海洋鉱物資源の探査に関する技術開発のあり方について (中間とりまとめ)

平成21年6月12日海洋開発分科会

目 次

要約と結論		i
1. はじめに		1
2. 検討の背	로 	2
(1)海洋鉱	物資源探査・開発を取り巻く世界の情勢	2
(2)民間に	おける検討状況	2
(3)海洋鉱	物資源探査・開発に関する政府の取組み	2
	資源の探査に係る現状と課題	
	物資源とは	
	水鉱床の探査に係る現状と課題	
	・リッチクラストの探査に係る現状と課題	
	技術の現状と課題	
(5)国外の	探査技術の現状	9
	資源の探査に必要となる技術	
	水鉱床の探査	
(2)コバル	・リッチクラストの探査	13
	「域的な探査に必要な探査機技術	
(1)探査全	般に必要な探査機技術	14
	の探査に必要な探査機技術	
(3)局所地	域での詳細な探査に必要な探査機技術	14
6. 海洋鉱物	資源探査以外の分野への波及効果	14
(1)開発され	れた探査技術の科学調査等他分野における活用	14
(2)海洋鉱	物資源の探査の過程で得られたデータ等の他分野における活用	15
	等、今後の研究開発において留意すべき事項	
	省•研究機関の連携	
	全技術を踏まえた探査技術の開発	
	成の取組み	
	の裾野の拡大	
(5)その他		17
【参考文献】		18
【参差資料】		19

要約と結論

(Executive Summary)

1. はじめに

- 四方を海に囲まれた我が国が、新たな海洋立国の実現を目指し、総合的な海洋政策を推進するため、海洋基本法が制定(平成19年4月)され、これに基づき、海洋基本計画が策定(平成20年3月閣議決定)された。同計画では、資源小国の我が国が、自らの資源供給源を確保するため、海底熱水鉱床やコバルトリッチクラスト等の海洋資源の計画的な開発等を推進することとされた。
- 文部科学省では、科学技術・学術審議会海洋開発分科会の下に設置された、 「海洋資源の有効活用に向けた検討委員会」において、これらの海洋鉱物資源 を広域で効率的に探査するために必要な技術開発の内容等について審議し、 中間とりまとめを行った。

2. 検討の背景

- 近年、資源産出国の資源ナショナリズムが高まるとともに、中国など新興経済国の資源の消費量が拡大しつつある。また、いくつかの海外企業においては、海洋鉱物資源の商業化に向けて、鉱区の取得や調査が活発化している。
- 我が国では、これまで、経済産業省を中心として、海底資源探査を実施してきたが、海洋基本計画等の策定を受けて、関係府省連携の下、探査・開発の道筋と必要な技術開発等を具体的に定めた、「海洋エネルギー・鉱物資源開発計画」が総合海洋政策本部会合で了承された。

3. 海洋鉱物資源の探査に係る現状と課題

- 海底熱水鉱床の調査にかかる歴史はまだ浅く、日本周辺海域に未発見の有望海域が残っている可能性が高い。今後、調査すべき海域は極めて広大であるため、既存の探査方法に加え、より効率的に海底熱水鉱床が探査できる技術・手法の開発が求められている。
- 海底熱水鉱床の探査は、従来、その熱水活動に着目したものであったが、開発に当たっては、そこに生息する特異な生物群集への影響に配慮する必要があるため、その活動が停止した鉱床が有望であると考えられる。しかし、現時点では、熱水活動が停止した鉱床の探査手法は確立されていない。また、詳細な資源量の把握において、従来のボーリング調査では、多くの費用と時間を要するほか、掘削深度の限界やコアの回収率が低いことなど、資源の経済評価や開発のために必要となる高い精度での資源量の把握が難しいことが課題として挙げられる。
- コバルトリッチクラストについては、有望な海域(海山)は発見されているものの、 その厚さが不均質であり、現時点では、連続的に厚さを測定する探査手法が確立されていない。

4. 海洋鉱物資源の探査に必要となる技術

○ 海底熱水鉱床の探査は、ボーリング調査等によるサンプリングが必要不可欠であるが、より広域を効率的に探査するためには、自律型無人探査機(AUV)や遠

隔操作型無人探査機(ROV)等を活用したリモートセンシング技術による探査が有効である。これらの探査は、大きく分けて、海水に溶存する熱水由来成分等に着目した探査、海底地形に着目した探査、海底下構造・物性に着目した探査に分類できる。

- 広範囲(100km 四方)で鉱床の存在域を絞り込む段階では、AUV 等を活用し海 底地形や海水成分の計測のほか、鉱床の成因論を踏まえた新たな手法の開発 が必要である。
- 鉱床の存在域(10km 四方:カルデラ内等)から有望鉱床域を特定する段階では、 詳細な海底地形の把握とともに、AUV 等を活用した化学センサーによる海水成 分計測、重力・磁力探査を行うことが効果的である。また、海底下構造把握のた め、AUV や ROV 等を活用した音波(地震波)・電気・電磁探査の高精度化が必 要である。
- 有望鉱床域(1km 四方)において、詳細な資源量を把握する段階では、海底下構造を把握するための音波(地震波)・電気・電磁探査が重要である。特に、より詳細な資源量を把握する段階では、接地型の音波(地震波)・電気・電磁探査が有効であり、高精度化が必要である。

5. 効率的・広域的な探査に必要な探査機技術

- 広域での効率的な探査のためには、機動的に移動し、鉱床に接近することができる AUV を活用することが有効である。AUVについては、リモートセンシングに必要な高出力の電源や安定した水平航走システム等のほか、小型化・軽量化が必要である。
- 海中の詳細な探査に適した ROV の活用も有効である。

6. 海洋鉱物資源探査以外の分野への波及効果

○ 開発されたセンサー類や探査機等の探査技術は、海中・海底・海底下における 多様な科学的な調査への活用が可能である。

7. 研究体制等、今後の研究開発において留意すべき事項

- 海洋鉱物資源は、商業的な掘削が行われた事例がなく、探査・開発には、多額の研究開発資金が必要である。このため、商業化に向けて、国が研究開発を主導し、リスクを軽減する必要がある。
- 現在は、開発したセンサー等を実証するために必要となる、支援母船や探査機等の試験航海の機会(シップタイム)を十分に確保することが困難である。今後、加速度的にこれらの技術開発を進めるためには、実証試験を実施する専用の支援母船及び汎用探査機を整備し、公募等により、通年で試験できる体制を整備することが望ましい。
- 海洋鉱物資源の探査技術の開発は、将来に向けて、継続的な取組みが必要であるとともに、幅広い研究者・技術者の知見・技術を動員する必要があるため、小型から中型の競争的研究資金をより多くの研究者に配分する仕組みや(独)海洋研究開発機構(JAMSTEC)との共同研究等、研究者の裾野を拡大する方策について検討することが必要である。

海洋資源の有効活用に向けた検討委員会 委員名簿

今脇 資郎 (独)海洋研究開発機構 理事(主査)

浦辺 徹郎 東京大学大学院理学系研究科教授(主査代理)

阿部 一郎 住友金属鉱山(株) 取締役専務執行役

浦 環 東京大学生産技術研究所 海中工学国際研究センター長

沖野 郷子 東京大学海洋研究所 准教授

小池 勲夫 琉球大学 監事

鈴木 賢一 日本水産(株)元相談役

平 朝彦 (独)海洋研究開発機構 理事

瀧澤 美奈子 科学ジャーナリスト

寺島 紘士 海洋政策研究財団 常務理事

増田 信行 (独)石油天然ガス・金属鉱物資源機構

金属鉱害防止支援等本部 特命参与

宮崎 武晃 日本マントル・クエスト株式会社 参与

これまでの審議経過

- ○第1回 平成20年12月3日
 - ・ 今後の検討の進め方及び予定について
- ○第2回 平成20年12月18日
 - 有識者からのヒアリング

浦辺 徹郎(本委員会委員:東京大学大学院理学系研究科教授)

