昭和63年度 第2次観測ロケット実験計画概要

(昭和64年1~2月)

文部省 宇宙科学研究所 昭和63年11月

目 次

1.	実験実施責任者	 月 1
2.	実験場所	 1
3.	実 験 期 間	 1
4.	警戒の範囲	 2.
5.	実験の要領	 2
6.	報道関係	 4
7.	実験主任	 4
8.	実験の内容	 4

昭和63年度第2次観測ロケット実験計画概要

昭和63年度第2次観測ロケット実験においては、S-310-19号機、S-520-10号機、MT-135-50号機及びM-3SI-4号機の合計4機による観測実験を行う計画で、それぞれの実験目的は次のとおりである。

ロケット	到達高度(km)	水平距離 (km)	全 重 量 (ton)	搭載計器 重量(kg)	観 測 目 的
S-310-19	212	224	0.7	3 9.4	酸素原子密度の測定
S-520-10	2 79	367	2.2	1 0 4.5	近赤外宇宙背景放射の観測
MT-135-50	60	50	0.0 7	4.8	オゾンの観測
M-3 S ∏-4	近地点 270 遠地点 10,000	1,680	6 1.3	294	第12号科学衛星(EXOS - D)によるオーロラ粒子加速 機構の研究

1. 実験実施責任者

宇宙科学研究所長 西 村 純 東京都目黒区駒場 4 - 6 - 1 (TEL 03-467-1111)

.2. 実験場所

宇宙科学研究所鹿児島宇宙空間観測所 東経 131°04'45" 北緯 31°15'00" 鹿児島県肝属郡内之浦町長坪 (TEL 0994-67-2211)

3. 実験期間

昭和64年2月1日(水)~2月28日(日)

各ロケットの実験予定日は次のとおりである。

ロケット	実験予定日	実 験 時 間 帯	延長する場合の期間		
S - 310-19	2月1日(水) 22時00分	2/1~2/5 22:00~22:30 2/6~2/9 23:30~24:00	2月2日~2月9日		
S - 520-10	2月6日(月) 02時00分	2/6~2/9 02:00~02:30 2/10~2/13 01:45~02:15	2月7日~2月13日		
MT-135-50	2月15日水 11時00分	11:00~11:30	2月16日~2月19日		
M-3S∏-4	2月20日(月) 08時00分	補助ブースタ、第1段 08:00~09:00 第2段 08:10~09:10	2月21日~2月28日		

4. 警戒の範囲

陸上における警戒の範囲

別紙(1) S-310-19,S-520-10,MT-135-50号機に適用 陸上及び海上における警戒の範囲

別紙(2) M-3SⅡ-4 号機に適用

海上におけるロケットの落下予想区域

別紙(3) S-310-19 号機に適用

- "(4) S-520-10 号機に適用
- . 〃(5) MT-135-50 号機に適用
 - " (6) M-3SⅡ-4 号機に適用

5. 実験の要領

(1) 実験は天候及び研究上の都合によって延期することがある。延期の理由が天候によるときは、当日できるだけ早く報知する手段(ラジオ等)

を講ずる。

また、研究上の理由によるときは、不測の障害に基づく場合以外はできるだけ前日中に報知する手段 (ラジオ等) を講ずる。

(2) 実験情報の船舶、航空機に対する通報は概略次のとおり行われる。 ア. 一般航行船舶に対しては、海上保安庁からの水路通報、航行警報に よる。

また、共同通信社(海上保安庁提供の航行警報を放送)を通じても行う。

イ. 漁船に対しては、関係漁業無線局からの無線通信のほか、NHK鹿児島・宮崎、南日本放送、宮崎放送、大分放送各局のラジオ放送も行う。

ウ. 航空機に対しては、運輸省航空局からのノータムによる。

- (3) 実験当日は観測所内に黄旗を掲げる。発射30分前に赤旗を掲げサイレンを鳴らす。実験が日没後に行われる時は赤旗のかわりに3個の点滅式赤色ランプをつける。発射3分前に花火1発をあげる。実験終了後は花火2発をあげ、赤旗をおろし、又は赤色ランプを消す。
- (4) 実験当日の警戒は陸上については鹿児島県警察、海上については第十 管区海上保安本部及び鹿児島県に依頼する。その細目は打ち合せの上定 める。

