

参考資料3-2 科学技術·学術審議会 基礎研究振興部会(第4回) 令和元年7月31日

EU・米国における 新興・融合研究支援施策

2019年6月26日

JST研究開発戦略センター 海外動向ユニット

本日の説明内容

1. EU,研究開発フレームワークプログラム「Horizon 2020」の事例

- (1) FETs (未来新興技術)における新興・融合研究推進
- (2) ERC (欧州研究会議)における新興・融合研究推進

2. 米国,NSF (全米科学財団)の事例

参考:ドイツの若手研究者独立支援制度

(3)

研究開発フレームワークプログラム 「Horizon 2020」

- ▶ 「Horizon 2020」は2014年からの7年間を対象とした総予算748億ユーロ (約9兆3,500億円)のプログラム
- ▶ 欧州委員会 (行政機関)のDG RTD (研究・イノベーション総局)が主体となって実施

1ユーロ=125円換算、以下同様

- ▶ 三本の柱から構成され、第一の柱で「卓越した科学」を掲げる
- > この中のFETs (未来新興技術)では、新興・融合研究を国際共同かつ分野横断的に推進
- ➤ ERC (欧州研究会議)では、「科学的エクセレンス」に基づき新興・融合研究に資金提供

金額単位:ユーロ

	第一の柱 (卓越した科学)	242億	第二の柱 (産業支援)	164億		第三の柱 (社会的課題への取り組み)	286億
	EDC /例州研究企業)	131億	産業技術開発でのリーダーシップ	130億		保健、人口構造の変化、福祉	73億
	ERC (欧州研究会議)	131/3	(欧州の産業能力強化に資する研究・開発の推進)			食料安全保障、農業、バイオエコノミー	37億
	FETs (未来新興技術)	26億	,			安全かつクリーンで効率的なエネルギー	57億
	マリーキュリーアクション	リスクファイナンスの提供 (企業等の融資・金融アクセス支		28億		スマート、環境配慮型かつ統合された輸送	61億
	(人材プログラム)	62億	援)			気候への対処、資源効率、原材料	30億
	欧州研究インフラ	中小企業のイノベーション	中小企業のイノベーション	6億		包括的、イノベーティブ、内省的な社会の構築	13億
	(大規模インフラの整備)	24億	(中小企業の研究・開発推進)			安全な社会の構築	16億
JĮ	RC (共同研究センター)			-			24億
EIT (欧州イノベーション・技術機構)						19億	
エクセレンスの普及と参加の拡大						8億	
社会とともにある・社会のための科学							4億
						合計	748億

FETs (未来新興技術)

- > 10年~15年先を見据えた新興・融合領域研究を国際共同かつ分野横断的に推進するプログラム。 当該新興・融合領域におけるEUの優位性確保を目指す。7年間で予算26億ユーロ (3,250億円)
- ▶ ①トピックを定めない公募を行う「FET Open」、②**トピックを定めた公募を行う「FET Proactive」**、
 - ③トップクラス研究拠点形成を目的とする「FET Flagships」の3タイプから構成
- ▶ いずれのタイプでも三ヶ国、三機関以上のチームでの応募が必須
- ▶「FET アドバイザリーグループ」(大学・研究機関の有識者20名程度から構成)がプログラム全体について助言

0	タイプ	① FET Open	② FET Proactive	③ FET Flagship
1	目的	萌芽的な新アイデアを生み出す ための初期段階の研究を支援	10-15年後にトレンドとなり得る研究分野を 定めトップダウン的に支援	EUにおけるトップクラス研究拠点形成を支援
レト	公募 トピック	定め無し *研究者が自由に申請	人工臓器・組織・細胞・細胞下構造、時間、 生物技術、社会連携技術、微少エネル ギー・貯蔵技術、トポロジカル物質(2018年) *欧州委員会が予め指定	ヒューマンブレイン、グラフェン、量子技術 (現在進行中の3拠点のテーマ) *研究者が自由に申請、ただし量子技術については予 め指定
1	支援規模	300万ユーロ/プロジェクト (約3億7,500万円)	590万ユーロ /プロジェクト (約7億3,750万円)	10億ユーロ/拠点 (約1,250億円)
	支援期間	3年程度	4年5ヶ月程度	10年間

