

## 2050年を見据えた

「シン・ニッポンイノベーション人材戦略」

(案)

※本資料における、「イノベーション人材」の定義 研究者、技術者、研究マネジメント人材、リーダー人材等、 社会の中で新しいアイデアや価値を創り出す人材や、 そうした人材を創り出す教員・サイエンスコミュニケータ等の総称

### 我が国のイノベーションに係る "背景"

### 人口動態の状況

- 少子高齢化による深刻な労働 人口の低下 (2025年: 7,170万人 ⇒2045年: 5.584万人)
- 2026年以降、大学進学者数の低下(2026年:約65万人⇒2040年:約51万人)



### 相対的な地位の状況

- ・世界各国のGDPは、中国が今後も成長が続くほか、インド等の新興国において急成長の予測
- ・これに対して、**日本では人口減少の影響か ら低成長が続く見通し**



#### 社会変化の加速

- 災害激化、国際枠組の変化等、既存パターンの繰り返しでは 乗り切れない時代
- ・生成AI等の開発・活用が活発化する中、AIが出す情報の真 偽判断、人間が AI に勝る部分やAIを管理監督する力の分 析・強化が不可欠
- ・各国科技政策の安全保障化 (Securitization) \*が指摘される 通り、国際連携における透明性・健全性が不可欠になり、同志 国間・同盟国間での連携強化が一層意味を持つように
- \* OECD Science, Technology and Innovation Outlook 2023
- 市場のグローバル化による、社員のグローバル化及びジョブ型雇用化の進展
- 世界が「多様」を重視する中、我が国は「同様」「同調」を重視する傾向

### 社会が求めるものの変化

 経済成長と同時に、QOL向上 や、科学的・文化的価値創出な どを通じたWell-Beingの達成 も訴求



### 研究力・技術力・起業力の現状

- 近年、国費の投資は増加する一方、論文指標が相対的に低下傾向
- •技術革新指数(2023,WIPO)13位、「創造的な成果」や「制度・機関」の評価の低さが顕著
- ・米国や中国でスペースXやバイトダンスなどユニコーン(時価総額10億 ドル以上の新興企業)が創出される一方で、日本では稀有





### 我が国のイノベーションに係る

### 次世代人材の進路選択

※高校牛以下

- (アンコンシャスバイアス等の影響により)理系を 目指す女子が少しずつ増えてきているものの、依 然として男子に比べ少ない状況が継続
- 理数リテラシーは諸外国と比較して高いが、自然 科学分野に対する進路としての関心は低い傾向
- 特定の分野において突出した意欲・能力を有する 子供の意思・関心・能力等に基づいた学びの機 会が少ない
- ⇒ DXやデジタルツールの活用を通じた、生徒 一人ひとりへの、個別最適で協働的な教育機 会の提供充実など



### 社会的環境

- 慎重な国民性(失敗を恐れリスクを避ける)や、 新卒一括採用の雇用慣行など、社会全体として 新たな技術・発想、イノベーティブな人材の受け 入れ等に不向きな風土
- ⇒ リスクに挑むスタートアップ育成の機運醸成や、 国際的な人材獲得競争激化に伴う通年採用の 拡大など



### イノベーション人材をとりまく状況

#### ①博士人材の現状

- 修十課程修了者の博十課程進 学率が減少傾向 ⇒直近は増
- アカデミアでは博士号は高い評価、 それ以外で、博士号を持つ「価 値」が正当に評価されにくい

- ②ポスドク・若手人材の雇用の安定性、研究環境 アカデミアにおける任期なし若手ポストの不足
- 任期なし教員ポストのシニア化
- 若手研究者等を巡る窮状に対する社会的認知度に呼応 した、長期的安定的な視点での諸施策の展開など

## ⇒ スタートアップを始めとする企業での博士人材の活躍拡大など

#### ③流動性・外向き志向

- 年功序列・終身雇用を前提とした人事制度
- ジェンダー・ギャップの継続(大学の執行部など)
- ・留学に興味を持つ機会や留学に関する情報の不足、語学力や経済的負担、留年や就職への不安
- ・武者修行・海外経験をする学生・若手人材が減少(キャリアのステップアップに繋がらないことも一因)
- アカデミック・インブリーディング(自校の大学出身の教員を優先的に雇用するという意味)
- ⇒ ジョブ型雇用や個人の働き方の価値観が多様化する中、若手の転職に対する肯定的意識 向上など