また、航空については鹿児島空港事務所と連絡の上実験を行う。

観測所付近の陸上及び海上については、宇宙科学研究所においても監視員を観測所内に配置し、また、観測所内に設置された海上監視レーダにより警戒にあたる。

実験中は警戒区域内に一般の人が立入らないように立札又は縄張りをする。

- (5) 実験に際しては、鹿児島宇宙空間観測所と鹿児島海上保安部及び鹿児島空港事務所との間に連絡用通信回線を宇宙科学研究所が開設し、連絡にあたる。
- (6) 新東京空港事務所並びに東京、福岡、那覇の各航空交通管制部へ各ロケットの発射 2 時間前及び 3 0 分前に発射時間及び機種を通報する。

6. 報道関係

(1) 報道関係者には、次の日時にロケットを公開して取材の便宜をはかる。

 S - 3 1 0 - 1 9
 1月31日(火)
 12:00~13:00

 S - 5 2 0 - 1 0
 2月4日(土)
 14:00~16:00

 MT-135-50
 2月14日(火)
 12:00~13:00

 M - 3 S II - 4
 2月17日(金)
 12:00~13:00

(2) 実験の結果については、実験終予後実験主任が概略の発表を行う。

7. 実験主任

 S - 3 1 0 - 1 9 号機
 助教授
 中村良治

 S - 5 2 0 - 1 0 号機
 教授
 雛田元紀

 MT - 1 3 5 - 5 0 号機
 助教授
 小山孝一郎

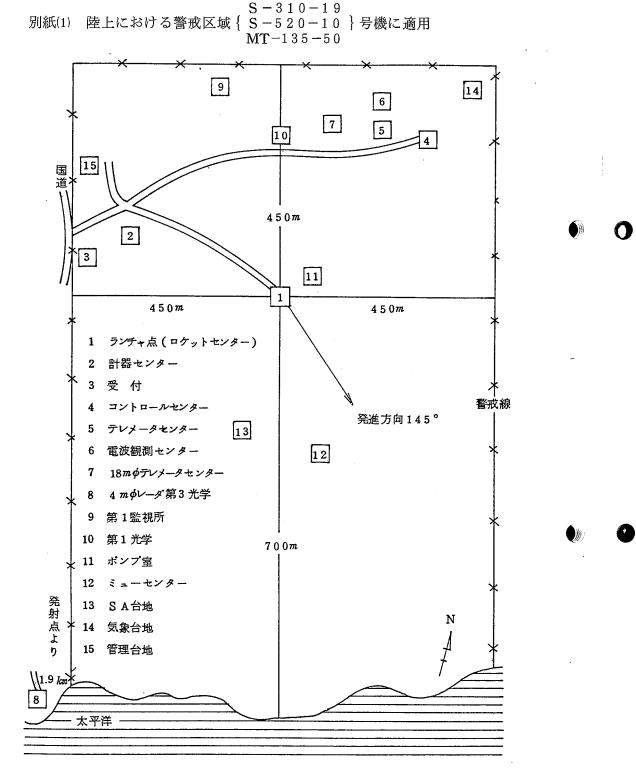