【出典】FETのホームページを元にCRDSで作成

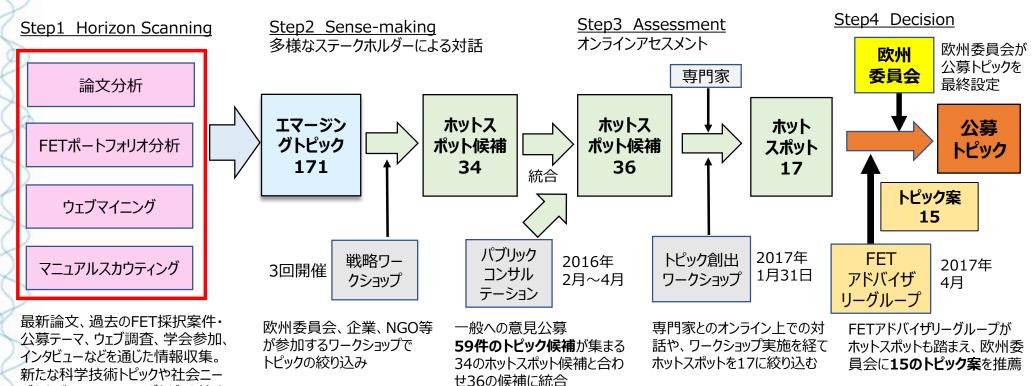
FET Proactive概要

- > 2014年~2020年における公募トピック、申請・採択実績、全体予算は以下表の通り
- > 2018年は15プロジェクトが採択、参加機関数135。大学·研究機関に加え企業も参加し国際共同研究を推進

参加機関内訳:高等教育機関 53%、研究機関 24%、中小企業 14%、その他 (大企業含む) 9%

金額単位:ユーロ

				• •
年	公募トピック	申請数	採択数	全体予算
2014	グローバルシステム科学理解、行動、存在 - 問題解決を超えた認知量子シミュレーション	184	13	3,500万
2015	エクサスケーラー高性能コンピューター	不明	21	9,740万
2016 - 2017	・ 社会変革のための未来技術・ よりよい生活のためのバイオ技術・ 破壊的情報技術・ エネルギー、機能性材料のための新技術	210	12	8,000万
2018	 人工臓器・組織・細胞・細胞下構造 時間 生物技術 社会連携技術 微少エネルギー・貯蔵技術 トポロジカル物質 	96	15	8,800万
2019	人間中心AI埋め込み可能型自律的デバイス・材料完全脱炭素化のための革新的ゼロエミッションエネルギー創出	公募	字中	8,740万
2020	・ 社会的双方向体験のための未来技術・ 測定不可能なものの測定 -ナノ計測学のためのサブナノスケールサイエンス・ ライフサイエンスのためのデジタルツイン・ 環境インテリジェンス	準備	前中	6,800万
	2014 - 2015 2016 - 2017 2018	2014 - プローバルシステム科学 - 理解、行動、存在 - 問題解決を超えた認知 - 量子シミュレーション - エクサスケーラー高性能コンピューター - 社会変革のための未来技術 - よりよい生活のためのパイオ技術 - 破壊的情報技術 - エネルギー、機能性材料のための新技術 - 大工臓器・組織・細胞・細胞下構造 - 時間 - 生物技術 - 社会連携技術 - 社会連携技術 - かポロジカル物質 - 人間中心AI - 埋め込み可能型自律的デバイス・材料 - 完全脱炭素化のための革新的ゼロエミッションエネルギー創出 - 社会的双方向体験のための未来技術 - 測定不可能なものの測定 -ナノ計測学のためのサブナノスケールサイエンス - ライフサイエンスのためのデジタルツイン - 環境インテリジェンス	2014 - グローバルシステム科学 - 理解、行動、存在 - 問題解決を超えた認知 - 量子シミュレーション - エクサスケーラー高性能コンピューター 不明 2016 - 社会変革のための未来技術 - よりよい生活のためのバイオ技術 - はの場的情報技術 - エネルギー、機能性材料のための新技術 - 人工臓器・組織・細胞・細胞下構造 - 時間 - 生物技術 - 社会連携技術 - 微少エネルギー・貯蔵技術 - 常のエネルギー・貯蔵技術 - 常のエネルギー・貯蔵技術 - 常のエネルギー・貯蔵技術 - ドポロジカル物質 - 人間中心AI - 埋め込み可能型自律的デバイス・材料 - 完全脱炭素化のための革新的ゼロエミッションエネルギー創出 公享 - シイフサイエンスのためのデジタルツイン - ライフサイエンスのためのデジタルツイン - 環境インテリジェンス 準値	2014


