SESJ-F K-Na665

K-9M-76号機による観測

昭和57年12月

宇宙科学研究所

大気光赤線の観測 (AGL-63)

東京大学東京天文台 田鍋 浩義

嵩地 厚

宮下 暁彦

弘前大学教育学部 奥田 光直

1. 目 的

磁気共役点の電離圏に陽が当り始め、太陽紫外線により発生した光電子 が磁力線に沿って移動し、まだ日射のない内之浦上空で、大気光赤線(6300 A)が暁方増光を起す現象を観測する。ロケットは、K-9M-76を使 うが、同乗の他の観測と共同で、光電子束の南北半球移動の様相を調べる のが目的である。

2. 観測方法

今回の実験は、大気光の微光成分検出であるので、月のない時期を選ん だ。また大気光6300Åの早暁増光は、磁気共役両点の限られた条件下 に起る現象なので、ロケット打上げ日時を、1983年1月15日午前5 時40分、±3分とする。(打上げ日が1日延期される毎に、条件は少し づつ厳しくなる)

なお、ロケット観測開始前から、大気光6300Åの地上観測も併せて 行なう。

3. 観測器(AGL-63)

ロケット軸から30°の角度をもち、ロケットのスピン・プレセッション を利用して、広範囲の空を掃天観測するようになっている。2本の望遠鏡 を並列にしたこの光電測光器は、透過波長巾の異る2組の6300Å干渉 フィルターを、順次交換して輝線強度を測定する。また、内蔵した標準光 源の輝度測定及びシャッターによるゼロ信号測定は、干渉フィルター交換 のデッドタイムを利用する。

2本の光電子増倍管からの観測データは、それぞれ高低2段階の増巾器 を通してテレメーターに送られる。

2 -

(以上)

AGL-63 観測器概略図

電子密度の観測 (NEL)

宇宙科学研究所 大林 辰蔵

渡辺 勇三

1. 実験目的

1983年1月15日頃の早朝(5時40分、太陽天頂角111度)の 電離層電子密度の高度分布を測定することを目的とする。KSCの電離層 観測装置によるアイオノグラム観測も行なう。

2. 電離層の様子

夜間の電離層電子密度の高度分布は scattered XUVの照射によるNO 及びO2の電離作用と電子温度に依存する再結合作用の両者によって大体の 平均的分布が定まり個々の特徴を持った電子密度の高度分布は領域の中性 大気風に基づく荷電粒子のドリフト作用によるものと解釈されている。特 にE-F Valley 領域に現れるM-layer(電離中間層)は中性風による イオンの集積作用によって生成する。今迄の実験、例えばK-9M-54 号機、65号機、及びS-310-9号機の観測結果を併せ用いて今回の 夜明け前の実験結果を電離層-中性粒子の dynamics の視点から比較検討 する。

本号機は地磁気共役点光電子効果の総合的観測を目的として設計されて いる。すなわち、超高層大気が太陽紫外線に照らされて電離する時に生じ た光電子は地球磁力線に沿って移動し反対半球の日陰状態の上部電離領域 において様々の物理現象を生起する。共役点現象の背景となる電離層の熱 的プラズマ中の電子密度を実測することにより総合観測実験の一端を担う

3. 測定原理·観測装置

高周波数帯でのプラズマ中プロープ特性を用いてUHR周波数を測定す ることを基本原理としているが他にSHR周波数、PR周波数、MPR周 波数、及び、シース容量値なども解析され多角的に測定される。観測装置 は標準型インビーダンスプロープである。

4. 計測仕様

i	測定周期	0.5秒
ij	掃引周波数	$0 \sim 5 \text{ MHz}$
iii	測定容量	$0 \sim 1 \ 0 \ pF$
iv	タイマー	X + 5 4 秒
v	タイマー配線	$N \in L \rightarrow T \in D$
vi	テレメーター	
	CH-11	NEL-A
	CH-10	N E L $- R \swarrow S L$
		(52秒で切り替え)

