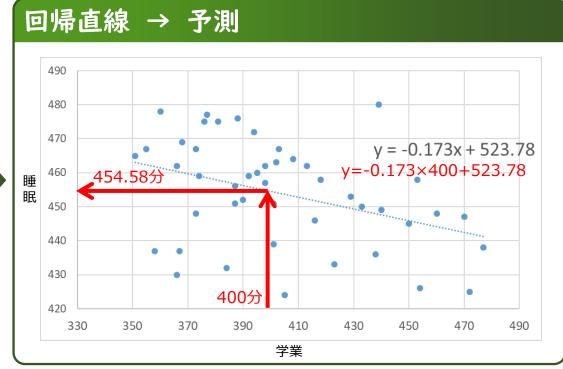
情報とデータサイエンス

重回帰分析を用いた予測

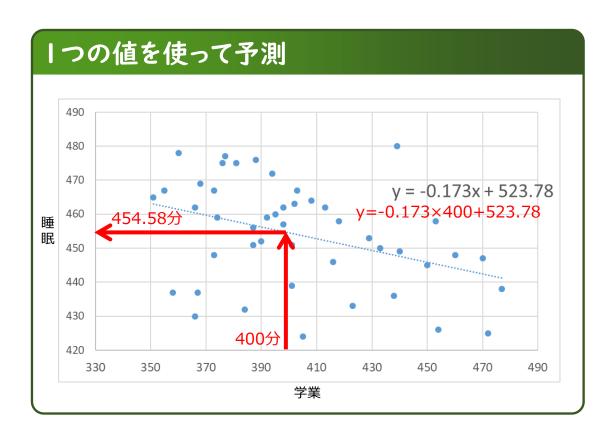
睡眠時間を他の行動時間から予測しよう

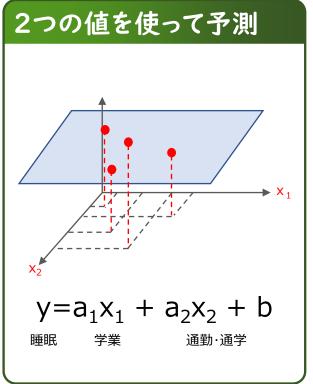

情報しで学んだこと

单回帰分析

データ

地域区分	睡眠	学業
01_北海道	467	355
02_青森県	469	368
03_岩手県	458	453
04_宮城県	448	373
05_秋田県	467	373
06_山形県	477	377
07_福島県	436	438
08_茨城県	456	387
09 栃木県	472	394


学習時間以外のデータも使えたら・・・


睡眠時間を予測するために、 学業の時間だけでなく他の時間も使うことはできないか?

例) 通学時間、買い物、休息・・・など

	社会生活基本調査 1表 曜日,男女,				 年齢,行動の種類別総	_ 平均時間(10歳以上)-	- 全国,都道府県				
					総平均時間	総平均時間	総平均時間	総平均時間	総平均時間	総平均時間	総平均
					行動の種類	行動の種類	行動の種類		行動の種類	行動の種類	行動の
					04 848		A±	0.4 \7.884 \7.334	or // =		07.5
					01 <u>睡眠</u> (分)	02 <u>身の回りの用事</u> (分)	(分)	04 <u></u> 通勤・通学 (分)	05_仕事 (分)	06_学業 (分)	07 <u></u> 寶 (分)
R .	■ 地域区分 ■	男女	エスマートフェ	年齢 4	-	-	-	-		- (7)7	- 1777
8	01_北海道	0_総数	0_総数	02_15~19歳	467	72	74	62	41	355	5
平日	02_春森県	10 多公进行	0_総数	02_15~19歳	469	71	90	53	34	368	3
平日	03 岩手県	0_総数	0 系数类析	02_15~19歳	458	69	76	53	47	453	3
平日	04_宮城県	0_総数	0_A総要女 0_A総要女 0_A総要女	02_15~19歳	448	75	80	72	44		
平日	05_秋田県	0_総数	0_総数	02_15~19歳	467	61	84	45	29	373	3
平日	06_山形県	0_総数	0_総数	02_15~19歳	477	74	83	52	43	377	7
平日	07_福島県	0_総数	10 総数	02_15~19歳	436	60	87	64	41	438	3
中日	08_茨城県	0_総数	0_総数	02_15~19歳	456	88	76	71	31	387	1
平日	09_栃木県	0.総数 0.総数 0.総数 0.総数 0.総数 0.総数 0.総数 0.総数	0_総数 0_総数	02_15~19歳	472	66	82	69	46	394	4
平日	10_群馬県	0_総数	0_総数	02 15~19歳	457	74	78	69	41	398	3