FET Proactiveにおけるトピック設定方法

- ▶ トピックの決定権限を持つ欧州委員会をサポートするため、公募トピックの設定プロセスの一部設計・実施を担う機関が公募で選ばれている
- 2018~2020年の公募に向けては、実施機関としてドイツ・フラウンホーファー研究機構のシステム・イノベーション研究所が選定され、2015年7月から約2年間にわたり公募トピックの設定プロセスの一部(以下Step1~3)を担当

公募トピックの設定プロセス

ズをカバーしエマージングトピック抽出

17のホットスポット

	ホットスポット				
1	Beyond the brain				
2	Molecular Microbial Machinery				
3	Revolutionary healthcare				
4	Unlocking opportunities by embracing complexity				
5	Human AI Negotiation Processes				
6	Tackling Time				
7	Wearable and implantable intelligent devices				
8	Bespoke Material Development				
9	Technologies for decentralised consensus generation				
10	Understanding potentials and limits of human machine co-evolution interfaces				
11	The Internet as a crucial site for production of society				
12	From efficient to responsive cities				
13	Minimising Energy Dissipation				
14	Massively parallel multi-scale polylogue on civilisational transformation pathways				
15	Introducing Art in Research and Innovation Frameworks – STEAM				
16	Privacy Providing Systems				
17	Future Living Spaces				

FETアドバイザリーグループによる15の推薦トピック 🥯

プから 5分野15トピックが推薦され その名ノが宇際の小草トピックにつかがっている

8	▶ FETアドバイザリークループから、5分野15トビックが推薦さ	れ、ての多くが美院の公券トレックにフなかりている	
	アドバイザリーグループによる推薦トピック	実際の公募トピック	公募年
1. Bio	medical and Biotechnology for Better Life		
1.1	Wearable and Implantable Intelligent devices	Implantable autonomous devices and materials	2019
1.2	Regenerative medicine, artificial organs tissues and cells	Artificial organs, tissues, cells and sub-cell structures	2018
1.3	Futuristic Imaging and diagnostics	-	-
2. Art	tificial Intelligence, Robotics and Interactions		
2.1	Living technology	Living technologies	2018
2.2	Mathematics of Complex Systems	Topological matter	2018
2.3	Artificial Intelligence- The next Generation	Human-Centric AI	2019
2.4	Time	Time	2018
3. Tec	chnologies for Social Change		
3.1	Cities as Cyber-Physical systems	-	-
3.2	New Technologies for societal integration of social media	Socially interactive technologies	2018
3.3	Embedded neural computation	-	-
3.4	Prize for migration solutions	-	-
4 Ne	w Technologies for Energy and Environment		
7. 110	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3		
4.1	Water availability, quality and monitoring soil, water and air	Environmental Intelligence	2020
		Environmental Intelligence Disruptive micro-energy and storage technologies Breakthrough zero-emissions energy generation for full decarbonization	2020 2018 2019
4.1	Water availability, quality and monitoring soil, water and air Disruptive technologies for generating, storing and accessing	Disruptive micro-energy and storage technologies	2018

ERC (欧州研究会議)

- ➤ ERCは欧州のファンディング・エージェンシー (FA)。研究者のキャリアや目的に応じた以下5種類のグラントを提供
- ▶ 自然科学から社会科学分野まであらゆる分野の研究が対象、テーマは定めていない
- ➤ 「Synergy Grant」で異なる専門分野をもつ複数の研究者による融合研究を推進
- ▶「科学的エクセレンス」がプロジェクトの選考基準
- ➤ 通常の支援額に加え、研究室の立ち上げ費用も別途申請可能 (ERCで採択されて他国から研究場所を移す場合)