 M - 3 S II - 4 号機
 教授
 松尾弘教

8. 実験の内容

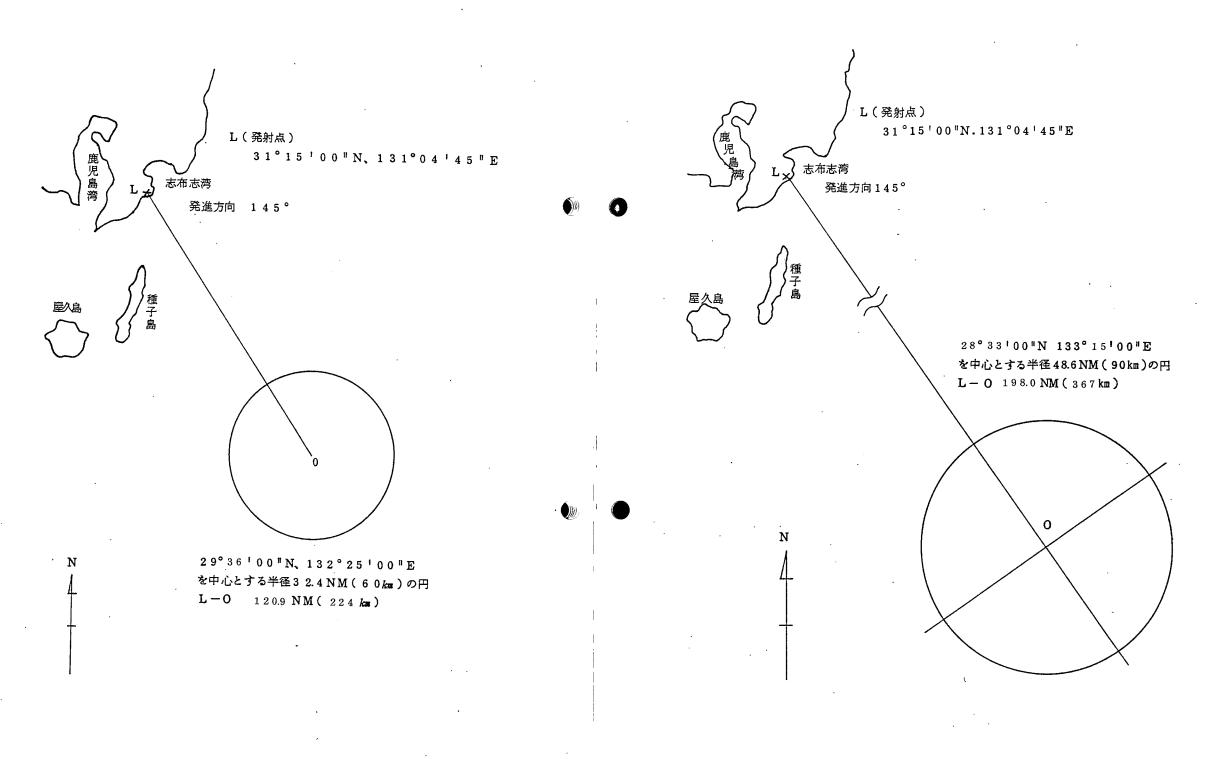
。 S-310-19号機(2月1日(水)22時00分打上げ予定) 熱圏大気の主要成分である酸素原子の密度の高度分布を測定するのが 主目的である。測定方法は共鳴線ランプからの光をロケット周囲の大気 に照射し、それからの共鳴散乱光の強度を計測する直接的手段を始めて 用いる。また、ヘルツベルグ帯の放射計により酸素分子の高度分布の同時観測も行う。観測に不可欠なロケットの姿勢は星センサーにより決定する。

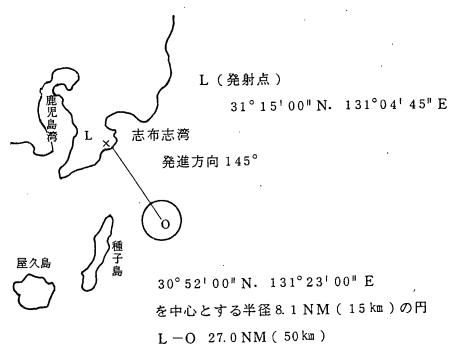
。 S-520-10号機(2月6日(月)02時00分打上げ予定) このロケット実験の目的は、宇宙のはじまりを探るために宇宙背景放 射を近赤外とサブミリ波領域で観測するものである。前者はビックバン 以後はじめて宇宙に星が生れた過程を、また後者は3K背景放射をサブ ミリ波領域で精密に測定することによって、ビックバン以後の宇宙の変 遷を調べようとするものである。このために液体へリウムで冷却した赤 外線、サブミリ波分光器を搭載する。

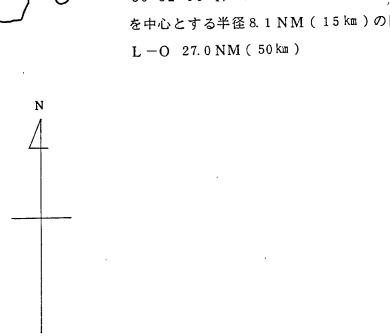
尚、観測器を正確に目標天域に指向し、背景放射の異方性の検出を行うために、ロケットには精密な姿勢制御装置 (CN) が備えられ、実験後それを回収するための回収装置も用意される。

