55109[d]
SMIYAIVAERER

&111-3

I1MIYAM I AZEZBER231120
CEVALLERYI)) 1
+ N B iahN S FRRE D)

el A
RRKFE KF GBI PR R Uk

BAXZFh=®E 6F 7 Hh7 I — ik (2020-2023)




(1) 414 I ADEL

2021 AlphaFold

Article

2023 AlphaMissense

with AlphaFold

Highly accurate protein structure prediction

https://doi.org/101038/s41586-021-03819-2  John Jumper**, Richard Evans'*, Alexander Pritzel'*, Tim Green'*, Michael Figurnov'*,
Olaf k 4, Kathryn

U'4, Russ Bates™, Augustin Zidek'*,

Received: 11 May 2021

Accepted: 12 July 2021

Anna ko'#, Alex Bridgland'*, Clemens Meyer'*, Simon A. A. Kohl"*,
Andrew J. Ballard"*, Andrew Cowie', Bernardino Romera-Paredes'*, Stanislav Nikolov'*,

RESEARCH

RESEARCH A

MACHINE LEARNING

LE

Accurate proteome-wide missense variant effect
prediction with AlphaMissense

Jun Cheng*, Guido Novati, Joshua Pant, Clare Bycroft{, Akvilé Zemgulytét, Taylor Applebaumt,
Alexander Pritzel, Lai Hong Wong, Michal Zielinski, Tobias Sargeant, Rosalia G. Schneider,
Andrew W. Senior, John Jumper, Demis Hassabis, Pushmeet Kohli*, 2iga Avsec*

Published online: 15 July 2021

Open access

‘™ Check for updates

Rishub Jain'#, Jonas Adler', Trevor Back', Stig Petersen', David Reiman', Ellen Clancy’,

Michal Zielinski', Martin Stei %, Michalina Pacholska', Tamas k 1,

Sebastian Bodenstein', David Silver', Oriol Vinyals', Andrew W. Senior’, Koray Kavukcuoglu',
h Kohli' & Demis | g™

Proteins are essential to life, and understanding their structure can facilitate a
mechanistic understanding of their function. Through an enormous experimental
effort"™, the structures of around 100,000 unique proteins have been determined®, but
this represents a small fraction of the billions of known protein sequences®’. Structural

The vast majority of missense variants observed in the human genome are of unknown clinical significance. We
present AlphaMissense, an adaptation of AlphaFold fine-tuned on human and primate variant population
frequency databases to predict missense variant icity. By ini context and
evolutionary conservation, our model achieves state-of-the-art results across a wide range of genetic and
experimental benchmarks, all without explicitly training on such data. The average pathogenicity score
of genes is also predictive for their cell iality, capable of i short essential genes that existing
isti pp are to detect. As a resource to the community, we provide a database
of predictions for all possible human single amino acid substitutions and classify 89% of missense variants as
either likely benign or likely pathogenic.

progress'®™

coverage is bottlenecked by the months to years of painstaking effort required to
determine asingle proteinstructure. Accurate computational approaches are needed
toaddress this gap and to enable large-scale structural bioinformatics. Predicting the
three-dimensional structure thata protein will adopt based solely on its amino acid
sequence—the structure prediction component of the ‘protein folding problem™—has
been animportant open research problem for more than 50 years®. Despite recent

, existing methods fall far short of atomic accuracy, especially when no
homologousstructureis available. Here we provide the first computational method
thatcanregularly predict protein structures with atomic accuracy even in cases in which
nosimilar structure is known. We validated an entirely redesigned version of our neural
network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein
Structure Prediction (CASP14)", demonstrating accuracy competitive with
experimental structures inamajority of cases and greatly outperforming other
methods. Underpinning the latest version of AlphaFold is anovel machine learning
approach thatincorporates physical and biological knowledge about proteinstructure,
leveraging multi-sequence alignments, into the design of the deep learning algorithm.

The development of computational methods to predict
three-dimensional (3D) protein structures from the protein sequence
has proceeded along two complementary paths that focus oneither the
physicalinteractions or the evolutionary history. The physical interac-
tion programme heavily integrates our understanding of molecular
driving forcesinto either thermodynamic or kinetic simulation of pro-
tein physics™ or statistical approximations thereof"”. Although theoreti-
cally very appealing, this approach has proved highly challenging for
evenmoderate-sized proteins due to the computational intractability
of molecular simulation, the context dependence of protein stability
and the difficulty of producing sufficiently accurate models of protein
physics. The evolutionary programme has provided an alternative in
recentyears, in which the constraints on proteinstructureare derived
from bioinformatics analysis of the evolutionary history of proteins,
homology to solved structures'" and pairwise evolutionary correla-
tions? 2, This bioinformatics approach has benefited greatly from

the steady growth of experimental protein structures deposited in
the Protein Data Bank (PDB)’, the explosion of genomic sequencing
and the rapid development of deep learning techniques to interpret
these correlations. Despite these advances, contemporary physical
andevolutionary-history-based approaches produce predictions that
arefarshort of experimental accuracy in the majority of cases in which
aclose homologue has not been solved experimentally and this has
limited their utility for many biological applications.