2		Starting Grant	Consolidator	Grant	Advanced Grant	
目目	的	若手研究者のキャリア開発・チーム形成	中堅研究者のチー	ム・プログラム形成	実績ある研究者のチーム・プロジェクト形成	
応	募要件	博士号取得後2年以上7年以下	博士号取得後7年	以上12年以下	10年程度の卓越した科学的実績	
支持	援額	最大150万ユーロ (約1億8,750万円)	最大200万ユーロ (約2億5,000万F	円)	最大250万ユーロ (約3億1,250万円)	
支持	援期間	5年間	5年間		5年間	
公公	募実績*	採択 401件 (応募数3,123、採択率12.9%)	採択 291件 (応募数2,356、抗	采択率12.4%)	採択 269件 (応募数2,137件、採択率12.6%)	
}		Synergy Grant		Proof of Concept Grant		
目目	的	異なる専門分野を持つ研究者2~4名の	融合研究推進	研究成果を実用化は	こつなげるための検証活動	
応	募要件	卓越した科学的実績		ERCグラント獲得者		
支持	援額	最大1,000万ユーロ (約12億5,000万円)		最大15万ユーロ (約1,875万円)		
支持	援期間	6年間		1年6ヶ月		
公	募実績*	採択 27件 (応募数295、採択率9.2%)	採択 760件 (応募	数2,068、採択率37.6%)	
Q		-				

*Proof of Concept Grantの実績は過去の累積、それ以外は2018年実績 19 CRDS All Rights Reser【出典】ERC Annual report 2018を元にCRDSで作成 8

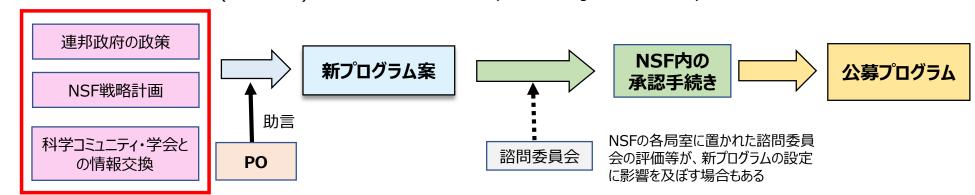
Synergy Grantの採択課題例

- ➤ 2018年のSynergy Grantで採択された27件のうち代表例として3件の詳細を以下に示す
- ▶ 支援期間はいずれも6年間

タイトル	予算	研究代表者名	国	所属機関
4次元顕微鏡を用いた骨ミクロ	1,237万 ユーロ	Georg Schett	ドイツ	エルラルゲン大学
構造観測と再モデル化による		Andreas Maier	ドイツ	フリードリヒ・アレクサンダー大学
先端骨粗鬆症治療		Silke Christiansen	ドイツ	ヘルムホルツ重イオン研究所
	931万 ユーロ	Albert-László Barabási	ハンガリー	ヨーロッパ中央大学
神経のダイナミクスと構造		Laszlo Lovasz	ハンガリー	ハンガリー科学アカデミー
		Jaroslav Nesetril	チェコ	プラハ・カレル大学
	984万 ユーロ	Mercedes Garcia-Arenal	スペイン	スペイン高等科学研究院
ヨーロッパにおけるコーラン		Roberto Tottoli	イタリア	ナポリ東洋大学
コーロッパにのいるコーフン		Jan Loop	イギリス	ケント大学
		John Tolan	フランス	ナント大学

【出典】ERCホームページ "ERC 2018 SYNERGY GRANTS EXAMPLES"を元にCRDSで作成

NSF (米国国立科学財団)



- ▶ NSFは基礎研究・学術研究活動を支援するFA。2019年予算81億ドル (約8,910億円) 1ドル=110円換算、以下同様
- ▶ 研究資金提供は主にプログラムを通じて行われており、「コア・プログラム」と「誘導的なプログラム」に大別できる
- 新興・誘導研究領域を対象とした「未来に向けて投資すべき10のビッグアイデア」(後述)は「誘導的なプログラム」内で議論

コア・プログラム(採択数の約7-8割)	誘導的なプログラム(採択数の約2-3割)
• ボトムアップの研究支援プログラム (JSPSの科研費に類似)	• 特定の科学技術活動へ研究者を誘導
• 学術研究動向を反映して決定されることが多い	・ コア・プログラムと比べより狭い範囲の研究が対象
• 研究分野をもとにした研究支援	• 学術研究動向に加え、特定目標を追求する形で決定
例) 数学分野 代数学・数論、確率論、数理生物学	例) 脅威感知のためのアルゴリズム、スマートで連携したコミュニティーの研究など