5. 実験担当

宇宙科学研究所

渡辺 勇三(技術部・機器開発課・搭載機器係)

大林 辰蔵(太陽-ブラズマ研究係) 明星電気株式会社・宇宙開発課(技術協力)

- 5 --

酸素原子7774Å大気光の観測(AGL-77)

東京大学理学部	小川	利紘	
ай Х	岩上	直幹	
	鈴木	勝久	
	門倉	真二	

1. 観測目的

酸素原子7772-4-5 Å 夜間大気光には、6300 Å 大気光と同じ く、冬期において共役光電子効果がみられることが地上観測から知られて いる。その強度の高度変化を飛翔体を用いて測定した例はなく、その夜間 における発光機構も明確にはされていない。しかしその励起ポテンシャル は約11 eV と6300 Å 大気光の2 eV に比べて極めて大きいため、共役 光電子効果は6300 Å 大気光の場合より純粋に現われることが期待でき る。

との観測では7774 Å大気光強度の高度分布を、光電子エネルギース ベクトル、6300 Å大気光強度などと同時に測定し、共役光電子のエネ ルギー損失過程に関する知見を得ることを目的とする。

2. 装置の概要と測定原理

測定装置は干渉フィルタ、フレネル集光レンズ、チョッパ、光電子増倍 管及び信号処理回路系より成る二連の放射計であり、ロケットに搭載され て大気光強度を測定しつつ発光層を通過することによって、7774Å大 気光の体積放射率を定量することができる。二連のうちの一方では干渉フ ィルタの帯域幅が10Å、他方では60Åと異なる他は、これらの放射計 は全く同一の光学系・祝野及び回路系を持っており、それらの出力信号か ら簡単な演算によって大気光強度及び背景光強度(主に星野光)を独立に 導くことができる。また信号・雑音比を改良するため、光チョッパを用い た交流増幅・位相検波回路を用いる。視野は直径7°の略円形、スピン軸よ り40°の方向から採光する。

熱的電子エネルギー分布(TED)の測定

宇宙科学研究所 平尾 邦雄小山老一郎

理化学研究所 雨宮 宏

目的

内之浦の磁気共役点(オーストラリア上空)の電離層で作られた光電子 は磁力線に沿って内之浦上空に到達し、内之浦上空の大気、荷電粒子と相 互作用しながら、徐々にそれ自身のもつエネルギーを失なってゆく。本測 定の目的は光電子がエネルギーを失なった最終的な姿をとらえる事によっ て、大気の励起及び熱エネルギー収支に関する議論の一翼を担うものであ る。また、バックグラウンドプラズマと磁気共役点から流れ入んできた光 電子と大気との相互作用の結果としてエネルギー分布がどのような型をと るかは純粋に原子衝突素過程研究の見地から興味ある問題である。この主. 目的とは別に高度、100Km付近のEUVの照射していない時間帯での熱 エネルギー分布の測定ははじめてであり、E領域熱エネルギー収支に関す る重要な情報が得られる。

- 6 -

-7-

2. 観測器概要

5

プローブの電圧電流特性の二次微分をとることによって電子エネルギー 分布が得られる事はよく知られた事実である。従って実験は電子エネルギ ー分布をもとめるために、電気的にブローブカーブの二次微分をとる回路 を作る事になる。本実験では二次微分をとる方法として二種の違った回路 がついている。

即ちプローブに2 KHz、70 mVの高周波電圧を重畳した3角波電圧(-0.5~2V)を印加し、シースの非直線性によってできる二次高調波成分 を取り出す事によって、二次微分を作り出す、いわゆる二次高調波法で、 この方法によって過去に数回のロケット実験でめざましい成果をあげてき た(図1)。

もう一つの方法は、いくつかのトランス、コンデンサーを組み合わせる ことによってブローブカープそのものの二次微分を取るものであり、スペ ースでははじめての試みである。図2に回路のブロックダイアグラムを示 す。