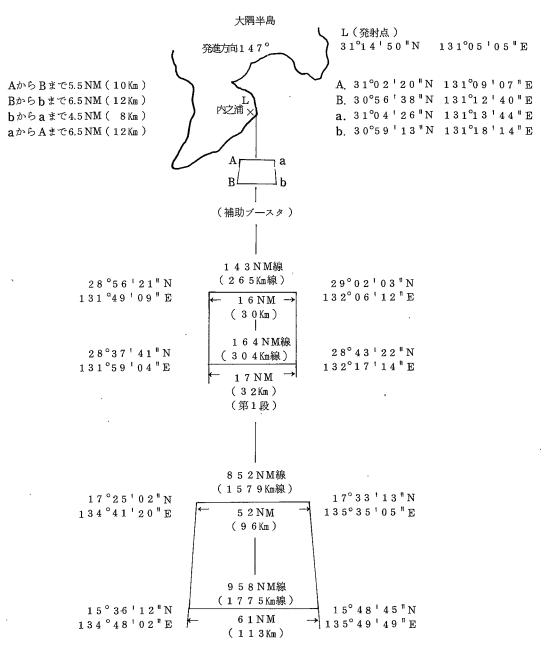

MT-135-50号機(2月15日(水)11時00分打上げ予定)
 MT-135-50号機による実験は、私達人間に深くかかわりあっている成層圏オゾンの長期変動を調べるために数年間に亘って継続して行う一連の実験の一つである。オゾンによる太陽光の吸収を測定することによりオゾン密度を求め、オゾンの日変化、季節変化を調べると共に理論との比較を行う。

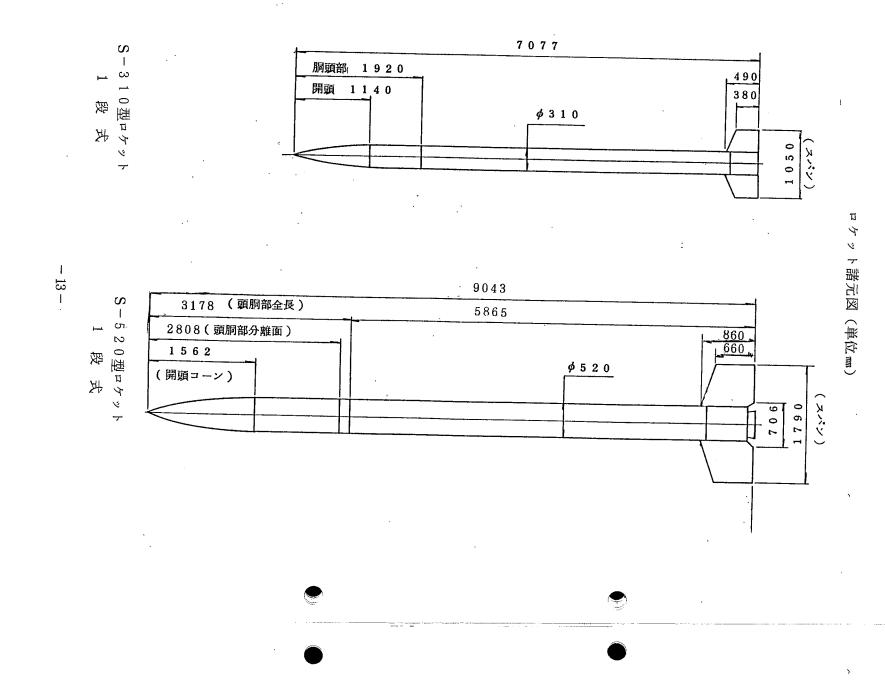

オゾンゾンデは高度約60kmでロケットより放出され、その後パラシュートで降下し高度約20kmまでのオゾン密度を測定する。

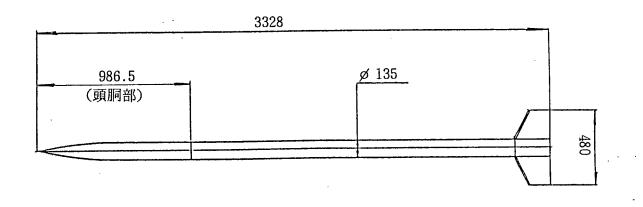

M-3SⅡ-4号機(2月20日(月)08時00分打上げ予定)
 第12号科学衛星EXOS-Dは第5号科学衛星「きょっこう」、第6号科学衛星「じきけん」に続くわが国第3番目の磁気圏観測衛星で、オーロラに関連した磁気圏の物理現象の解明を目的として1989年2