塩川 智 ((独)石油天然ガス・金属鉱物資源機構 金属資源技術部長)

阿部 一郎 (本委員会委員:住友金属鉱山(株)取締役専務執行役)

青木 太郎 ((独)海洋研究開発機構海洋工学センター

先端技術研究プログラム プログラムディレクター)

- ○第3回 平成21年1月8日
 - ・「海洋資源の利用促進に向けた基盤ツール開発プログラム」研究代表者からのヒアリング

浅田 昭 (東京大学生産技術研究所教授)

岡村 慶 (高知大学海洋コア総合研究センター准教授)

佐柳 敬造(東海大学海洋研究所准教授)

浦 環 (本委員会委員:

東京大学生産技術研究所海中工学研究センター長)

- ○第4回 平成21年1月29日
 - 有識者からのヒアリング

飯笹 幸吉((独)産業総合技術研究所地質情報研究部門

海底系地球科学研究グループ グループリーダー)

山野 澄雄((株)フグロジャパン代表取締役社長)

西川 有司((社)メタル経済研究所主任研究員)

- ○第5回 平成21年2月19日
 - 有識者からのヒアリング

宮崎 武晃(本委員会委員:(独)海洋研究開発機構海洋工学センター長)

- ・ 中間とりまとめ(素案)について
- ○第6回 平成21年3月16日
 - ・ 中間とりまとめ(案)について
- ○第7回 平成21年4月9日
 - ・ 中間とりまとめ(案)について

1. はじめに

- 四方を海に囲まれた我が国は、世界第6位の広さを誇る排他的経済水域 (EEZ)を有する。さらに、平成20年11月には、国連に、国土(約38万k m²)の約2倍(約74万km²)に及ぶ大陸棚の延伸に関する申請を行った。 これらの海域には、海底熱水鉱床やコバルトリッチクラスト等の多くの海洋 鉱物資源が存在していると考えられている。
- 新たな海洋立国の実現を目指し、総合的な海洋政策を推進するため、海 洋基本法が制定(平成19年4月)され、これに基づき、海洋基本計画が 策定(平成20年3月閣議決定)された。同計画では、資源小国の我が国 が、安定的な自らの資源供給源を確保するため、海底熱水鉱床について、 今後10年程度を目途に商業化を目指すとともに、コバルトリッチクラストに ついて、今後、調査・開発のあり方を検討することとされた。
- これらの海洋鉱物資源の商業化を検討するためには、資源量を正確に 把握し、経済性評価を行うことが必要不可欠であるが、現在、資源量の把 握に必要な基盤的技術は必ずしも十分に確立されているとは言えず、こ れらの資源をより効率的に探査する技術・方法等について、喫緊に技術 開発を実施していく必要がある。。
- このような背景を踏まえ、科学技術・学術審議会海洋開発分科会に設置された、本「海洋資源の有効活用に向けた検討委員会」では、これらの海洋鉱物資源を広域かつ効率的に探査するために必要な技術開発の具体的内容等について、関係機関及び有識者等からのヒアリングを実施しつつ、審議を行い、本「中間とりまとめ」として整理した。
- 今後、文部科学省では、経済産業省等の関係機関と密接な連携を図りつつ、本「中間とりまとめ」を踏まえ、競争的研究資金制度「海洋資源の利用促進に向けた基盤ツール開発プログラム」の新規公募や(独)海洋研究開発機構(JAMSTEC)における技術開発を実施していくとともに、平成22年度以降の予算要求に反映していくことを予定している。
- これら技術開発を進めるにあたっては、(独)石油天然ガス・金属鉱物資源機構(JOGMEC、旧金属鉱業事業団)や民間企業等のエンドユーザーのニーズを十分踏まえることに留意するとともに、得られた技術開発成果が実際に現場で大いに利用されることとなるよう期待したい。

2. 検討の背景

- (1)海洋鉱物資源探査・開発を取り巻く世界の情勢
 - 近年、資源産出国における資源ナショナリズムが高まるとともに、中国 など新興経済国における鉱物資源の消費量が拡大されつつある。
 - 特に、英国やカナダの海外企業のいくつかは、資源メジャーの支援を 受けて、海底熱水鉱床の探査・開発の動きを活発化させてきており、商 業化に向けて、鉱区の取得や調査の実施を行っている。また、我が国 では、鉱業法に基づき、排他的経済水域において、鉱区申請を行う動 きもある。
 - 平成 20 年度後半以降の世界的な経済不況の影響により、現在は、これらの外国企業の開発活動に遅延が生じている趣きではあるが、長期的に見れば、これらの活動がいずれ活発化・本格化する可能性が高い。

(2)民間における検討状況

- 海外企業の海洋資源の開発の動向等を踏まえ、国内においても、排 他的経済水域等における海洋鉱物資源探査・開発に対する期待が高 まっている。
- 平成 20 年度に、大手商社や海洋開発会社等で構成される研究会が 発足し、海底熱水鉱床の調査に必要な技術や投資額等を盛り込んだ 計画を策定する方針を示した。
- 海底熱水鉱床をはじめとする海洋鉱物資源の開発は、これまで国内外を問わず開発事例がなく、多額の研究開発資金が必要と予想されるほか、資源価格の乱高下など参入リスクが高いことから、国の支援が強く求められている。

(3)海洋鉱物資源探査・開発に関する政府の取組み

- 我が国では、これまで、経済産業省資源エネルギー庁及び JOGMEC を中心として、海底資源探査が実施されるとともに、JAMSTEC や東京大学、(独)産業技術総合研究所等が、海底熱水鉱床等の科学的調査を実施している。
- 我が国では、新たな海洋立国の実現を目指すため、平成19年4月に、

総合的な海洋政策の方針を示した海洋基本法が制定された。本法では、国は、海洋環境の保全並びに将来に亘る持続的な開発及び利用を可能とすることに配慮しつつ、海洋資源の積極的な開発及び利用を推進するとともに、そのために必要な体制の整備等を講ずることとされた。

- 同法を受けて、海洋に関する施策の総合的かつ計画的な推進を図るため、平成20年3月に、海洋基本計画が決定された。同計画では、資源小国である我が国において、他国の資源政策に影響されない、安定的な資源の確保を図ることが喫緊の課題であることから、当面の探査・開発の対象として、海底熱水鉱床について、今後10年程度を目途に商業化を実現するため、必要な政策資源を集中的に投入するとともに、コバルトリッチクラストについて、調査・開発のあり方を検討することとされた。
- 平成 20 年度末に、これらの探査・開発の道筋と必要な技術開発等を 具体的に定めた、「海洋エネルギー・鉱物資源開発計画」が関係府省 の連携の下、策定され、総合海洋政策本部会合で了承された。

3. 海洋鉱物資源の探査に係る現状と課題

(1)海洋鉱物資源とは

- 海底には、海底熱水鉱床やコバルトリッチクラスト等の鉱物資源が多く 存在していると考えられており、採取されたサンプルからは、金や銀な どのほか、コバルトなどのレアメタルが多く含まれることが示唆されてい る。
- これらの海洋鉱物資源については、我が国の EEZ においても、有望海域が多数発見されているが、正確な資源量を把握し、その経済価値を評価する調査は、まだ、ほとんど実施されていない。

① 海底熱水鉱床

○ 海底熱水鉱床とは、「地下深部に浸透した海水が、マグマ等の熱により熱せられ、地殻に含まれる有用元素を抽出しながら海底に噴出し、それが冷却される過程で熱水中の銅・鉛・亜鉛・金・銀等の重金

属が沈殿することにより生成された多金属硫化物鉱床」である。熱水活動は、数年から数百年程度継続されると考えられており、海底は、数mのチムニーが林立するなど、海底地形の起伏が激しいことが特徴である。