使用されるプローブは直径3mm、長さ16cmの円筒プローブで充分に加熱して電極表面をきれいにする。二次高調波法によって得られた出力はA/D 変換されてFM-PCMテレメータのPCM部へ、直接二次微分法によっ て得られた出力はFM部へおくられる。二つの測定器は同じプローブ掃引 電圧を使用する。

二次高調波法のフローフ電流感度は10⁻¹⁰A~10⁻⁶Aで、全高度にわたってデータをとることができる。

- 8 --

図1 K-9M-62号機によって得られた電離層の熱的電子エネルギー分布

1. 目 的 飛翔中のロケットの姿勢を測定することは、搭載計器の観測結果の解析 の際に重要である。特に、K-9M-76号機のように光学観測をおこな うロケットでは、各搭載計器の望遠鏡がいつ、どこを向いていたかを精度 よく知る必要がある。このスターセンサー(STS)は、天球上の星の位 置を測定することによって各望遠鏡の刻々の視線方向を検出することを目 的とする。

スターセンサーによるロケットの姿勢決定

2. 测定方法

このスターセンサーは、ロケット軸から20°傾いた方向に固定した小型 光電測光器である。その視線方向は、飛翔中のロケットのスピンによって 天球上に半径20°の小円を描き、さらにこの小円はロケットのプレセッジ ョンによって天球上を移動していき、結局、天球上のある範囲をスピン、 プレセッションの周期で掃天することになる。スターセンサーの感度は、 4等星以上の輝星にあわせてあり、これらの星が視野に入るとバルス状の 信号が得られ、それを解析することによってロケットの姿勢が決定できる。 あらかじめ、各搭載計器の望遠鏡とスターセンサーの望遠鏡の視線方向の 差がわかっているから、各望遠鏡の刻々の視線方向も知ることができる。

-11-

図2 K-9M-76号機に搭載されるTEDのプロックダイフ

1 7

SHR

\$

18

VC

TAU8.

(01x)

SYNC DET

BPF (4KHs)

DF AMP

AMP

AMP

B

AMP

(X10)

FREQ PHASE DOUBL BHASE

3 KHs

TIMING

TA GEN-

XIN.

BUPP

AND

2

LPF

AMP

ħ

LDF

AMP

DF AKP

TIMIN

-10-

X+54 X+56

TIMER

REG

CONT

Id

-18V

+1 8 V

3. 測定 器 where the state of the

測定器の概略を図に示す。有効径39mmØ、焦点距離36mmの対物レン ズから入射した光はダイヤフラムを通って光電子増倍管に入る。視野は 2.5°×2.5°の正方形で、フィルターは使用しない。光電出力は増巾器を通 してテレメーターに送られる。

Q

1

3

磁気共役点光電子の観測〔ESE〕

宇宙科学研究所 平尾 邦雄

向井 利典

1. 目 的

太陽 E U V 放射によって電離層上部(高度約250km以上)に生成され た光電子の一部は地球磁場の磁力線に沿ってその磁気共役点の電離層に到 達する。この磁気共役点から飛来してきた光電子はそこで電子温度の上昇 や6300Åなどの大気光の増強に寄与する。この現象は中緯度において 特に冬の夜明前、即ち観測点が日陰であって磁気共役点が日照のときに顕 著であってK-9M-76号機はこれらの総合的観測を行なう為のロケッ トである。

ESEの観測目的はこの現象で主役を演ずる磁気共役点光電子のフラックス及びそのエネルギー分布の測定である。測定エネルギー範囲は1~100 eVである。

2. 測定器の概要

測定器は大きく分けてセンサ部とエレクトロニクス部から成る。センサ 部には高圧電源とプリアンプ等の電子回路の一部も納められている。セン サ部の主部はコリメータ、半球形静電分析器、チャネルトロン(Galileo CEM 4039型)から成る。これらは磁気遮蔽の為high-µ metalで 囲まれ、更に高圧放電防止の為に真空容器の中に納められている。真空容 器はあらかじめ地上の真空ポンプで排気され、その後はBa-ゲッタにより 真空に保たれる。コリメータの先端部の所に開口部がありタイマ信号によ って開口される。