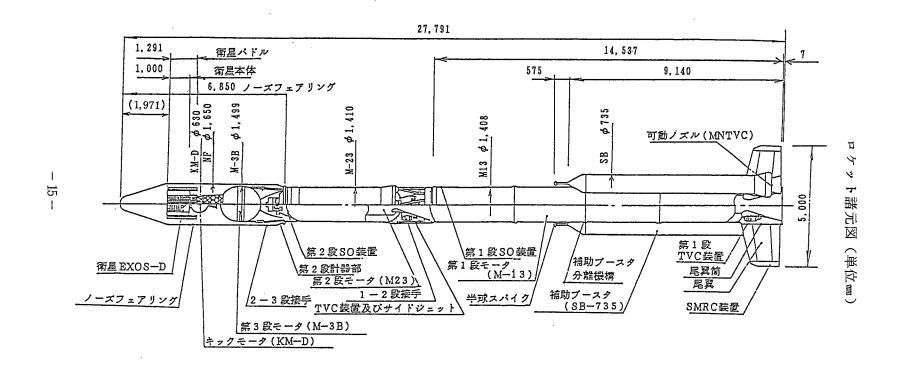

月に遠地点約10,000 m軌道傾斜角約75°の準極軌道に打ち上げられる。高緯度地方の夜空を彩るオーロラは磁気圏内の物理現象と密接に結びついており古くから磁気圏研究の主要テーマの一つであった。近年、オーロラ上空5千~1万㎞にオーロラ粒子を加速し、強い電磁波を放射している領域(粒子加速域)の存在を示す観測結果が報告され注目を集めている。EXOS-Dは、この粒子加速域に突入し、その中でプラズマの諸量を直接測定すると同時に、上空からオーロラの撮影を行うことによって、オーロラ粒子加速のメカニズム解明に寄与しようとしている。この目的に沿って、EXOS-Dには、磁場計測(MGF)、電場計測(EFD)、プラズマ粒子エネルギー、質量計測(LEP,SMS,TED)、プラズマ波動計測(PWS,VLF)、及び、オーロラ撮影(ATV)の合計8個の観測器が搭載されている。このうち、SMSはカナダNRCとの共同研究として、カナダで製作された観測器である。

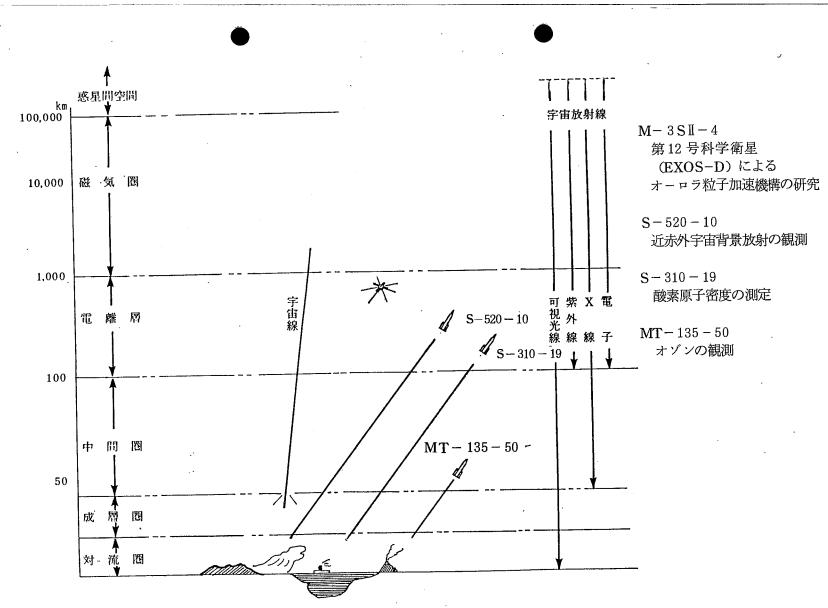

衛星本体は、対辺寸法 1.26m、高さ 1mの略 8 角柱状であり、重量は 300kg 弱である。 4 枚の 0.68m \times 1.21m の太陽電池パドルを展開し約 250 Wの電力を発生する。衛星姿勢は、磁気トルカーにより常にスピン軸を太陽方向に向け、7.5 rmpで回転するよう制御される。軌道上では、上記パドルの他、30m ワイヤーアンテナ 4 本、磁力計用 5 m 伸展マスト、サーチョイル用 3m 伸展マスト及び、3 軸ループアンテナが伸展される。








