 電力制御·電源分野



中小容量 モータ制御・駆動分野

Solar Power

Smart Grid

Data Center

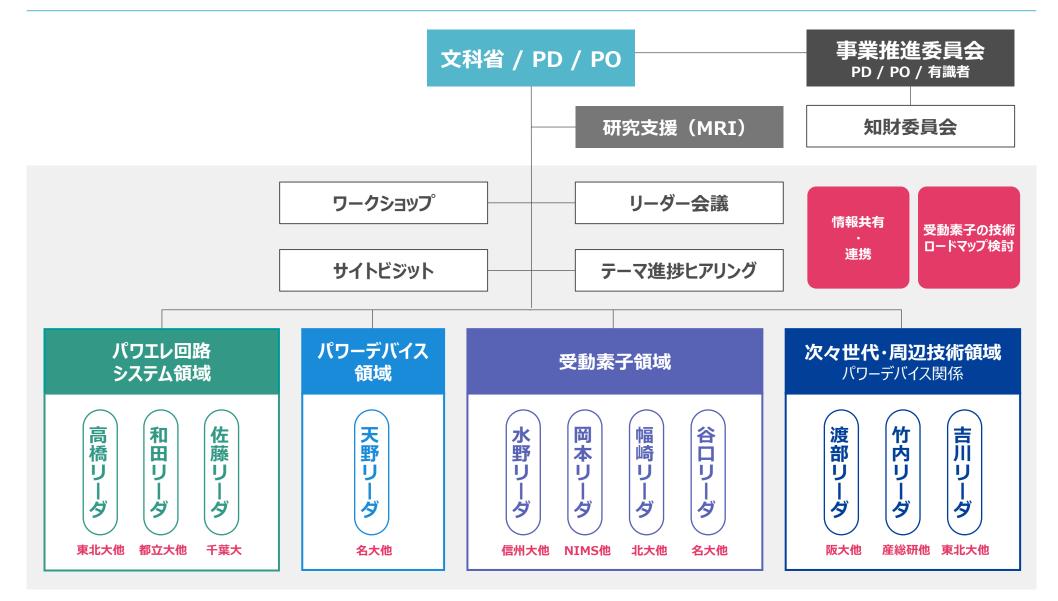
Industry & Robot

Mobile System (xEV, Train, Plane)

Integrated Power Unit

大森 PD〔三菱電機〕 清水 PO〔東京都立大学〕 松本 PO〔名古屋大学〕 山口 PO〔東北大学〕 助言·指導 パワーデバイス領域 パワエレ回路 1テーマ 各デバイスの デバイスの システム領域 実動作情報の 材料物性の 一体的な 提示等 提示等 受動素子領域 研究開発 **3**テーマ **4**テーマ 次々世代·周辺技術領域 パワーデバイス関係3テーマ **3**テーマ

各テーマ間 (**11テーマ**)の **情報共有・連携**


受動素子の 技術ロードマップ 検討

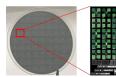
PD: Program Director , PO: Program Officer

事業の運営体制

各研究テーマ内で進捗会議、知財管理会議を運営

可能な範囲で、PD、POが会議にオブザーバ参加

研究領域・テーマの全体概要



パワーデバイス領域 1 テーマ

社会実装を目指した GaN縦型パワーデバイス作製技術の確立

天野教授 〔名大〕

▲GaN基板上に作製したデバイスチップ

情報共有 ・ 連携

脱炭素社会実現に向けた 集積化パワーエレクトロニクスの研究開発

和田教授〔都立大〕

高橋教授

〔東北大〕

SST (Solid State Transformer) の高性能化に向けた回路・デバイス・制御技術の統合技術開発

佐藤教授 〔千葉大〕

GaNデバイスで拓く超高周波パワーコンバータの開発

情報共有 ・ 連携

次々世代・周辺技術領域 3 テーマ

渡部教授 「阪大」 革新的製造技術の基盤構築

竹内博士 〔 AIST 〕 革新パワーデバイス応用に向けたダイヤモンド半導体基盤技術検証

吉川教授〔東北大〕

高品質β-Ga₂O₃単結晶育成のための AI計算を用いた新規ルツボフリー結晶成長法の開発 情報共有連携

受動素子領域 4 テーマ	
水野教授 〔 信州大 〕	磁気異方性軟磁性材料を用いた 高周波・電力変換用トランス・インダクタの開発
岡本教授 〔 NIMS,東北大 〕	革新的パワーエレクトロニクスのための 超低損失磁性材料の創成
幅崎教授 〔北大〕	次世代高電力密度パワエレ機器に向けた 高性能コンデンサの研究開発
谷口准教授 〔名大〕	次々世代パワエレ用受動素子の創製に向けた 革新的高誘電率常誘電体の開発