- 海底熱水鉱床は、リフト帯(正断層による地殻運動に伴い海底面が 沈降・陥没した場所)の海底火山やカルデラ火山などに伴って形成 される場合が多い。これらの火山地形においては、断層に沿って熱 水が上昇し、海底にチムニーやマウンドからなる鉱床を作る。このよう な鉱床は活動を停止したり、火山活動で崩壊したり、あるいは堆積 物で埋没したりすることがある。一方、堆積物が厚く堆積している場 所では、マグマが貫入する途中で冷却され、岩床や岩脈となり海底 には噴出しない場合が多く、その活動に伴って地層中に海底熱水 鉱床が形成される場合もあると考えられている。探査においては、海 底熱水鉱床に様々な形態があることに留意する必要がある(参考2 参照)。
- 海底熱水鉱床は、水深1,000~3,000mの中央海嶺の海底拡大軸や 西太平洋の島弧-海溝系の背弧海盆等に存在し、これまで世界で 350 箇所程度発見されている。特に、我が国周辺海域に存在するも のは、陸に近い場所に分布し、水深が700~1,600mと比較的浅い。
- 熱水の噴出には寿命があり、過去に熱水噴出の活動があった噴出口の周辺にも鉱床が存在している。活動が停止した海底熱水鉱床(堆積物に埋没したものを含む)の正確な資源量を把握し、海底熱水鉱床の資源ポテンシャルを明らかにすることが重要である。
- 熱水噴出口付近には、光合成ではなく、太陽光を必要としない化学合成に依存する特異な生物群集が存在している。これらの生物については、熱水噴出口付近のみにしか生息しない生物が多く存在するということである。これらの生物は、科学調査の対象として価値があるのに加え、遺伝子資源としても貴重であり、医薬品、化学産業からの期待も大きい。ただし、活動が停止した海底熱水鉱床の周辺には、これらの生物群集は存在しない、もしくは数・種類が少ないと考えられる。

② コバルトリッチクラスト

- コバルトリッチクラストとは、「海水中に溶存している金属成分が沈殿 し、固着したものであり、海底の岩盤を厚さ5~15cm 程度の不均質 で皮殻状に覆うマンガン酸化物のうちコバルトの品位が高いもの」を いう。また、微量の白金を含むサンプルも採集されている。
- コバルトリッチクラストは、主に大洋の水深 800~2,400m の海山の斜面や山頂部に存在する。我が国周辺海域では、南鳥島近海等に存在することが確認されている。

③ マンガン団塊

- マンガン団塊とは、「海水中に溶存している金属成分が酸化的環境で、核となるものの周りに成長したもので、直径 2~15cm の球形ないしは楕円形の塊状のもの」である。
- 太平洋やインド洋の水深4,000~6,000mの深海底表層に広く存在し、 銅、ニッケル、コバルトの品位が高い。
- 採鉱や製錬にあたっては、多額のコストが発生することなど、現時点では経済性等の観点から、商業化を目指した開発機運が高くない。
- これまで、昭和49年から、金属鉱業事業団(現 JOGMEC)が調査を 開始した後、昭和62年にハワイ南東方沖に75,000㎡の鉱区を取得 するなど、官民による本格的な調査が行われたが、平成8年には調 査を終了している。
- 中長期的には有望な資源となる可能性もあるが、資源量については 概ね把握されており、他の海洋鉱物資源に比べて新たな探査手法 等の開発の必要性が薄いことから、本報告書では取り扱わないことと する。

(2) 海底熱水鉱床の探査に係る現状と課題

経緯

○ 昭和 60 年度から、金属鉱業事業団(現 JOGMEC)が、東太平洋中央海嶺や沖縄トラフ海域、伊豆・小笠原海域を中心に海底熱水鉱床の調査を開始した。その後、大陸棚延伸の調査のため、平成 15 年度に一旦調査を終了した。平成 20 年度から、JOGMEC が、同海域

におけるボーリング調査、海洋環境基礎調査、環境影響予測モデルの開発、環境保全策の検討等を開始した。

- JAMSTEC や東京大学海洋研究所、(独)産業技術総合研究所等に おいても、海底熱水鉱床に関する科学的な調査が実施されている。
- これらの調査によって、同海域において、15 箇所程度、海底熱水鉱 床の兆候が確認されている。うち幾つかは、広範囲に分布することが 確認されている。

② 既存の探査手法

- 既往調査や文献等により、火山活動の分布等の情報を入手し、調査対象海域を選定する。
- 選定した海域において、音響・磁気等の物理探査により、火山活動 の痕跡であるカルデラ地形・環状構造や磁気異常等を確認し、地形 特徴の把握や火山岩の分布等を把握し、熱水活動が想定される海 域を抽出する。
- 電気伝導度水温水深計(CTD)や多筒採水器等を用いて、海水を 採取・分析することにより、水温や濁度、海水中の熱水由来成分の 濃度等、熱水活動による海水の異常を検出し、有望海域を抽出す る。
- 熱水活動の兆候が見られる海域に、テレビカメラ等を用いた目視による調査を実施し、熱水の噴出が確認された地域において、資源量を把握するために、音響調査による詳細な海底地形の計測や海底面のサンプリングにより平面的な広がりを把握するとともに、深海用ボーリングマシンシステム(BMS)により、鉛直方向の広がりを把握し、三次元的な鉱床分布を推定する。

③ 課題

- 海底熱水鉱床の調査にかかる歴史はまだ浅く、日本周辺海域に未発見の有望海域が残っている可能性が高い。今後、調査すべき海域は極めて広大であるため、既存の探査方法に加え、より効率的に海底熱水鉱床が探査できる技術・手法の開発が求められている。
- 既存の探査手法は、活動中の熱水活動に特徴的な海底地形や、熱

水由来の成分等に注目したものが中心であるが、活動中の海底熱水鉱床周辺には、科学調査の対象としても重要な深海底に固有の生態系が存在しており、探査・開発にあたっては、このような生態系に対して影響を与える恐れがあることから、環境保全に配慮した開発が求められている。

- このため、開発対象としては、より環境負荷が少ない、熱水活動が停止した海底熱水鉱床が有望であると考えられるが、熱水活動が停止した鉱床については、熱水活動に特徴的な熱水由来の成分等を探査対象とすることができないため、鉱床の探査はより困難である。
- 特に、熱水活動停止から時間が経過し、堆積物に埋没した海底熱水鉱床については、鉱量の観点から有望な開発対象となると考えられるものの、チムニー等の特徴的な海底地形も埋没しているため、有効な探査手法が確立されていない。このような埋没鉱床の探査手法は、今後の課題である。
- 鉛直方向の資源量の把握には、ボーリング調査が必須であるものの、ボーリング調査には、多くの費用と時間を要する。また、現状ではボーリング調査に用いられる BMS の最大掘削深度が 20m 程度であるため、これを超える深さの鉱床の鉛直方向の広がりを把握することは困難である。また、急傾斜地に設置することができないことや、掘削コアの回収率が高くないことなどが課題としてあげられる。このように、現状の技術レベルでは、海底熱水鉱床が発見できたとしても、鉛直方向の広がりや、品位を含めた資源の経済評価や開発のために必要となる高い精度での資源量の把握が難しいことが課題として挙げられる。

(3)コバルトリッチクラストの探査に係る現状と課題

① 経緯

○ 昭和62年度から、金属鉱業事業団(現 JOGMEC)は、公海上(南鳥島-ウェーク島海域及びウェーク島-ジョンストン島海域)で調査を実施し、平成17年度に有望海山を9つ選定した。現在、同海山について、国際海底機構への鉱区申請に必要な詳細なボーリング調査を実施している。