### 社会的コミュニケーションの変質

- SNSの活用などによりコミュニケーションの在り方が変 質するとともに、大量の情報が迅速に流れるとともに、 正しい情報を見極めるとともに、「疑問を持ち、議論 していくカ」が一層重要
- 日常生活や社会の基盤となり得る最先端の科学 急速に高度化・複雑化してきたことに伴い、社会に とって近くて遠い存在になりがち
- ⇒ 場所や環境によらず、誰もが最先端の科学に触 れられる機会の増大、「人と人のつながり」や、直接、 本物に触れるリアルな経験を通じた、感性・感覚の 醸成など



### 我が国が目指す国家像と、そのために必要なイノベーション人材(大方針)

科学技術 イノベーション人材政策 により我が国が目指す 国家像とは



未来社会デザインからのバックキャストなどを通じ、複雑化・多様化する課題の解決を行い、持続可能な社会が実現した国家



人口減・国際競争の激化の中で、 イノベーションによる変革を通じて 経済成長し続ける国家



QOL向上や科学的・文化的価値 創出などを通じたWell-Beingが 達成された国家



### こうした国家の実現のためには

イノベーションを生み出す力を持つ人材(イノベーション人材: 研究者、技術者、研究マネジメント人材、リーダー人材等社会の中で新しいアイデアや価値を創り出す人材や、そうした人材を創り出す教員・サイエンスコミュニケータ等の総称)を確保・育成するとともに、その活躍を促進するための仕組みの構築・環境の醸成が必要

### 【イノベーションを生み出すために必要な3つの力】

~1人が3つ全ての力を持つわけではなく、それぞれの力を持つ多様な人材のチーム力として発揮~



- 俯瞰的・統合的(インテグレーション)視点を持ち、
   問題発見・課題解決し、価値創造に向けてデザインする力
- 高いコミュニケーション力を 発揮し、国内外の多様な 人的ネットワークを築き、グローバルに活躍できる力



自らの「強み(専門)」を 持ち、最大限発揮する力 (specialty)



広範な知識や経験を持ち、 それらを多様な場面で有効 活用する力(generality)
創造性を駆使して、果敢に 粘り強くチャレンジし、やり遂 ばる力

個々人が持つそれぞれの1~3の力(ポテンシャル)を引き出し循環させ 社会全体の総合力として最大化させる仕組みの構築・環境の醸成。

### シン・ニッポンイノベーション人材戦略

## 0 イノベーション人材と「ともにある(collaborative)」社会の実現

- 思い込みや偏見の打破、多様性に対する社会受容性、高い専門性や能力を認め合う倫理観(社会全体の意識改革に繋がる動機付け)
- 相手が自分と似ているかどうかにこだわることなく、DE & I (ダイバーシティ・エクイティ&インクルージョン) すなわち相手の違うところを互いに活かしあうということが当たり前の社会

- 成果の共有・発信に留まらない科学コミュニケーション
- 社会(=身近なこと)と科学(=専門知識)とを繋ぐ共感力の醸成、科学に対する社会からの信頼構築、ELSI/RRIの実践
- ・オーディエンスドリブン(あこがれや夢を実現する「道 具」としての科学)による無関心層の取り込み
- ・地域・社会課題の解決に資する科学コミュニケーションを通じた共創社会の形成
- 地球規模の視座に立ったアイデア
- ・調整・実践

- 誰もが持つことが期待される科学リテラシーの強化。
  - ソーシャルメディア時代における、『身近な』コミュニケーターの活躍(専門家によるコミュニケーションとの役割分担)
  - 受動的メディア(TV等)を通じた、関心の有無によらず、誰もが共有できる日常的な科学 (イノベーション)の存在の浸透



### 1 次世代育成

地域社会全体(学校・大学・国研・企業・科学館、地域の多様な人材との交流等)での、子供たちの学びを「支える」環境・仕組みの醸成



文系・理系といった枠にとらわれず、問題発見から価値創造に繋げる"素養"となるサイエンス/エンジニアスキルの土壌を耕す探究・社会をデザインする基盤力としてのSTEAM教育の充実

- スキル(意識)としてのアント レプレナーシップや科学と社会 を繋ぐコミュニケーション能力の、 早期からの修得促進
- 多様な能力を認め合い協働 する力の醸成
- 留学等国際経験の充実