プログラム設定プロセス

- ▶ 連邦政府の政策、NSFの戦略計画、科学コミュニティ・学会との情報交換等がプログラム策定のベース
- ➤ NSFのプログラムオフィサー (PO) も日々新プログラムの必要性に注意を払っており、プログラム策定に貢献
- ▶ プログラムの多くは各部局(研究領域)内で完結するが、横断的(Crosscutting and NSF-wide)として複数部局が連携するものもある

プログラム策定のベース

- NSFが今後数十年を見据えて2016年に設定した研究領域 (研究アイデア)とアプローチ (実現アイデア)
- 2019年度から予算化、2019年度の関連予算は3億4,300億ドル(約377億円)。NSF全体予算81億ドルの4.2%
- ▶ 幹部らの知見・議論に基づき戦略的/主観的に設定 −新大統領選出時期と重なり、通常であれば示される「研究開発優先項目」などがなかったため、コルドバNSF長官のリーダーシップにより、この機会にNSFとして推進したい研究領域を特定
- ▶ 一部の研究アイデアに対しては、「コンバージェンス加速支援」で異分野のチーム形成と研究推進をサポート

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	FY.		
1の元パイプア	領域予算	コンバージェンス加速支援	
21世紀の科学・工学のためのデータ革命の活用	3,000万ドル	+3,000万ドル	── 後のスライドで詳説
人間と技術のフロンティアにおける未来の仕事	3,000万ドル	+3,000万ドル	
宇宙の窓:マルチメッセンジャー宇宙物理学の時代	3,000万ドル		
量子飛躍:次の量子革命をリード	3,000万ドル		
生命法則の理解:表現型を予測	3,000万ドル		
新たな北極圏の航海	3,000万ドル		

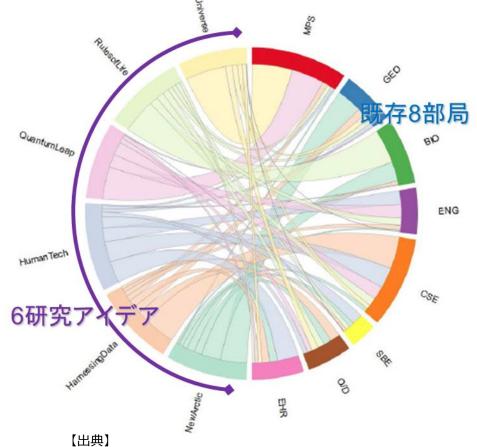
実現アイデア	FY2019予算
コンバージェンス研究の拡大	1,600万ドル
NSF INCLUDES 理数教育を通じたダイバーシティの拡大	2,000万ドル
中規模研究インフラ	6,000万ドル
NSF 2026 斬新なアイデアの長期支援	650万ドル

▶ 2019年度は、次なるビッグアイデアを国民から広く募集する試み「NSF 2026 Idea Machine」を推進

10のビックアイデアの選定方法

➤ NSFの各部局(研究領域)が抱える課題をもとに、NSFによる実現可能性、広いコミュニティの要請があること等を重視してアイデアを作成

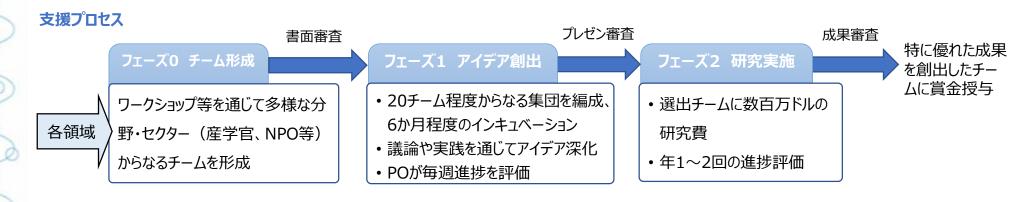
➤ その後、各部局長が部局横断チームを率いてNSF内部および外部研究コミュニティからの意見を盛り込み、アイデアに肉付け