○ また、平成 20 年度から、同海域に隣接する南鳥島周辺の我が国の EEZ において、調査に着手した。

② 既存の探査手法

- コバルトリッチクラストの存在を把握している海域において、地形探査や音響調査、テレビカメラ等により、クラストの被覆率を測定する。
- ドレッジや BMS 等によりサンプルを採取し、厚さの測定及び金属含有率の解析を実施する。

③ 課題

○ 有望な海域(海山)は発見されているものの、コバルトリッチクラストの 厚さが不均質であるため、経済性評価のためには、連続的な厚さの 測定を実施するための技術開発が必要である。

(4)探査機技術の現状と課題

① 現状

- JAMSTEC においては、船舶や有索の調査船等が近づくことが難しい場所における調査を行うため、自力で航行し、自動観測する自律型無人探査機(AUV)「うらしま」を開発しており、平成17年2月に、世界最長航続距離である317kmを達成した。
- その後、「うらしま」を起伏のある海底に追従できるように改良し、探査機に搭載した音響測深機等の精度を向上することにより、平成 19 年 5 月に、沖縄トラフの熱水噴出域の熱水マウンド及びチムニー群の詳細な形状と分布のイメージングに成功した。
- また、最大 3000m までの潜航が可能な探査機「ハイパードルフィン」 や 1 万 m 級の探査能力を持つ探査機「ABISMO」等、海中・海底で 観測やサンプリング等を実施できる遠隔操作型無人探査機(ROV) が開発されている。
- 東京大学生産技術研究所においては、中型の自律型海中ロボット 「r2D4」を開発し、平成17年度、19年度に伊豆・小笠原海域の明神 礁やベヨネース海丘のカルデラ内に潜航させ、小型現場型マンガン 分析装置、サイドスキャンソナー、テレビカメラなどで観測することに

成功した。

② 課題

- 海面での観測船からの探査では、強風や波浪等の外力の影響を受けることや海底面からの距離が離れていることなどにより、精度の向上に限界がある。このため、海中において自在に探査が可能な探査機の活用が必要である。
- しかしながら、現在までに、資源探査に活用される探査機に求められる機能・性能について体系的な検討が行われたことが無く、資源探査を効率的・効果的に行うための探査機の開発が十分に行われているという状況にない。

(5)国外の探査技術の現状

- 国外においては、資源の探査のみならず、科学的調査や軍事利用の ためのリモートセンシング技術が発達しており、特に米国において、これらの技術開発が積極的に実施されている。
- 音響装置を活用した探査機器としては、海底地形を把握するためのサイドスキャンソナー、海底下構造を把握するためのサブボトムプロファイラー等が開発されており、すでに実用化されている。しかしながら、未発見の海底熱水鉱床等の探査や海底熱水鉱床の資源量の評価を効率的かつ広域に実施できる技術はまだ十分とは言えない。
- 国外では、地形計測や海底下の物理探査のほか、軍事目的の調査等、目的に応じて多様な大きさ・形態・機能を持った AUV 等が開発されており、その台数も多い。形状としては、魚雷型の AUV が最も多く、全長は1m前後のものから10mを越えるものまで、重量は1t前後のものから14tを越えるものまで様々である。最大航走速度は、4 ノット程度のものが多いが、8 ノット程度で航走することができるものもある。しかしながら、海底熱水鉱床等の海洋資源の探査に適した AUV、ROV 等は少なく、また、それらについても、より効率的な探査をするための性能の向上が必要である。
- 我が国の海洋探査に関する技術は、これら海外の技術レベルと比較しても比較的高い水準にあると認識されている。今後の探査技術の開発

にあたっては、海外の優れた技術・機器で導入可能なものについては 積極的に取り入れていくことを前提としつつ、先端的な技術開発に集 中的に資源投入していくことが重要である。

4. 海洋鉱物資源の探査に必要となる技術

- (1)海底熱水鉱床の探査
 - 海底熱水鉱床の探査には、ボーリング調査やドレッジなどによる海底表層及びコアのサンプリングの実施が必要不可欠であるが、より広域かつ効率的な探査のためには、取得したサンプルの分析とともに、AUVやROV等を活用したリモートセンシング技術による探査が有効であると考えられることから、本報告書では、これらのリモートセンシング技術による探査を中心に検討する。
 - リモートセンシング技術による探査として、(A)熱水由来成分や熱異常等海水に着目した探査手法、(B)カルデラといった大地形やチムニー等熱水噴出域に特有の構造等、海底地形に着目した探査手法、(C)鉱床域周辺の岩石と鉱床の物理特性の違い等、海底下構造・物性に着目した探査手法に大きく分類し、検討する。
 - 探査方針としては、①鉱床賦存地域の絞込み(100km オーダーの探査)、②カルデラ内等における鉱床の特定(10kmオーダーの探査)、③ 鉱床の資源量評価(1km オーダー:特に深さ方向の賦存状況の把握) の各探査の局面毎に、必要となる技術を検討する。
 - 探査対象の鉱床としては、経済性を考慮し、水平方向の広がりを500m 四方、鉛直方向の広がりを10m以上の規模とし、水深3,000mまでの海 域において、海底下 100mまでに存在する(鉱床に被覆している堆積 物等の最大層厚を100mとする)ことを仮定する。
 - 探査モデルとしては、(ア)熱水活動を伴っている海底熱水鉱床、(イ) 熱水活動は停止しているものの埋没していない海底熱水鉱床、(ウ)堆 積物中に埋没している海底熱水鉱床の3種類を想定して検討する。
 - AUV は海底面上 50m の高さを航走することができ、上下(高さ)方向の 移動ができることを想定する。ROV は、船上からの電源供給が可能で 海中・海底面での探査が可能であることを想定する。また、曳航式の場 合は、船舶(もしくは AUV)により海底面上 100~150m の高さ(高さ方

- 上述の探査モデルのうち、(イ)については、(A)熱水由来成分や熱異常等海水に着目した探査手法が採用できない。また、(ウ)については、(A)海水に着目した探査手法のほか、(B)海底地形に着目した探査手法が採用できないという違いがあるものの、(C)海底下構造・物性に着目した探査手法については、いずれの探査モデルにも共通する探査手法である。このため、特に開発が望まれる、活動が停止した海底熱水鉱床の探査にあたっては、(C)海底下構造・物性に着目した探査手法が有意な探査手法である。
- 以下では、(A)~(C)の探査手法が全て網羅できる(ア)熱水活動を伴っている海底熱水鉱床を対象として、必要な技術について洗い出し、その検討結果をまとめる。詳細なスペック等は、別表に示すとおりである。

① 鉱床賦存地域の絞込み(100km オーダーの探査)

- 100km オーダーの広範囲から、有望鉱床の存在の可能性が高い地域を絞り込む際には、火山活動の分布のほか、AUVと音響探査による詳細な海底地形の計測が有効である。また、熱水活動を伴っている場合には、熱水由来成分等は海水中を比較的広範囲に広がると考えられるため、化学センサーとAUV等を活用した広範囲の探査が可能である。技術開発にあたっては、より多成分の熱水由来成分等を検出でき、自動的かつ連続的に計測する技術を開発することが必要である。
- 海底地形の計測のためのセンサー等の計測機器については、AUV 等に搭載することを想定し、軽量化・小型化を図ることが重要である。
- この他、鉱床の成因論を踏まえ、広範囲の探査が可能となる新たな 手法を開発していくことが、今後の効率的な探査に向けて重要であ る。

② 鉱床の特定(10km オーダー:カルデラ内等)

○ カルデラ内等において鉱床を特定する場合は、重力探査(周辺の岩

石と鉱床の密度差を把握)や磁力探査(熱水活動に伴う消磁や磁性 鉱床が存在することによる周辺との磁場の差を把握)が有効であると 考えられる。重力探査や磁力探査は、陸上の鉱床の探査で既に実 施されているが、AUV に搭載して探査を行うため、装置の小型化や センサーの高感度化が必要である。また、重力探査や磁力探査の 結果と地形データを組み合わせて探査を実施していくことが効果的 である。