コリメータは3個の円筒電極から成り、低エネルギーモードでは電子レ ンズを構成する。半球形静電分析器は測定エネルギー及びエネルギー分解 能を決定する。検出はチャネルトロンで行ない、その出力パルスはエネル ギー掃引と同期して20msec毎に12ビットのカウンタで計数される。 エネルギー掃引は低エネルギーモードと高エネルギーモードと time - sharing で行なわれる。低エネルギーモード(thermal ~ 6 eV) ではコリメータの第3電極の電位、即ち半球形静電分析器の平均電位を掃 引することにより行なう。また同時にコリメータの第2電極の電位も掃引 してコリメータの電子レンズ特性を掃引の間一定に保つ。なお、半球形静 電分析器の内外球間の電位差は一定である。との方法によってエネルギー 分解能及び transmission がエネルギー掃引の間一定に保たれるので低エ ネルギー電子の精密測定に適している。高エネルギーモード(約2~100 eV)では逆に分析器の内外球間の電圧を掃引する。コリメータの各電極は 一定の等電位である。この方法では分析器のエネルギー通過幅が測定エネ ルギーに比例して拡がるので、高エネルギー側で電子フラックスが減った ときの S/Nを上げる。いずれのモードに於てもエネルギー掃引は 20msec 毎に階段的に行なう。また、コリメータ入口の電位は、まわりのプラズマ 電位の近傍になるように、ロケット電位に対して+1.0 voltになっている。 なお、光電子のピッチ角依存性を調べる為にコリメータ方向がロケット 軸と30°の角度をなすようにセンサ部を配置している。 開口は73秒(高度約120km)、チャネルトロンへの高圧印加は78

-14 -

秒に行なわれる。

}.	測	定器の諸テ	Ē	•	A
	a.	測定エネル	レギー	:	$1\sim 1$ 0 0 eV
	b.	エネルギー	-分解能	:	0.2 eV (低エネルギー・モード
					~E/E 4%(高エネルギー・モード
	c.	角度分解能		:	6. 3° cone
	d • .	geometri	cal factor	:	$3 \times 1 \ 0^{-4} \ cm^2 \cdot str$
	e.	センサ部タ	₩	:	200Ø×250H以内
	f.	センサ部国	tft	:	約 5.6 kg
	g.	エレクトロ	コニクス部外形	::	2 0 0 Ø × 9 0 H
	h.	エレクトロ	ニクス部重量	::	約 2.0 kg
	i.	タイマ項目		:	73秒(センサ部開口) (
					~78秒(HV ON)
	j.	テレメータ	マ(ハイプリッ	۲	・テレメータのPCMを使用)
	•		カウンタ出力	:	12ビット
			ステップ No.	:	7 ピット
			開口アンサ	:	1 ビット
		•	電圧モニタ	:	10 ビット(× 7チャネル)
			GAH信号	:	10 ビット

-15-

電子温度の観測(TEL)

宇宙科学研究所 平尾 邦雄

小山孝一郎

1. 目 的

本ロケットによる電子温度観測は内之浦の磁気共役点であるオーストラ リア上空からやってくる光電子と内之浦上空の大気及び電離層プラズマと の相互作用を調べるもので電子温度は同時に測定される光電子エネルギー 分布、熱的電子エネルギーの測定とならんで、励起酸素原子の発光強度等 の議論に使われる重要な地球物理量である。

2. 原 理

フラズマ中に浸された電極に高周波電圧を印加すると、印加した高周波 電圧の振幅に応じて floating 電位(浮動電位)が負に shift する。 この 現象は多くの人々によって理論的に、実験的に研究されている(1,2)。 電位の shift 分 ム Vf と印加した高周波電圧の変化分とは下のような関係 がある。

即ち $\Delta V f = \frac{G k T e}{e} \ell u I_0 \left(\frac{e a}{k T e}\right)$ (1)