2つの値を使って予測する

さらに多くの値を使って予測する

図として表すことはできないけれど、 同じような考え方を使って予測をする。

	1	2	3	4	5	6	7	8	9	10	11
1	地域区分	睡眠	身の回りの	食事	通勤•通学	仕事	学業	家事	買い物	移動(通勤	テレビ
2	01_北海道	467	72	74	62	41	355	5	3	19	
3	02_青森県	469	71	90	53	34	368	0	0	13	
4	03_岩手県	458	69	76	53	47	453	5	3	8	
5	04_宮城県	448	75	80	72	44	373	3	3	7	
6	05_秋田県	467	61	84	45	29	373	4	6	13	
7	06_山形県	477	74	83	52	43	377	4	5	6	
8	07_福島県	436	60	87	64	41	438	7	2	15	
9	08_茨城県	456	88	76	71	31	387	6	6	18	
10	09_栃木県	472	66	82	69	46	394	13	12	9	
11	10_群馬県	457	74	78	69	41	398	7	7	12	
12	11_埼玉県	439	83	91	80	31	401	5	3	12	

 $y=a_1 \times$ 学業 + $a_2 \times$ 通勤·通学 + $a_3 \times$ 食事 + ··· + b(分)

Pythonを使って重回帰分析をしてみよう

重回帰分析の流れ

- 1 予測に必要なデータを収集する
- ② 分析できるようにデータを整形する
- ③ 重回帰分析をして、モデルを作成する
- 4 作成したモデルを用いて予測する

<mark>import pandas as pd</mark> pandasというライブラリを使えるようにする

df = pd.read_csv('shakai.csv')
引数のファイル名のcsvファイルをpandasで読み込む

df.head() 変数dfに格納されているデータの最初の5件を表示する

```
X = df[['学業']]
```

X.head()

説明変数として「学業」を設定し、最初の5件を表示する

```
y=df[['睡眠']]
y.head()
```

目的変数として「睡眠」を設定し、最初の5件を表示する

from sklearn.linear_model import LinearRegression model = LinearRegression() 線形回帰モデルを使えるようにする

model.fit(X, y) 変数Xを説明変数、変数yを目的変数として、回帰分析を行う

print(model.intercept_, model.coef_)
回帰分析の結果として得られる
切片(定数項)と説明変数の係数を出力する

X_yosoku = pd.DataFrame([[400]], columns = ['学業'])
model.predict(X_yosoku)
学業の時間を400分として、回帰式にあてはめて睡眠時間を
予測する

回帰式で求めると

 $y = -0.17300592 \times 400 + 523.77740922$

y = 454.57504 | 68 [分]

```
X2=df[['学業', '通勤・通学', '休養・くつろぎ', '趣味・娯楽']]
X2.head()

説明亦数として「学業」「活動・通学」「仕美・ノってギ
```

説明変数として「学業」、「通勤・通学」、「休養・くつろぎ」、 「趣味・娯楽」を設定し、最初の5件を表示する

```
y=df[['睡眠']]
y.head()
目的変数として「睡眠」を設定し、最初の5件を表示する
```

```
from sklearn.linear_model import LinearRegression
model2 = LinearRegression()
model2.fit(X2, y)
print(model2.intercept_, model2.coef_)
```

単回帰分析:説明変数X (Iつの項目)

重回帰分析:説明変数X2(複数の項目)

とした以外は同じ

係数の読み取り

print(model2.intercept_, model2.coef_)

[612.39863457]: 定数項(切片)

[[-0.23689623 -0.54526488 -0.16213081 -0.10581234]]
「学業」が | 分増えると「睡眠」が「0.23689623」分減る

「<mark>通勤・通学</mark>」、「<mark>休養・くつろぎ</mark>」、「<mark>趣味・娯楽</mark>」についても 同様に変化する

```
X2_yosoku = pd.DataFrame([[400, 70, 135, 40]], columns = ['学業', '通勤・通学', '休養・くつろぎ', '趣味・娯楽']) model.predict(X2_yosoku) 学業を400分、通勤・通学を70分、休養・くつろぎを135分、 趣味・娯楽を40分として、回帰式にあてはめて睡眠時間を予測する
```

回帰式で求めると

```
y = -0.237 \times 400 -0.545 \times 70 -0.162 \times 135 -0.106 \times 40 + 612.399 y = 453.3[分]
```

係数から傾向を読み取ることは注意

重回帰分析をしたときに求まるcoef_の値(係数)

[[-0.23689623 -0.54526488 -0.16213081 -0.10581234]]

多重共線性に注意!

説明変数間に相関が強いものがあるときに起き、係数が安定しなくなる

質的データも使って予測するには

ワンホットエンコーディングという方法を使う

「スマートフォン・パソコンなどの使用時間」

列を追加「1~3時間」「3~6時間」「6~12時間」 該当するデータに対して「1」を割り当てる 12時間以上は、追加した項目の値を「0」にする

地域区分	スマートフォン・ パソコンなどの使用時間	スマートフォン 1~3時間	スマートフォン 3~6時間	スマートフォン 6~12時間	睡眠	
01_北海道	22_1~3時間未満	1	0	0	480	
01_北海道	23_3~6時間未満	0	1	0	439	
01_北海道	24_6~12時間未満	0	0	1	450	
01_北海道	25_12時間以上	0	0	0	389	

こんなことに応用できます

●スポーツの記録を予測

100m走のタイム、ボール投げ、幅跳びの記録などを使って予測

- 農作物の生産量の予測 気温、湿度、日照時間などを使って予測
- アパートの家賃を予測 広さ、築年数、駅からの時間などを使って予測