- また、音波・地震波探査[音波(地震波)を海底面から海底下を透過させ、音響的な不連続面(鉱床と周辺の岩石の境界等)で反射した音波(地震波)を受信し解析することで海底下の構造を把握]や、電気探査[地中に通電することにより取得できる海底下の比抵抗値を把握]、電磁探査[人工的に磁場を発生させ、その磁場の変化により発生する誘導電流を測定し海底下の比抵抗値を把握]など、海底下の構造を把握するための探査も有効と考えられる。
- 上述の音波(地震波)、電気、電磁による探査手法を用いる際、比較的広範囲を効率的かつ効果的に探査するために、計測機器を AUV やROV等に搭載し探査したり、母船や AUV から曳航させたシステムにより探査することが望ましいと考えられる。また、高分解能化を図るとともに、深さ 100m までの計測を可能とする必要があり、特に、音波・地震波探査の場合には、深さ 100m まで透過するとともに、必要な解像度が得られる最適な周波数を発信できる音源を搭載する必要がある。
- この他、100km オーダーの探査と同様、AUV と音響探査による詳細な海底地形の計測が有効であるほか、熱水活動を伴っている場合には、熱水由来成分・熱異常等の海水の特性に着目した探査手法が活用できるという特徴がある。
- ③ 鉱床の資源量評価(1km オーダー:特に深さ方向の賦存状況の把握)
 - 鉱床の兆候が確認され、鉱床の資源量を評価するための詳細な調査を実施する場合には、詳細な地形の計測のほか、音波・地震波探査や電気探査、電磁探査など鉱床域周辺の岩石と鉱床の物理特性の違いに着目した手法が有効な探査手法と考えられる。特に、音

波・地震波による探査は、鉱床の三次元的な構造を把握する手法として有用である。

- これらの探査手法は、前述のとおり、計測機器を AUV や ROV に搭載し探査するほか、母船や AUV から曳航したシステムにより探査することで効果的な探査が可能である。
- また、詳細な探査を行うためには、探査機器を接地させることが有効であるとともに、より効率的な探査を行うために、ROV 等と探査技術を組み合わせて、接地(停止)と移動を繰り返す手法が有効と考えられる。この他、より詳細かつ正確な探査を行うために、海底下にセンサーを埋め込み探査することも考えられ、これらを一連のシステムとして開発を行っていく必要がある。
- これらの探査技術の開発にあたっては、各手法の高分解能化を図るとともに、深さ100mまでの計測を可能とする必要がある。特に、音波(地震波)探査の場合には、深さ100mまで透過するとともに、必要な解像度が得られる最適な周波数を出すことが可能な音源(波源)を搭載する必要がある。

(2)コバルトリッチクラストの探査

- コバルトリッチクラストは、海底の岩盤を厚さ5~15cm 程度に不均質で 皮殻状に覆っており、資源量を評価するためにはその厚さを正確に計 測する必要がある。
- 厚さの計測に当たっては、コバルトリッチクラストが広範囲にわたって分布していること、海山や海台など斜面にも多く存在していると考えられていることから、既存の BMS 等によるボーリングとともに、AUV を活用した効率的な探査が必要となる。
- コバルトリッチクラストと周辺の岩石との物理特性が似ていること、厚さが5~15cm 程度と薄いことから、高周波の音波による 1cm オーダーでの厚さの計測技術の開発が求められる。特に、コバルトリッチクラストの場合、コバルトリッチクラスト周辺の岩石とコバルトリッチクラスト自体の物理特性の差異が小さいため、適切な発信周波数を特定し、その音源による探査が必要となる。

5. 効率的・広域的な探査に必要な探査機技術

- (1)探査全般に必要な探査機技術
 - 効率的かつ広域的な探査を実施するためには、移動が容易で鉱床そのものに近づくことができる AUV や ROV 等の探査機を用いて探査を行うことが有効である。
 - 探査機器については、音源等高出力の電源供給が必要となることから、 高出力が可能な電源システムを開発し、計測機器を搭載し航走する技 術の開発が必要であるほか、複数の AUV 等を用いて探査を実施する など、探査時間の短縮のための技術開発も重要である。
 - また、多様な母船を活用した探査の実施を可能とするため、探査機の 小型化・軽量化も必要である。

(2) 広域での探査に必要な探査機技術

○ より広域での探査を実施するためには、1 回あたりの航走距離・航走時間を長くすることが効果的である。このため、長距離・長時間の航走を確保するための動力源が必要となる。

(3) 局所地域での詳細な探査に必要な探査機技術

- 局所地域での詳細な探査を実施するためには、センサー等による計測に影響を与えない、安定的かつ高精度の航走を実現する必要がある。特に、重力探査などでは、上下の振動が探査結果に大きな影響をもたらすため、一定の海底面からの高さを保持できる技術も重要となる。
- 音波(地震波)探査や電気探査、電磁探査の場合、高精度に計測するにあたって接地して計測を行うことが重要であるが、効率的な探査の観点から、計測と移動を容易に繰り返すことができるROVの開発も必要となる。また、サンプルの取得や計測装置の埋設など、ROVの作業技術の高度化に関する技術開発も必要である。

6. 海洋鉱物資源探査以外の分野への波及効果

- (1) 開発された探査技術の科学調査等他分野における活用
 - 技術開発されたセンサー類や探査機等の探査技術については、海

- 中・海底・海底下の状況の科学的な調査での活用が可能である。
- 効率的な科学調査等のため、開発されたこれら探査技術を十分活用していくことが重要である。
- (2)海洋鉱物資源の探査の過程で得られたデータ等の他分野における活用
 - 海底熱水鉱床をはじめとする海洋鉱物資源の探査を行い、海底地形 や海底下構造、海水成分等のデータを蓄積することは、地球環境の変 遷の解明に向けて重要な手がかりとなると考えられる。
 - また、海底の熱水活動は、地球冷却の 5%を担う主要な現象で、地球上最大の熱水循環として、その流量は陸上の全河川に匹敵すると計算される。このため、地球における熱循環、物質循環の研究等においても、重要なデータである。
 - 我が国には、多金属硫化物鉱床である黒鉱鉱床が数多く知られており、 特に東北地方ではこれまで比較的規模の大きな商業採掘が行われて きた。これらの鉱床と海底熱水鉱床とは、成因が類似のものと考えられ ており、海底熱水鉱床の探査で得られた知見は、さらに陸上の鉱床の 探査にも活用できると考えられる。

7. 研究体制等、今後の研究開発において留意すべき事項

- (1)関係府省・研究機関の連携
 - 海洋資源に関連する分野は、理学から工学、経済学までと、多岐に渡っている。
 - 海洋鉱物資源の開発は、商業化した事例がなく、探査・開発には、多額の研究開発資金が必要である。このため、商業化に向けて、国が研究開発を主導し、リスクを軽減させていく必要がある。
 - 資源量の探査、採鉱、揚鉱、製錬の技術開発は密接につながっており、 探査データの提供など研究成果の共有が必要である。
 - このため、文部科学省や経済産業省資源エネルギー庁等の関係府省、 JAMSTEC や JOGMEC 等の関係機関、大学など、組織の枠を越えた 連携や体制作りが必要である。
 - また、探査機技術及び探査機に搭載するセンサー等技術の開発については、実海域における実証試験を繰り返し実施することが肝要であるが、現状では、当該実証試験のために必要な支援母船や、AUV や

ROVなどの深海探査機の運航機会(シップタイム)を十分に確保することが困難である。今後、加速度的にこれらの技術開発を進めるためには、海洋探査機技術及びセンサー等技術の実証試験の実施のための専用の支援母船及び汎用探査機(AUV、ROV等)を整備し、公募等により、当該実証試験を通年で実施できる体制を整備することが望まれる。