Inthis study, we develop thefirst, to our knowledge, computational
approach capable of predicting protein structures to near experimental
accuracy inamajority of cases. The neural network AlphaFold that we
developed was entered into the CASP14 assessment (May-July 2020;
entered under the team name ‘AlphaFold2’ and acompletely different
model from our CASP13 AlphaFold system'®). The CASP assessment is
carried out biennially using recently solved structures that have not
beendepositedinthe PDB or publicly disclosed so that itis ablind test
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enome sequencing has revealed exten-
sive genetic variation in human popula-
tions (I-3). Missense variants are genetic
variants that alter the amino acid se-
quence of proteins. Pathogenic missense
variants severely disrupt protein function and
reduce organismal fitness, whereas benign
missense variants have limited effects. Of the
more than 4 million observed missense var-
iants, only an estimated 2% have been clinically
classified as pathogenic or benign. Classifying
the remaining variants of unknown signif-
icance is an important ongoing challenge in
human genetics (3). Lack of accurate mis-
sense variant functional predictions limits
the diagnostic rate of rare diseases, as well as
the development or application of clinical treat-
ments that target the underlying genetic
cause. Although multiplexed assays of variant
effect (MAVESs) systematically measure pro-
tein variant effects (4) and can accurately
predict the clinical outcomes of variants (5), a
proteome-wide survey of variant pathogenic-
ity remains incomplete because of the cost and
labor required for MAVE experiments (6).
Machine learning approaches could close
this variant interpretation gap by exploiting
patterns in biological data to predict the path-
ogenicity of unannotated variants. Machine
learning methods follow four broad strategies.
The first class of methods train directly on
human-curated variant databases (7-10), there-
by leveraging prior knowledge to inform the
status of unannotated variants. Such strategies
will inherit biases from the human curators
and previous in silico predictors, and they are
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prone to leaking data between training and
test splits ().

To overcome such circularity, the second
class of methods train with weak labels that do
not depend on human classification (12, 13). In
the training data, “benign” variants are de-
fined as variants frequently observed in human
or other primate species. The “pathogenic”
class is approximated with hypothetical var-
iants unobserved in the human population.
Such an approach represents a promising di-
rection to mitigate potential human curation
biases. However, because the training data
contain many false labels, such models re-
quire evaluation on more-reliable labels to as-
sess their true performance.

A third class of methods avoid training on
variant annotations directly and instead use
unsupervised approaches to model the dis-
tribution of amino acids at a given sequence
position conditioned on an amino acid se-
quence context (14-16). Recently, deep learning
models that learn high-order dependencies
between amino acids from protein sequences,
such as autoencoders or language models, have
achieved strong performance (17-19). In such
models, pathogenicity is interpreted as the
difference in predicted log-likelihood between
reference and alternate sequences. Although
such models effectively capture the distribu-
tion of naturally evolved sequences, they lack
the state-of-the-art understanding of protein
structure achieved by AlphaFold (AF) (20, 21).

A fourth strategy is to exploit protein struc-
ture to reason about pathogenicity, as the
structural context of an altered amino acid
provides crucial information to interpret its
effects on the protein. Initial explorations with
predicted protein structures showed promise
(22, 23), and estimates of genetic evolutionary

Cheng et al., Science 381, eadg7492 (2023) 22 September 2023

constraint have been aided by predicted pro-
tein structures (24). Although this strategy has
improved genetic constraint quantification,
using this approach for pathogenicity predic-
tion directly has shown only moderate per-
formance on ClinVar variants (24), likely because
of low genetic diversity observed in current
human sequence databases.

AF has recently shown that highly accurate
protein structures can be predicted at scale
using protein sequences as input (21, 25). Such
protein structure models may act as founda-
tions for understanding other aspects of pro-
tein biology, such as variant pathogenicity.
Although AF is largely insensitive to input se-
quence variation and cannot accurately predict
structural changes upon point mutation (26),
we hypothesized that AF’s intrinsic under-
standing of multiple sequence alignments
(MSAs) and protein structure provides a val-
uable starting point for models directly pre-
dicting the pathogenicity of missense variants.

Here, we present AlphaMissense, which
combines the following elements of existing
strategies: (i) training on weak labels from
population frequency data, avoiding circular-
ity by not using human annotations; (ii) incor-
porating an unsupervised protein language
modeling task to learn amino acid distribu-
tions conditioned on sequence context; and
(iii) incorporating structural context by using
an AF-derived system. We achieve state-of-
the-art predictions in clinical annotation,
de novo disease variants, and experimental
MAVE benchmarks, without explicitly train-
ing our model on such data. We predict and
characterize the pathogenicity of all single
amino acid substitutions in the human pro-
teome and make these predictions available to
the community.

AlphaMissense: Fine-tuning AlphaFold for
variant effect prediction

AlphaMissense takes as input an amino acid
sequence and predicts the pathogenicity of all
possible single amino acid changes at a given
position in the sequence. AlphaMissense lever-
ages two key capabilities of AF: its highly
accurate model of protein structure and its
capacity to learn evolutionary constraints from
related sequences (21). Accordingly, the imple-
mentation of AlphaMissense closely follows
that of AF, with minor architectural differences
(Fig. 1and fig. S1; and see methods in the sup-
plementary materials). Notably, AlphaMissense
does not predict the structural changes of the
mutated amino acid sequences but instead
predicts pathogenicity as scalar values.
AlphaMissense is trained in two stages. In
the first stage, the network is trained like AF
to perform single-chain structure prediction
(AF pretraining) along with protein language
modeling by predicting the identity of the
amino acids masked at random positions in
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