- ▶ 将来投資すべきテーマを網羅するのではなく、 さらなる投資により発展させる価値がある (本来必要な投資ができていない) と考えられるテーマを抽出
- ▶ その上で、詳細で具体的な実施計画の策定、実施 上の課題の洗い出しと解決策を検討
- →既存のNSFポートフォリオ (右図) に基づく検討、 既存の省庁連携イニシアティブとの関係、コンバー ジェンス研究ポートフォリオ増加への対応、NSFの 独自性等

AAIL A AAG

C CTAACT C

1 1110 00


11 001

https://www.nsf.gov/nsb/meetings/2016/0809/Presentations/20160809-CSB-NSFsBigIdeas.pdf

ニニコンバージェンス加速支援による異分野融合の試み

- > 「10のビッグアイデア」における新規取り組み。**ハイリスク研究から革新的な成果を創出するため、チーム形成とプロ** ジェクト推進にNSFが積極的に関与。2019年度予算6,000万ドル (約66億円)
- ▶ 国防高等研究計画局 (DARPA)のマネジメントモデルを一つの参考としている
- > 2019年度は「**成果の実装・橋渡し」**の観点から、最も成熟度の高い「データ革命」と「人間と技術のフロンティア」を 支援領域として設定

【例:2019年公募】

実現アイデア	21世紀の科学・工学のためのデータ革命の活用	人間と技術のフロンティアにおける未来の仕事	
テーマ	オープン知識ネットワーク	AIと未来の仕事/国家人材エコシステム	
フェーズ1 支援規模	最大100万ドル/件 全体で50件採択		
支援期間	9ヶ月		
フェーズ2 支援規模	最大500万ドル/件		
支援期間 2年			

参考:ドイツの若手研究者独立支援制度

若手研究者独立支援制度 1

Max-Planck Research Group Leader (MPRG)

- Max-Planck Association (マックスプランク学術振興協会)が1969年から実施する若手研究者の自立した研究を支援する制度
- □ 協会傘下にある80数ヶ所の研究所ではなく、協会本部が本部資金で支援する仕組みで**独立した研究キャリアを構築**できるような機会を提供

٦.		
		内容
	対象	2ヶ所以上でポスドク経験がある博士号取得から7年(医学博士の場合は9年)以内の若手研究者。国籍不問。
>	分野	マックスプランク研究所の研究領域
×	支援内容	研究者自身の給与、研究アシスタントの人件費、消耗品・機器購入費等:約35万ユーロ/年 4名程度(PI本人+ポスドク+博士課程研究者+テクニシャン)の小さなグループを想定 スタート準備金:~50万ユーロ(初年度)
	支援期間	原則5年で、2回まで2年延長可能=最長9年 5年目までにトップレベルの論文が最低1報でていればよいという程度の条件とされる
///	採択数	申請者300名に対して採用10名程度(年1回公募) ・最近では公的競争的資金によるMPRGや、研究所独自にGroup Leaderを募集するケースもあり ・一部大学のテニュアトラックとMPRGを連動させて、教授キャリアのパスとして機能させている研究所あり

【出典】マックスプランク学術振興協会ホームページと各種インタビューを元にCRDSで作成

若手研究者独立支援制度 2

DFG Emmy Noether Programme

- □ DFG (ドイツ研究振興協会)が1999年から実施する若手研究者の自立した研究を支援する制度
- ドイツでは1999年まで教授論文 (Habilitation)が通らなければ教授になれず、研究組織の長に依存せざる を得なかった。Habilitationの取得無しで教授への道を作ると共に支援枠組みも設定

	内容
対象	博士終了後4年以内(医学・心理学は6年以内) 海外12ヶ月以上のポスドク経験、博士を取得した大学での就業は原則禁止
分野	研究領域全て(但しライフ分野と自然科学分野が多い傾向あり)
支援内容	正当な理由があれば上限額はない(平均支援総額 80万~150万ユーロ/5年) 雇用する研究アシスタント(博士課程研究者)の数にも制限はない (専門によっても異なり、限度額の設定は難しくPIのみの場合は研究費は少なく俸給は規定額) 多くの場合2~4名程度の小グループ 年6千ユーロまでの家族手当が認められている
支援期間	原則5年(例外的に1年の延長が認められる)
採択数	年に50~60名程度を採用、採択率22~23%程度 申請時にホスト機関を(多くが大学、大学以外は10%程度)を決めておく必要あり

【出典】DFGホームページと各種インタビューを元にCRDSで作成