(第2段・ノーズフェアリング)



MT-135型ロケット 1 段 式 -14-

ロケット諸元図(単位㎜)

M-3 S I 型ロケット 3 段 式

0

昭和63年度第2次観測ロケット実験の観測

16 –

打上げ済み科学衛星等一覧

名 新 創 項目 重量 (kg) 近地点 (kg) 打上げ用 (kg) 工地点 (kg) 打上げ用 (kg) 口 ケット 概要 打上げ年月日 まますみ (福屋についての丁学的成験 (kg) 24 350~5140 (31°) L-48~5 4 段式固体燃料ロケット 45. 2.11 試験 衛星 (大 と い (数) 衛星の機能試験等 63 (31°) M-48~2 全段固体燃料の4段式ロケット最終段打出し方向姿勢 (32°) 46. 2.16 第15号科学衛星 大勝電旅、宇宙線、電離層のしんせい (数) 66 87.0~1.87.0 M-48~3 " 46. 9.28 第2号科学衛星 (大 化 は) ブラズマ波、地磁気等の観測 75 25.0~65.7 0 M-48~4 " (31°) 47. 8.19 試験 衛星 (大 人 と い) 79 2 25.0~65.7 0 M-48~4 " (31°) 47. 8.19 試験 衛星 (大 人 と い) 86 2.0~3.140 M-3 C-1 (56°) 2.00~3.810 M-3 C-2 " (50°) 49. 2.16 試験 衛星 (大 人 と い 35) 対験等の観測 129 (66°) (31°) M-3 H-1 M-3 C型の1 段目を1ま長くしたもの (65°) 52. 2.19 試験 衛子 (大 人 と い 35) 対験等の観測 129 (66°) (31°) M-3 H-1 M-3 C型の1 段目を1ま長くしたもの (65°) 52. 2.19 試験 衛子 (大 人 と) 第2 日本のより (大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大				7				
### 15	名称	観 測 項 目		軌道 遠地点 (km)		ロ ケ ッ ト 概 要	打上	げ年月日
************************************	おおすみ		24		L-4 S-5	4段式固体燃料ロケット	4 5.	2. 11
	たんせい		63		M-4 S-2	全段固体燃料の4段式ロケット最終段打出し方向姿 勢制御装置付	4 6.	2. 16
で 人 ば 79.2 *30、 地域気帯の観測 75 (31°) M-3C-1 が終済制御装置 79.2 *30.2 *40.2 *31°) M-3C-1 全段固体の3 窓式ロケット第 2 段に姿勢制御装置 750.2 *24 を2 月 79.0 *3.1 *3.1 *3.1 *3.1 *3.1 *3.1 *3.1 *3.1		太陽電波、宇宙線、電離層の 観測	66		M-4S-3	"	4 6.	9. 28
### 20 #	でんぱ	プラズマ波、地磁気等の観測	75		M-4 S-4	,	4 7.	8. 19
た い よ う 射線等の観測 86 (32°) M-3C-2 " 50. 2.24 試験 衛 星 衛星の新しい姿勢制御テスト 129 790~3.810 (66°) M-3H-1 M-3C型の1段目を 1/3長くしたもの 52. 2.19 第5号科学衛星 産 よっこう 衛星によるオーロラ撮像等 126 630~3.970 (65°) M-3H-2 " 53. 2.4 電子密度、数子線プラズマ波 90 227~30,051 M-3H-3 " 53. 9.16 での観測	たんせい12号	衛星の姿勢制御試験等	56		M-3C-1	全段固体の3段式ロケット第2段に姿勢制御装置及 び誘導制御装置(TVC)	4 9.	2. 16
### 20 新しい姿勢制御チスト 129 (66°) M 311			86		M-3C-2	"	5 0.	2. 24
意 1 っ こ う 標準化 1 を 3 十 日 7 政保等 126 (65°) M 3 H 2 " 53. 2. 4 第 6 号科学衛星 じきけん 5 を 1 方 数	試 験 衛 星 たんせい 3号	衛星の新しい姿勢制御テスト	129		M-3H-1	M- 3 C型の1 段目を ¹ / ₃ 長くしたもの	5 2.	2. 19