○ 探査にかかる要素技術を組み合わせ、システム化を図っていくにあたっては、大学、民間等の研究者との共同研究等を通じ、JAMSTEC が研究開発の中核的な役割を果たしていくことが期待される。

(2)環境保全に配慮した探査技術の開発

- 活動中の海底熱水鉱床周辺には、化学合成に依存する特異な生物群 集が存在し、地球生命誕生の場として注目されるとともに、これらの生 物は遺伝子資源として、今後、医薬品や新材料等、関連産業の発展 に繋がる可能性がある。
- 近年、生物多様性保全の機運の高揚、海洋での海洋保護区設定の動き、生物多様性基本法の成立等により、環境保全の重要性に関する認識が高まりつつある。また、平成8年に改正されたロンドン条約においても、現在は禁止されていない海底鉱石を揚鉱した際の残渣等の海洋投棄について何らかの制約を設けるべきではないかとの議論も始まっており、開発域での生態系の保全に関する機運が高まってきている。
- 国連海洋法条約に基づき、公海域の海洋鉱物資源を一元的に管理している国際海底機構において、現在、公海域の海底熱水鉱床及びコバルトリッチクラストに関する鉱業規則(マイニングコード)を審議している。
- これらの事項を踏まえて、探査技術の開発にあたっては、環境保全に 配慮し進めていくことが重要である。

(3)人材育成の取組み

- 海洋分野における研究者・技術者は、若手人材が質・量ともに不足しており、後継者の育成が喫緊の課題である。
- 資源分野においては、大学における学科の再編等が行われているが、

- 当該分野の重要性に鑑み、今後とも大学等における専門的なカリキュラムの充実が期待される。
- 海洋資源の探査・開発は、将来に向けて継続的な取組みが必要であり、 幅広い人材を育成する必要がある。

(4)研究者の裾野の拡大

- センサー等探査技術の開発は、研究者の自由な発想による多彩なアイディアが必要であり、多くの異分野を糾合することにより新たな技術が生まれる。
- 産学官の幅広い研究者の知見・技術を動員するという視点から、小型から中型の競争的研究資金をより多くの研究者に配分する仕組みや JAMSTEC との共同研究等、研究者の裾野を拡大する方策について検討することが必要である。

(5)その他

- より効率的な探査を実施していくためには、政府が中心となって開発した探査技術や AUV 等の探査機技術を民間企業等へ移転し、我が国として展開できる探査システム、探査機等の数を確保していくことが重要である。
- その一方で、これらのデータは、国際的な利害関係が絡む鉱区申請に 必要となるデータにもなることから、その取扱いについては、今後慎重 な議論を行っていく必要がある。
- 活動中の熱水鉱床探査においては、海水成分の計測を行う必要があるが、その化学的性質は水の流動に伴って拡散することから、鉱床の詳細な場所を効率良く特定するためには、流速、拡散のしやすさ、潮汐などのシミュレーションに関する研究や観測などが必要である。

【参考文献】

大岡 隆,「深海底鉱物資源探査の現状と物理探査の適用について」(2008)

経済産業省,「海洋エネルギー・鉱物資源開発計画」(2009)

海洋技術フォーラム,「深海底鉱物資源開発マスタープラン」(2007)

(独)海洋研究開発機構委託調査 「海底資源探査に有効なシステム等に関する基礎調査報告書」(2009)

東京大学海洋アライアンス、「海底熱水鉱床の開発に関する勉強会-中間報告-|(2008)

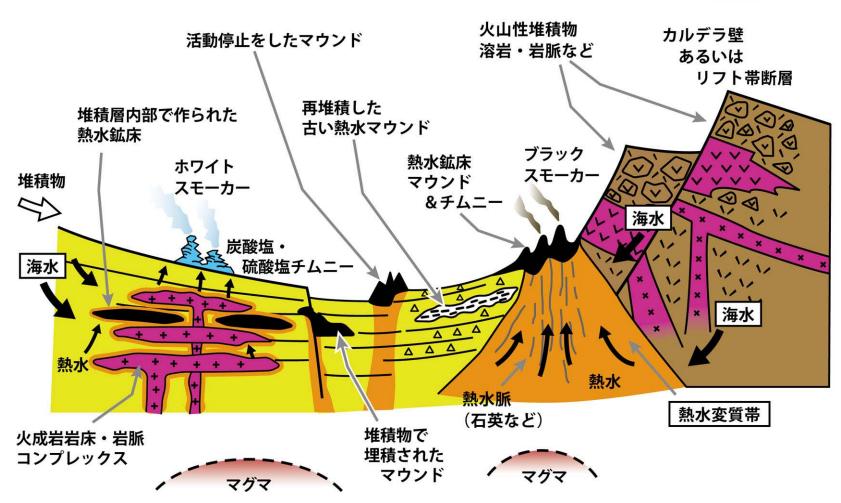
海底熱水鉱床開発促進化技術検討委員会,「海底熱水鉱床開発促進化技術調査長期計画」(2008)

(独) 石油天然ガス・金属鉱物資源開発機構,日本近海の海底鉱物資源賦存状況調査 (2007)