特定の分野に優れた意欲・能力を持つ児童生徒の能力をさらに伸ばす取組推進と、その層の拡大



### シン・ニッポンイノベーション人材戦略

## 2 抜本的強化

- イノベーション活動の中核を担う博士課程学生や若手・女性研究者、技術者、マネジメント人材などのサイエンス/エンジニアリング力の強化 (研究環境整備、処遇向上、多軸の指標による評価等)
  - •「博士人材活躍プラン」の実践と同プランの実効性のさらなる向上(目標設定など)
  - ポスドクの力を最大限活用(キャリアパスの多様化等)
  - ・研究開発マネジメント人材(URAなど、研究開発活動の企画・マネジメントや研究成果の活用促進を担う高度専門人材)や技術職員 の活躍促進を通じた研究開発成果の最大化
  - ・DX、AI時代における科学技術の高度化を踏まえ、従来の枠に留まらず、高い倫理観と構想力により、新たな知をアーキテクト思考で社会に実装することが出来る技術者(リサーチエンジニアなど)の活躍促進
  - グローバル社会においてエンジニアに求められる国際基準や社会からの要請を踏まえた、 高度な専門職として位置付けられている技術者(「技術士」など)の継続的な資質能力向上







### 流動性確保·好循環

高度専門人材が、組織を超えて自身の能力を活性化させ、キャリアをステップアップできる雇用の流動性と安定性の両立



■ 国籍、性別、組織、分野等の壁を超え、「知」や「人材」のアジャイルな連携を通じた、異分野融合や機動的なチーム形成の促進

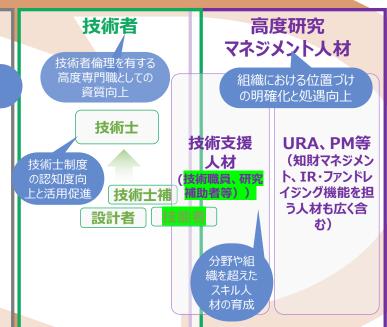


- 国際頭脳循環の活性化
  - 将来的にも有益な早い段階からの人的ネットワーク構築に資する学生・ 大学間交流促進
  - ・留学・海外研鑽等を通じた、グローバルに活躍できる若手研究者育成
  - ・人口減少や人材獲得競争下における、戦略的な海外の優秀人材の受入れ・活躍促進
  - 海外在住の優秀人材を包含した国際頭脳ネットワークの獲得
  - ・グローバル人材の社会での活躍を促進する環境構築(留学経験者の積極採用や国籍にとらわれない採用など産業界との 連携、入管政策等)
  - ・先端・重要分野での戦略的なネットワーク強化、 個が持つ点としての人的ネットワークを面として拡大し活性化

### イノベーション人材の目指すべき理想像

女性研究者のライフイベント との両立、上位職登用

戦略性を持った 国際頭脳循環


(女性研究者、外国人研究者)

### 研究者 教授<mark>等シニアPI</mark> 国家戦略的分野の 国内外、産学官の 研究者育成 流動性向上 若手PI 独立した研究環境や 不安定な身分 安定ポストの確保 からの脱却 ポスドク人材

多様な リーダー人材

> 諸外国では多数の 博士人材が活躍

- 経営層とそれを支える管 理職(企業、大学、国立 研究開発法人等)
- 行政官(国、地方)
- 国際機関職員
- スタートアップ(CTO 等)



来印は、研究者、技術者等の「枠」が固定しているものではなく、それぞれの 選擇を越えて人材が行き接しながら、全体として循環するイメージを国示

JEL ケーター等 博士人材が

教員

サイエンス

活躍できる 魅力的キャリ アヘ

修士からの博士進学を 促す経済的支援

博士後期課程学生 ~能力深化・多様化・可視化、社会での活躍促進~

多様なキャリアパス 拡大と柔軟な キャリアチェンジの推進

学部・博士前期課程(修士)学生 ~広く深い学識の習得~

小中高校の児童生徒 ~<mark>好奇心に基づく探究力や</mark>アントレプレナーシップ、卓越した才能の伸長(STEAM教育)

次世代の人材育成



● 優秀な若者が、アカデミア、産業界、行政など様々な分野において活躍できる展望が描ける環境の中、経済的な心配をすることなく、自らの人生を賭けるに値するとして、誇りを持ち博士後期課程に進学し、挑戦に踏み出す。



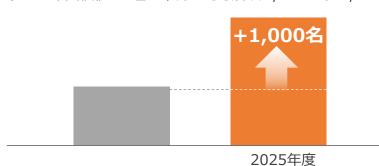
### 科学技術・イノベーション政策において目指す主要な数値目標(主要指標)