ここで G:増巾器のGain

k : 10.38×10^{-23} Joul/C

e : $1.6 \times 10^{-19} \ / - \Box \nu$

a:印加した高周波電圧の振幅

であり、上記によって利得Gが知られていると電子温度が知られる。

-16-

さて、振幅 a 及び 2 a の高周波電圧を交互に電極に印加した時の浮動電 位の比 r は(1)式 よ り

$$r = \mathcal{L}_n \left[I_0 \left(\frac{2 e a}{k T e} \right) / \mathcal{L}_n \left[I_0 \left(\frac{e a}{k T e} \right) \right] - \dots - (2)$$

で比ァは検出された floating 電位の比であるので電子温度が上式によって 計算できる。

(3) この方法の長所は①データが汚染電極の使用にもかかわらず信頼できる。 ②データ伝送系のGainによらない。 ③ compact で、かつ、 ブラズマを乱さない場所であればどこでも搭載できる。 ④データ処理が容易である。などであり、この電子温度プローブは日本⁽⁴⁾、インド⁽⁵⁾、 アメリカ、カナダのロケット及び"太陽"衛星⁽⁶⁾に搭載され、その動作はきわめて安定である。

3. 測定器

上記の原理に従って設計制作された電子温度ブローブのブロックダイア グラムは図のようである。測定器は高周波電圧発生回路、電極に印加する 電極を作る変調回路、このためのタイミング回路、高入力増巾器、及び電 源回路である。

-17-

とれらの測定系は直径90mm、高さ22mmのアルミニュームのケースに 納められ、このケースに直径100mm、厚さ1.6mmの金メッキされた電極 が取りつけられている。電極は2つに分れ、高周波電圧を印加した電極の 出力と高周波電圧を印加しない電極との出力は、直流差動Amp・に導かれ、 このことによってロケット電位の変動、プラズマ雑音を除去し、良好なデ ータを得ることができる。

表1. 電子温度プロープ仕様

高周波電圧振幅	$0V(0.2\pm0.005)V$, (0.4 ± 0.005)
高周波電圧周波数	30 KH z ± 1 KH z *1
高周波電圧歪み率	0.1%以下
DC Amp. 入力抵抗	1 1 0 MΩ *3
DC Amp. 利得	20 db
無入力時の off set 電圧	0.6 V
電子温度測定範囲	$200^{\circ}K - 4,000^{\circ}K$
電子温度ブローブ動作可能な電子密度	$8 \times 1 \ 0^3 = /cm^3$ $\times 4$
周期	0.6秒±0.02秒 **2

*1 他 P I への干渉が考えられる時は±5 KHz 以内で変更可能である。
*2 0.6 秒が標準値で早いテレメータレスポンスが与えられれば、0.3 秒程 度まで高度分解能を上げることができる。0.6 秒より遅いとロケットス

ピンの影響を受け良質のデータが得られないことがある。

*3 昼間の観測では110 MΩ で充分である。

*4 この抵抗は入力抵抗として110 M Ω を使用した場合で、1,100 M Ω . とすると、8×10² \rightarrow cm 以上のプラズマ密度で測定可能である。

-18-

参考文献

- Ikegami, H., and Takayama, K., Resonance probe, IPPJ-10,
 1963.
- (2) Dote, T. and Ichimiya, T., Characteristic of resonance prode,
 J. App. Phys. 36, 1966, 1965.
- (3) Hirao, K. and Oyama, K., An improved type of electron temperature probe, J. Geomag. Geoelect., 22, 363, 1970.
- (4) Hirao, K. and Oyama, K., Profiles of electron temperature in the ionoshere observed with the electron temperature probe on rocket, Space Res., XII, 1335, 1972.
- (5) Sampath, S., Sastry, T. S. G., Oyama, K. and Hirao, K. Joule heating due to the equatorial electrojet as observed rocketborne probes, Space Res., XIV, 253, 1974.
- (6) Oyama, K., and Hirao, K., Electron temperature probe experiments on the satellite "Taiyo", Geomag. Geoelect., 27, 321, 1975.

宇宙科学研究所 邦 雄 山 孝一郎 ハ

-19-