探査モデル	(イ)熱水活動は停止し		査 · ない海底熱水鉱床の探査 (チ 堆積物の厚さは100m程度までを想		消磁等熱水活動の痕跡	は残存)		
探査対象	モデル鉱床の規模: 500	lm×500m×10m 賦存地域	の水深:3000m以浅					
探査レベル	1) \$	広床賦存地域の絞込み(10	0km オーダー)	2)鉱床の特定(10kmオー	ダー:カルデラ内等)	③ 資源量評	価(1kmオーダー;特定の鉱床)
探査における着 目点	(A)海水 (熱水由来成分の検出、 水温異常・濁度等の把 握)	(B)海底地形 (カルデラ地形等の大構 造を把握)	(C)海底下構造・物性 (鉱床の賦存の可能性がある地 質大構造を把握)	(A)海水 (熱水由来成分の検 出、熱異常・濁度等の 把握)	(B)海底地形 (チムニー等の発見)	(C)海底下構造・物性 (鉱床を胚胎する地質構造の把握)	(B)海底地形 (鉱床の平面的な拡 がりを把握)	(C)海底下構造・物性 (鉱床域周辺の岩石と鉱床の物理特性 の違い等を把握し、鉱床の規模を把握)
既存の探査技 術	○ 母船とCTDシステムに よる熱水由来成分 の検出、水温・濁度 異常の検出	○ 火山活動の分布 など から鉱床の賦存地域 を推定	○ 船舶 からの磁力探査、重力 探査	○母船とCTDシステムによる熱水由来成分の検出、水温・濁度異常の検出	○ TVカメラ等による 目視調査 ○ 海底面のサンプリ ング		○ TVカメラ等による 目視調査○ 海底面のサンプリ ング	○ BMS(ボーリングマシン)による掘削
今後開発が求 められる技術 〔技術開発のポ イント〕			 ○ 鉱床の成因論や既存取得 データ分析による、有望鉱床 (地域)の絞り込み は、ハード(センサー等)のみの技術をした場合に計測可能とすべき技術 		○ AUV等を用いた音響装置による地形計測 【·AUV等の活用 ·高精度化(数十 cm⇒数cm)】	○ AUV・ROV等によるサンプリングシステム 【・正確な位置把握・探取の効率化】 ○ 移動しながらの磁力探査 【・AUV・ROV・曳航体等への可搭載化・高感度化(現状10nT程度である・熱力とながらの重力探査 【・AUV・ROV・曳航体等への可搭載化・高感度化(割別の当古のの強力を動しながらの重力探査 【・AUV・ROV・曳航体の可搭載化・AUVの上下振動可能とする重力異常をは、鉱床の厚さを10m、周辺の岩岩をとし、鉱床の厚さを10m、周辺の岩岩をとし、鉱床の厚さを10m、周辺の岩岩をとい、鉱床の厚さを10m、周辺の岩岩をとい、鉱床の厚さを10mを表ようにする)】 ○ 移動しながらの音波(地震波)探査 【・AUV・ROV・曳航体等への可搭載化・高分解能化(水平分解能50m、垂直1m)・深さ100mまで計測可能】 ○ 移動しながらの電気探査 【・AUV・ROV・曳航体等への可搭載化・高分解能化(分解能100m⇒分解能と0m)・深さ100mまで計測可能】 ○ 移動しながらの電磁探査 【・AUV・ROV・曳航体等への可搭載化・高分解能化(分解能100m⇒分解能と0m)・深さ100mまで計測可能】	○ AUV等を用いた音響装置による地形計測 【·AUV等の活用 ·高精度化(数十 cm⇒数cm)】	○ 移動しながらの音波(地震波)探査 [・AUV・ROV・曳航体等への可搭載化・高分解能化(水平分解能50m、垂直分解能50m(陸上の場合)⇒水平20m、垂直1m) ・深さ100mまで計測可能] ○ 移動しながらの電気探査 [・AUV・ROV・曳航体等への可搭載化・高分解能化(分解能100m⇒分解能20m) ・深さ100mまで計測可能] ○ 移動しながらの電磁探査 [・AUV・ROV・曳航体等への可搭載化・高分解能化(分解能100m⇒分解能20m) ・深さ100mまで計測可能] ○ 接地型音波(地震波)探査 [・AUV・ROV・曳航体等のの対解能50m、垂直分解能化(分解能50m、垂直分解能50m、垂直分解能50m(陸上の場合)⇒水平分解能5m、垂直分解能5m、垂直分解能50m(陸上の場合)⇒水平分解能5m、垂直分解能5m(陸上の場合)⇒水平分解能5m、垂直分解能50m(陸上の場合)⇒水平分解能5m、垂直分解能(大平分解能50m)・深さ100mまで計測可能・AUV・ROV等を活用した可移動化・急傾斜地への対応] ○ 接地型電磁探査 [・高分解能化(分解能50m⇒分解能10m) ・深さ100mまで計測可能・AUV・ROV等を活用した可移動化・急傾斜地への対応] ○ 接地型電磁探査 [・高分解能化(分解能50m⇒分解能10m) ・深さ100mまで計測可能・AUV・ROV等を活用した可移動化・急傾斜地への対応]
	[AUV]		での航走技術 ───	4			安定的な航走技術 できる技術、計測に影響	を与えない航走) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
求められる	—			時間計測や	小型·軽量化(多様)	な母船に搭載可能) 探索は関与	□ 縮のための技術開発 ─	
探査機技術	高出力が可能な 【ROV】			な電源システムの開発 _	― 海底近傍を安定して	程度、空中重量2~3t程度)		 度化(自動化)に関する技術開発 ———
			査の場合、海水に着目した探査手 査手法、海底地形(チムニー等)に			〇赤字は平成21年度以降、競争		

- ※AUVは、海底上50m程度の高さを航走するAUVに計測機器を装着・搭載することで計測(上下方向の移動が可能)することを想定 曳航体は、船舶から海底上100~150m程度の高さで曳航される曳航体に計測機器を装着・搭載することで計測(上下方向の移動が難しい)することを想定 接地型は、ROV等に搭載し、計測と移動を繰り返すことができるシステムを想定
- 特に望まれる項目
- 〇緑字はAUV・ROV等の開発実績を有する機関においての研究開発が望まれる項目
- ○青字はすでに「海洋資源の利用促進に向けた基盤ツール開発プログラム」で実施中の研究開発

【参考資料】


参考1 主な海洋鉱物資源

	海底熱水鉱床	コバルトリッチクラスト	マンガン団塊
概要	海底から噴出する熱水	海底の岩石を皮殻状	直径2~15cm の楕円
	に含まれる金属成分が	に覆う、厚さ数 mm~	体のマンガン酸化物
	沈殿してできたもの	十数 cm のマンガン酸	で、海底面上に分布
		化物	
含有する鉱物	銅、鉛、亜鉛、金、銀	マンガン、銅、ニッケ	マンガン、ニッケル、
資源	やゲルマニウム、ガリウ	ル、コバルト、白金等	銅、コバルト 等
	ム等レアメタル		
分布水深	500m~3,000m	1,000m~2,400m	4,000m~6,000m
分布地域	沖縄近海や伊豆・小笠	南鳥島を中心とする	ハワイ沖等の公海
	原海域	我が国の排他的経済	
		水域(EEZ)及びその	
		周辺海域	

(経済産業省、「海洋エネルギー・鉱物資源開発計画」(2009)より一部改変)

熱水鉱床概念図(カルデラ内あるいはリフト帯)

参考3 日本の排他的経済水域の代表的な海底熱水鉱床の分布水深

代表的な海底熱水鉱床	水深(m)
南奄西海丘	700m
白嶺鉱床	750m
須美須カルデラ	880m
サンライズ鉱床	1,330m
水曜海山	1,330m
須美須リフト	1,570m
HAKUREI SITE	1,600m

((独)石油天然ガス・金属鉱物資源開発機構日本近海の海底鉱物資源賦存状況調査(2007)より)

参考4 国外の主な市販の化学センサー

	製造元	製品名	探査能力·特徴		
水温、塩分変化:CTD	SeaBird Inc.	SeaCAT CT 記録計	(水温) レンジ: -5℃~+35℃ 精度: 0.005℃ 安定性: 0.0002℃/月 (電気伝導度) レンジ 0~90mS/cm 初期精度: 0.005mS/cm 安定性: 0.003mS/cm/月		
	RBR Ltd.	XR-420 CTD 計	(水温) レンジ: -5℃~+35℃ 精度: 0.002℃ (電気伝導度) レンジ: 0~85mS/cm 精度: 0.003mS/cm(35psu、15℃の場合)		
	Falmouth Scientific, Inc.	NXIC CTD 計	(水温) レンジ: -5℃~+45℃ 精度: 0.002℃ 安定性: 0.0005℃/月 (電気伝導度) レンジ: 0~90mS/cm 精度: 0.005 mS/cm 安定性: 0.0005mS/cm/月		

	JFE アレック	ACTD-DF CTD 計 (特注)	(水温) レンジ: -5℃~+40℃ 精度: 0.01℃ (電気伝導度) レンジ: 0~60mS/cm 精度: 0.01mS/cm
	Wetlabs	C-Star (透過率計)	・波長:370nm、470nm、550nm、660nmから選択・耐圧:600m 又は6000m・10cm または25cm の光路長での光減衰を測定
濁度:OBS	Wetlabs	ac-s (スペクトル吸収/透過率 計)	・耐圧:600m・10cm または 25cm の光路長での光減衰をスペクトル(400~730nm)で測定し、透過率、吸光度を算出
	Seapoint Sensor inc.	後方散乱式濁度計	・濁度測定範囲:0~750FTU ・赤外光(880nm)を照射し、その後方散乱強度から濁度を推定
	JFE アレック	COMPACT-HTW, LTW など (後方散乱式濁度計)	・赤外光(880nm)を照射し、その後方散乱強度から濁度を推定・濁度測定範囲:低(0~10FTU)、中(0~1000FTU)、高(0~70000ppm,適する濁度標準が無いためカオリンで検定)
	SeaBird Inc.	SBE-43/電極式酸素計	・電極式の酸素計で、海洋観測ではSBEのCTDに取り付けて使用されることが多い。 ・電極に汚れが付着した場合、観測値の信頼性が極めて低下する。
酸化還元電位:ORP	P AADI Optode/光学式酸素計		・酸素応答膜を利用した光学式の酸素計。 ・電極式に比べて歴史は浅いが、時間ドリフトが極めて小さく、電極式と同程度の精度を確保。 ・応答速度が20~30秒程度と遅いため、プロファイル観測では工夫が必要。
	JFE アレック	RINKO/光学式酸素計	・Optode 同様に酸素応答膜を利用した光学(燐光式)の酸素計。 ・1 秒程度の応答速度は、上記機種と比較して一番速い。 ・プロファイル観測にも十分対応。

