大規模学術フロンティア促進事業の年次計画

計画名称	高輝度大型ハドロン衝突型加速器((HL-LHC)による素粒-	子実験									
実施主体	【中心機関】 高エネルギー加速器研究機構 【連携機関】 東京大学、筑波大学、早稲田大学、東京工業大学、お茶の水女子大学、東京都立大学、信州大学、名古屋大学、京都大学、大阪大学、神戸大学、九州大学											
所要経費	建設費総額 約 2.140億円 (日本負担分 約 98億円) 年間連用経費 約300~1,000億円/年 (日本負担分 約 5.5億円/年) ※このうち、建設費に係る追加負担(当切計画から増額された約49億円)については、実施機関に対し、 経費の十分な精査及び連携国との交渉や調達に係る効率化を通じた予算縮減並びに本事業予算に限ら ない多様な財滅の確保等の検討を求める。			計画期間	建設期間 2019年度~ 2028年度 運転期間 2028年度より運用開始(以後10年間運転予定(2028年度は調整運転)、フロンティア事業としての運転は2028年度まで) (評価実績: 事前評価2018年度)							
計画概要	本計画は、欧州合同原子核研究機 陽子・陽子衝突点のひとつに設置さ 験・CMS実験)で発見されたヒッグス ものとなる。また、本計画により、これ	されるATLAS検出器を設 ス粒子の性質の詳細な	·高輝度化に対応できるよ よ調査を行うことを目的と	ようにアップグレードする。 とする。本計画で得られる	る。これにより、現行のLt る成果は、暗黒物質や暗	LHCよりも広い質量領域 暗黒エネルギーに対す	i域においてより生成確認 する知見を与える可能性	≝率の低い新粒子の探索 ⋮性もあり、素粒子物理学	を可能にすることや暗黒 のみならず宇宙物理学	黒物質の直接生成等をイ タなどの近隣学問分野の	行うこと、2012年にCEF	RN(ATLAS実
研究目標(研究テーマ)	1. LHC高輝度化に向けた装置の建	<u></u> 星設 2. データ収集お	ふよび素粒子物理標準模	・型を超える新たな物理:	法則の探求							
年次計画		2019(R元)	2020(R2)	2021(R3)	2022(R4)	2023(R5)	2024(R6)	2025(R7)	2026(R8)	2027(R9)	2028(R10)	2029 (R11)
1 LHC高輝度化に向けた装置の建設 加速器建設 (CERNがホスト、日本負担分として国際協力)				77	高輝度化に向けた装置	:の建設						
				(電磁石7台	度(2019年度~) 台:〜2026年度) 電源及び高周波発生・タ	分配装置:~2027年/	度)			搬入·設置	調整·試験	
・ビーム分離用電磁石			+	+	+	+	4	4	+		4	
										•	,	
・クエンチ保護用ヒーター電源					ビーム分離り	 用電磁石の製造			,			
・クラブ交差のための高周波発生及び分配装置												期末
							ヒーター	- 〒源及び高周波発生・タ 	分配装置の製造 		*	評価
核出器製造 (様々な検出器を日本の担当部分として製造)			(>!	Jコンピクセル検出器・シ 		製造(2019年度~) コンストリップ検出器・ミューオントリガー検出器(~2026年度))				搬入・割	設置 調整·試験	
へ データ に使 か トパ 主 払 フ 施 び	田上三半十英五川ナ ナカニ で 立てナーナン参加工用ごナ 月川ノ								7			
探求	里標準模型を超える新たな物理法則の										調整運軌	転
・検出器の調整、較正作業を行いけた準備を行う。	い,高統計,高品質のデータ取得に向										-1	>
評価の実施時期		-	_	 -	1 -	進捗評価	-	-	進捗評価	-	-	7
【参考】 計画推進に当たっての留意事項	(進捗評価報告書における留意事項 頁) 国際連携の強化とプレゼンスの コロナ組とウクライナ情勢等によっ や学術的成果を得ることができるよ 2) 経費の効率化と財源の多様化 国際情勢の変化による物価やエネル ともに、連携国との交渉や産業界を 3) 若手人材の育成と多様化の推進計画の遅れによって若手人材のキ・ 4) 成果の可視化と情報発信 計画については公国民の理解を得る 特に、全体計画の遅れに運動した。)向上 フロー フロー フロー フロー フロー フロー フロー フロ	解析の面においても世野市場変動とコスト上昇等 を図ることが必要である はないよう、若手との対話 プの貢献や若手の活躍場	界をリードする成果を創た によって、当初計画よりも 5。 話を促進し、状況把握に努 状況、産業応用につなが	出できるよう努めること 対材料費等の価格上昇か 努めるとともに、研究者。 がった事例等を可視化し	: が望まれる。 が続いており、さらに近 が続いており、さらに近 大材の多様化を推進 し、プレスリリース等を	追加貢献にかかる費用 もするため、海外に比し を通じて積極的に情報系	月負担も求められている。 .て少ない女性研究者の4	。予算の検討にあたって(「は、国際情勢を注視した		