### 生活費相当額程度を受給する 博士後期課程学生

✓ 優秀な博士後期課程学生の処遇向上に向けて、 2025年度までに、生活費相当額を受給する後期 課程学生を従来の3倍に増加。

(修士課程からの進学者数の約7割に相当)




2025年度

✓ また、将来的博士に、希望する優秀な博士後期課程学生全でが生活費相当額を受給。

### 産業界による理工系博士号 取得者の採用者数

✓ 年当たりの採用者数について、2025年度までに 約1,000名増加

(2018年実績値は、理工系博士号取得者4,570人中 1,151人)

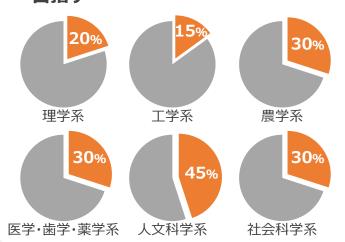




- 基礎研究・学術研究から多様で卓越した研究成果の創出と蓄積が進むとともに、これを可能とする研究者に対する切れ目ない支援が実現する。
- ダイバーシティが確保された環境の下、個々の研究者が、腰を据えて研究に取り組む時間が確保され、自らの専門分野に閉じこもることなく、多様な主体と活発な知的交流を図り、海外研さん・海外経験の機会も通じて、刺激を受けることにより、創発的な研究が進み、より卓越性の高い研究成果が創出される。



### 科学技術・イノベーション政策において目指す主要な数値目標(主要指標)

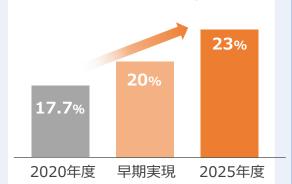

## 40 歳未満の 大学本務教員の数

✓ 我が国の研究力強化の観点から、 基本計画期間中に1割増加し、 将来的に、大学本務教員に占める40歳未満の教員の割合が3 割以上になることを目指す。



### 大学における女性研究者の 新規採用割合

✓ 2025年度までに各分野で以下割合を 目指す




### 大学教員のうち、教授等※ に占める女性割合

※学長·副学長·教授

✓ 早期に20%、2025年度 までに23%

(2020年度時点、17.7%)



### 「博士人材活躍プラン〜博士をとろう〜」(令和6年3月博士人材の社会における活躍促進に向けたTFとりまとめ)で設定した指標

8

博士人材活躍ブラン ~博士をとろう~

# 指標

KPI

#### アウトプット

#### 大学院教育の充実

- ・社会で広く活用できる汎用的なスキル (トランスファラブルスキル) の教育を実施 39% (2020年) → 80% (2030年)
- ・学外との連携により教育カリキュラムを構築 27% (2020年) → 50% (2030年)
- ・外国の大学等での教育研究の機会の提供 29% (2020年) → 60% (2030年)
- ▼ 実現に向け、世界トップレベルの大学院教育を行う 拠点形成を促進

#### 博士後期課程学生への支援

#### 2018年度比 3倍 (2025年)

- ✓ 大学や民間団体の給付型奨学金等を含む
- ✓ 社会人で生活費相当額以上の給与のある者等以外の者に対する 生活費相当額を支給

#### キャリア形成支援

- ・ジョブ型研究インターンシップ登録学生数 483人 (2022年) ⇒ 5,000人 (2030年)
- ・SPRING採択校における ジョブ型研究インターンシップの利用 15% (2022年) → 100% (2030年)

#### 博士課程へ進学する者の増加、多様なキャリアパスの意識の醸成

#### アウトカム

学士号取得者に対する 博士号取得者の割合

2.7% (2020年) → 5% (2030年)

→ 8% (2040年)

#### 博士後期課程学生の就職率

70% (2023年) → 75% (2030年)

→ 80% (2040年)

※分野毎の就職率で最も高い保健分野の就職率は約80%であり、またSPRING支援者の就職率も約80%となっており、全体の就職率を同様の水準まで引き上げる。

※学校基本調査において、就職者以外の者には、博士課程修了後に留学や進学をした者、選学・就職の準備をしている者、雇用契約期間が一年未満又は非常勤め労働者、 後の状況が把握できない者をどが含まれる。多様なキャリアパスに関する意識の 顧成に加え、大学は博士課程修了者の進路状況を正確に把握することも求められる。 文部科学省総合職採用者数に占める 博士課程修了者の割合 (3か年平均)

10.8% (2022~2024年の平均)

→ 今後も更なる増加を目指す

大目標

2040年における人口100万人当たりの博士号取得者数を世界トップレベルに引き上げる(2020年度比約3倍)