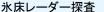
南極地域観測第X期6か年計画 概要

貝科2一1 南極地域観測統合推進本部 第49回観測•設営計画委員会 R4 6 17

南極地域観測第X期6か年計画(令和4年(2022)~令和10年(2028)年)では、重点研究観測メインテーマ「過去と現在の南極から探る将来の地球環境システム」を中心に、学術研究の基礎となる観測や社会的要請の高い観測に幅広く取り組み、人類の大きな関心事である気候変動の理解と社会的課題の解決の双方に貢献することを目指す観測計画とする。 また、観測計画を支える着実な設営計画の遂行と効率的な観測推進基盤の運用を重視するとともに、社会との連携強化を推進する。


重点研究観測メインテーマ「過去と現在の南極から探る将来の地球環境システム」

サブテーマ1「最古級のアイスコア採取を軸とした古環境研究観測から探る南極氷床と全球環境の変動」

- ドームふじ近傍の地点において、第2期ドームふじ掘削の72万年や、ドームCで得られた連続コアとして最古の80万年を超える、100万年超の最古級アイスコアの掘削を目指す
- 氷床下の基盤岩の採取、広域にわたる氷床の表面質量収支や流動にかかるデータ取得
- 南極氷床変動復元を目的とした海底堆積物や、陸上・湖底堆積物掘削・氷河地形調査、 さらに棚氷域も含めた広域での国際的な堆積物掘削計画とも連携

⇒過去の南極氷床変動および全球環境変動の理解へ

深層掘削

サブテーマ2「氷床―海氷―海洋結合システムの統合研究観測から探る東南極氷床融解メカニズムと物質循環変動」

- 氷床末端部での融解損失が加速しており、世界の耳目が集まるトッテン氷河域を中心に、東南極氷床の質量損失過程の 詳細と、海洋環境や物質循環への影響の実態を他国に先駆けて解明するため、分野横断的な統合研究観測を実施
- ビンセネス湾(ウィルクスランド沖)およびリュツォ・ホルム湾において、氷河上での直接観測および船上観測を展開
 - ⇒海洋と氷河の物質循環を通して、新たな観測的知見を創出を含む氷床-海氷-海洋相互作用の統合的な理解へ

サブテーマ3「大型大気レーダーを中心とした観測展開から探る大気大循環変動と宇宙の影響」

- 大型大気レーダーを中心とした多角的な複合観測および国際協同観測を中心に、ミューオン計と中性子計を統合した観測やオーロラ撮像システムの多点展開など、宇宙線観測や極冠域でのオーロラ撮像ネットワーク観測を充実化
- 新たな面的観測として、南極上空の風に乗って南極域全域の観測を可能とする気球観測を実施

⇒多角的、面的な観測により、大気大循環の形成・維持・変動の理解へ

昭和基地に設置された 大型大気レーダー(PANSY)

南極だからこそ得られる観測データから、全球の気候変動や氷床変動の過去と現在の現象を読み解く ことにより、将来の地球環境システム(例えば海水準変動)の確実な予測につなげる

南極地域観測第 X 期 6 か年計画 概要

設営計画

(1)昭和基地機能強化とデジタルトランスフォーメーション

- 老朽化した建物の撤去を引き続き進めるとともに、より効率的な観測隊運営を目指し、倉庫棟機能と夏期隊員宿舎機能を併せ持つ新夏期隊員宿舎の建設、新発電棟の建設、発電機の導入など、基地主要部の再構築を視野に入れた大規模な建設計画を進める。
- 新発電棟の建設に合わせ、IT化による基地設備管理を省力化し、**衛星回線を利用したリモート化**により、国内とのより一層の連携を実現する。

(2)内陸観測拠点の整備

- 第3期ドームふじ氷床深層掘削計画では、主に**移動型のモジュールを利用**することで、基地機能の移動を可能にするとともに、撤収までを視野に入れた拠点を建設する。
- 掘削場、氷床コアの保管室と解析室の建設は、雪面にトレンチを利用して最低限の資材での建設することで、隊員の作業負担と環境負荷の低減を図る。
- 従来とは異なる、セール・ロンダーネ山地方面からの輸送ルートを確立し、燃料を中心とした物資の 安定的供給を実現する。

(3)環境負荷低減

- 風力発電システムの実証実験をさらに進め、再生可能エネルギーの積極的利用に向けて取り組む。
- 過去の観測活動によって残された廃棄物埋め立て地は、**汚染拡散防止措置**を積極的に進めるとともに、作業中に掘削される廃棄物の撤去を行なう。
- 南極条約第9条に基づき2019年に発効した措置により、昭和基地における環境モニタリング計画 を作成し、モニタリングを実施する。

内陸観測拠点の居住空間となる予定の南極移動基地ユニット

昭和基地に設置されている太陽光パネル群

観測推進基盤の運用

(1)観測船の運用

南極観測船「しらせ」は昭和基地への輸送を基礎としつつ、各年の観測目的に応じ柔軟かつ機動的な運用を行う。また、「しらせ」では実施できない観測のために別の観測船を運用する。

(2)航空機の利用

夏期活動期間の延長、隊員出張期間の短縮、 観測域の広域化や緊急時の備えとしての航空機 の運用を、国際連携により拡大する。

社会との連携

(1)オープンデータと社会還元

観測事業のオープンデータ化を進め、データ・成果公開等の社会還元を強化する。

(2)民間とのパートナーシップ拡大

昭和基地等の観測事業のプラットフォームを開放する等により、民間とのパートナーシップ拡大を図る。

(3)教育活動と人材育成

学校教育現場と観測現場の連携を深化するとともに、大学院生参加数拡大の方策を講じる。

(4)社会との対話・協働のための双方向コミュニケーション

社会との対話・協働を進めるため、多様なメディア・イベントを通じて国民との 双方向コミュニケーションを図る。 2