じきけん 等の観測 90 (31°) M-3H-3 " 53. 9.16 第4号科学衛星 X線星の時間変動の観測と超 軟X線観測 96 545~577 (29.9°) M-3C-4 全段固体の3段式ロケット第2段に姿勢制御装置及 び誘導制御装置(TVC) 24. 2. 21 試験 衛星 たんせい 4号 充技術に関する諸実験 185 520~605 (38.7°) M-3S-1 全段固体の3段式ロケット第1段に姿勢制御装置及 び固体モータ型ロール制御装置(SMRC) 55. 2. 17 第7号科学衛星 ひのとり 太陽硬X線、太陽軟X線等の 観測 188 576~644 (31.3°) M-3S-2 " 56. 2. 21 第8号科学衛星 大線天文学衛星 大線天文学衛星 大線天体の精密観測 216 497~503 (31.51°) M-3S-3 " 58. 2. 20 第9号科学衛星 シシ ぞら 試験惑星探査機 超速距離通信、姿勢制御等の さきがけ 207 357~878 (75°) M-3SI-1 中型衛星及び惑星探査機打上げ用としてM-3S型 を改良・補助プースタに可動ノズル採用 60. 1. 8 第10号科学衛星 ナ い せ い 星の紫外領域における観測 140 近日点151.4×10° 遠日点151.4×10° M-3SI-2 " 60. 8. 19 第11号科学衛星 活動銀河の中心核のX線源及 420 506~674 M-3SI-2 " 60. 8. 19		衛星によるオーロラ撮像等	126		M-3H-2	"	5 3.	2. 4
は 〈 ち ょ う 軟 X 総観測 96 (2 9.9°) M-3 C-4 び誘導制御装置(T V C) 試 験 衛 星 第 7 号以降の科学衛星に必要 な技術に関する諸実験 185 5 20~6 0 5 (3 8.7°) M-3 S-1 全段固体の 3 段式ロケット第 1 段に姿勢制御装置及 び固体モータ型ロール制御装置(S M R C) 第 7 号科学衛星 ひ の と り 観測 576~6 4 4 (3 1.3°) M-3 S-2 " 56. 2. 21 第 8 号科学衛星 X 線天文学衛星 X 線天文学衛星 X 線天体の精密観測 216 4 9 7~5 0 3 (3 1.5 1°) M-3 S-3 " 58. 2. 20 第 9 号科学衛星 お お ぞ ら 中層大気の観測 207 3 5 7~8 7 8 (7 5°) M-3 S-4 " 59. 2. 14 試験惑星探査機 超遠距離通信、姿勢制御等の 新技術の習得 138 近日点 12 17×10 6 遠日点 15 1.4×10 6 数目の号科学衛星 す い せ い 量の紫外領域における観測 140 近日点 10 0.5×10 6 遠日点 15 1.4×10 6 まの まり を改良・補助プースタに可動ノズル採用 60. 8. 19 第 11 号科学衛星 活動銀河の中心核の X 線源及 4 2 0 5 0 6~6 7 4 M-2 S II-2 " 60. 8. 19			90		M-3H-3	"	5 3.	9. 16
たんせい 4号 な技術に関する諸実験 185 (38.7°) M-3S-1 び固体モータ型ロール制御装置(SMRC) 55. 2.17 (万号科学衛星 大陽硬X線、太陽軟X線等の 観測 576~644 (31.3°) M-3S-2 " 56. 2.21 第8号科学衛星 X線天文学衛星 216 497~503 (31.51°) M-3S-3 " 58. 2.20 第9号科学衛星 本 お ぞ ら 財務技術の習得 207 357~878 (75°) M-3S-4 " 59. 2.14 第10号科学衛星 改 建設理離通信、姿勢制御等の さ き が け 新技術の習得 138 近日点151.4×10° M-3SII-1 中型衛星及び惑星探査機打上げ用としてM-3S型 を改良・補助ブースタに可動ノズル採用 60. 1.8 第10号科学衛星 す い せ い 塩の紫外領域における観測 140 近日点100.5×10° 速日点151.4×10° M-3SII-2 " 60. 8.19 第11号科学衛星 活動銀河の中心核のX線源及 420 506~674 M-3SII-2	1		96		M-3C-4		2 4.	2. 21
ひのとり 観測 188 (31.3°) M-3S-2 " 56. 2. 21 第8号科学衛星 てんま X線天体の精密観測 216 497~503 (31.51°) M-3S-3 " 58. 2. 20 第9号科学衛星 おおぞら 中層大気の観測 207 357~878 (75°) M-3S-4 " 59. 2. 14 試験惑星探査機 活動銀河の中心核のX線源及 第11号科学衛星 138 近日点1217×10° 遠日点151.4×10° M-3SII-1 中型衛星及び惑星探査機打上げ用としてM-3S型 を改良・補助プースタに可動ノズル採用 60. 1. 8 第10号科学衛星 すいせい 窓星間プラズマ及びハレー彗 星の紫外領域における観測 140 近日点100.5×10° 遠日点151.4×10° M-3SII-2 " 60. 8. 19 第11号科学衛星 活動銀河の中心核のX線源及 420 506~674 M-3SII-2 " 60. 8. 19			185		M-3 S-1		5 5.	2. 17
て ん ま X線天体の精密観測 216 (31.51°) M-3S-3 " 58. 2.20 第9号科学衛星 お お ぞ ち 財 新技術の習得 207 357~878 (75°) M-3S-4 " 59. 2.14 試験惑星探査機 超遠距離通信、姿勢制御等の さ き が け 新技術の習得 138 近日点1217×10° 遠日点151.4×10° M-3SII-1 中型衛星及び惑星探査機打上げ用としてM-3S型 を改良・補助ブースタに可動ノズル採用 60. 1. 8 第10号科学衛星 方 い せ い 星の紫外領域における観測 140 近日点100.5×10° 遠日点151.4×10° M-3SII-2 " 60. 8.19 第11号科学衛星 活動銀河の中心核のX線源及 420 506~674 M-3SII-2 " 0. 8.19	ひのとり		188		M-3S-2	"	5 6.	2. 21
ままぞら 中間人気の観測 207 (75°) M-3SI-1 " 59. 2.14 試験惑星探査機 超遠距離通信、姿勢制御等のますが、対技術の習得 138 近日点1217×10° 遠日点151.4×10° M-3SI-1 中型衛星及び惑星探査機打上げ用としてM-3S型を改良・補助ブースタに可動ノズル採用 60. 1. 8 第10号科学衛星 惑星間プラズマ及びハレー彗星の紫外領域における観測 140 近日点100.5×10° 遠日点151.4×10° M-3SI-2 " 60. 8. 19 第11号科学衛星 活動銀河の中心核のX線源及 420 506~674 M-3SI-2 " 60. 8. 19	てんま		216		M-3 S-3	"	5 8.	2. 20
さきがけ新技術の習得 130 遠日点151.4×10 ⁶ を改良・補助ブースタに可動ノズル採用 第10号科学衛星 惑星間ブラズマ及びハレー彗 すいせい 星の紫外領域における観測 140 近日点100.5×10 ⁶ 遠日点151.4×10 ⁶ M-3SII-2 " 60. 1. 8 第11号科学衛星 活動銀河の中心核のX線源及 120 506~674 M-3SII-2 " 60. 8. 19	おおぞら		207		M-3S-4	"	5 9.	2. 14
第10号科学衛星 惑星間プラズマ及びハレー彗 140 近日点100.5×10 ⁶ M-3SII-2	さきがけ		138		M-3S∏-1	中型衛星及び惑星探査機打上げ用としてM-3 S型を改良・補助ブースタに可動ノズル採用	6 0.	1. 8
$\mathbf{M} = \mathbf{M} = $		星の紫外領域における観測	140	1	M-3SII-2		6 0.	8. 19
			420		M-38 I-3	"	62.	2. 5

9

- 17 -

 \bigcirc