((独)海洋研究開発機構委託調査、「海底資源探査に有効なシステム等に関する基礎調査報告書」(2009)より一部抜粋)

参考5 国外の主な Mn, Fe の自動分析装置

分析装置名	開発者/機関など	特徴			
	K. Johnson ら/モントレー湾水族館研究所	水深 3300m までの深海で栄養塩(珪酸, 硝酸など), 硫化水素, 重金属(Mn,			
Scanner	MBARI	Fe)などを自動観測可能。			
	/米国 (Johnson et al., 1986 など)	フロースルー吸光光度法で測定する。溶存 Mn の検出限界は 20nM 程度。			
SUAVE	Massoth ら/モントレー湾水族館研究所	Scanner の改良型。接触分析を行うことで溶存 Mn の検出限界は 10nM 程度ま			
SOAVE	MBARI/米国 (Massoth et al., 1991 など)	で向上。			
ZAPS	Kinkhammer/オレゴン州立大学 OSU/米国 (Kinkhammer, 1994 など)	蛍光試料を塗布した固体ディスク上に海水を流し、蛍光試薬を溶かし出すと同時に、Mnと反応させ、その蛍光強度から定量を行う。 検出限界は 1nM で深層海水中の Mn 濃度と同程度。 課題は、標準を使用した現場校正ができないこと。			

((独)海洋研究開発機構委託調査、「海底資源探査に有効なシステム等に関する基礎調査報告書」(2009)より一部抜粋)

参考6 国外の主な音響センサー

探査手法	製造元	製品名	探查能力·特徵
サイドスキャンソナー (SSS)	Benthos	C3D 3-dimennsion side scan sonar	音響周波数 200kHz 水深 2,000m 分解能 サイドスキャンソナー 4.5cm、測深機 5.5cm ・オプションにより、水深を 6,000m に変更化
		Series 3000 Dual Frequency Digital Side Scan Sonar	音響周波数 100kHz,500kHz レンジ 600 m @100kHz, 150 m @500kHz 水深 1,500m アレイの長さ 122 cm×8.9 cm 重量 29 kg
	L3 Comm Klein	Series 5000 Multi-Beam Side Scan Sonar	音響周波数 455 kHz 分解能 垂直方向:20~75 cm 水平方向:周波数により決まる レンジ 150m(300m スワス) 水深 200m アレイの長さ 120 cm 重量 70 kg

	EdgeTech	4100 Side Scan Sonar System (272-TD)	音響周波数 100 kHz - 105±10 kHz、500 kHz - 390±20 kHz レンジ 100 kHz - 500 m スワス、500 kHz - 200m スワス 水深 1,000 m 重量 25 kg
	Edgelech	4200-FS Side Scan Sonar System	音響周波数 120kHz,410kHz 分解能(水平方向) 120kHz:8cm、410kHz:2cm 分解能(垂直方向) 120kHz:2.5m(200mレンジ)、410kHz:0.5m(100mレンジ) 水深 1,500m 大きさ 125.6 cm×11.4 cm 重量 48 kg
	EdgeTech	PROSAS 4400-SAS	音響周波数 120kHz 分解能 10cm アレイ数 6(片側) 大きさ 127cm×6.4cm×6.1cm 合成開口幅 500m
合成開口ソナー(SAS)	KONGSBERG HISAS1030		音響周波数 80~120kHz 深度 200m(4 ノット時) ・3×3cm 間で海底イメージ情報を収集 ・ソナーヘッドからの距離に関わらず分解能が一定 ・合成開口データに対して、高分解能な干渉処理により50×50cmより良い相対 的な深測量分解能を得ることが可能 ・マルチビーム音響測深装置とのデータ統合することができ、合成開口ソナーの データを統合することで、20 倍のスワス幅を実現。
マルチビーム音響測深機	KONGSBERG	EM3002	周波数:300kHz・詳細な海底マッピング ・トランスデューサ下 1m からの精査に適応 ・電気的なピッチ補正システムとロール安定化ビームにより、ROV、AUV 等に装備した場合でもその動揺の影響を受けない
	Imagenex	Delta T MultiBeam Image Sonar Model 837	音響周波数 260kHz トランスデューサのビーム幅 受信 120°(水平)×20°(垂直) 送信 120°(水平)×20°(垂直) ビーム幅 0.75°(600ビームの場合) ビーム 75,150,300,600 深度距離に対する分解能 0.2% 探査可能深度 300m

		Delta T MultiBeam Image Sonar Model 837 (6000m)	音響周波数 260kHz トランスデューサのビーム幅:受信120°×3°、送信120°×3° ビーム幅 0.75°(600ビームの場合) ビーム 75,150,300,600 深度距離に対する分解能 0.2% 探査可能深度 6000m
	L3 Comm Elac	SeaBeam System 1185	音響周波数 180kHz ビーム数 126 ビーム幅 153° 探査可能深度 300m パルス長 0.15,0.3,1,3 ms
	Nautic	SeaBeam System 3012	音響周波数 12kHz ビーム数 205 ビーム幅 140° 探査可能深度 11,000m パルス長 2,3,5,7,10,14,20 ms
	RESON	SeaBat Model 7125	音響周波数 200kHz and/or 400kHz 探査可能深度 200~600m スワス幅 130°
	RESON	SeaBat Model 8160	音響周波数 50kHz 探査可能深度 3000m スワス幅 水深の 4 倍以上
	KONGSBERG	TOPAS PS120	透過能力 20m 分解能 10cm ・小型のトランスデューサで、低周波かつナロー・ビームを実現
サブボトムプロファイラ	EdgeTeck	Sensor Model DW-106	周波数 1~6kHz パルス選択 1~6,2~6,1.5~4.5 kHz 分解能 15-25cm ビーム幅 28°-36°
	EdgeTech	Sensor Model DW-424	周波数 4-24kHz パルス選択 4-24,4-20,4-16 kHz 分解能 4-8cm ビーム幅 15°-25°

((独)海洋研究開発機構委託調査、「海底資源探査に有効なシステム等に関する基礎調査報告書」(2009)より一部抜粋)

参考7 国外の主な自律型無人探査機(AUV)

名称	体型	サイズ (L×W×H)	船体材質	空中 重量	最大 深度	航続時間	主要任務
Maridan 600(Standard cofigu.)	長方形 (Rectangular)	4.5m×2m× 0.6m	?	1,500kg	600m	?	ケーブルルート調査、海底鉱物資源調査、海洋調査、石油・ガス調査、探査・回収調査
SeaOtter MkI(standard confiju)	長方形 (Rectangular)	4.5m×1.2m ×0.6m	HDPE (高密度ポリエ チレン)	1,500kg	600m	7 時間 (通常負荷)	諜報、調査、偵察、機雷探査・掃海、クイックア セスメント(海洋環境)
SeaOtter MkII(standard confiju)	扁形 (oblate)	$\begin{array}{c} 3.45\mathrm{m}\times\\ 0.98\mathrm{m}\times\\ 0.48\mathrm{m} \end{array}$?	1,100kg	600m	24 時間 (通常負荷)	指定なし
Bluefing-21(B PAUV confitgu.)	魚雷型 (Torpedo)	$1.8\text{m}\times0.53\text{m} \\ \times0.53\text{m}$?	362.87k g	6,000m	?	指定なし
Echo Ranger(OSIRI S cofigu.)	長方形 (Rectangular)	5.5m×1.27m ×1.27m	?	5,308kg	3,050m	28 時間 (通常負荷)	ケーブルルート調査、石油・ガス調査、パイプラインルート調査、海底地形
LMRS*(LMRS configu.)	魚雷型 (Torpedo)	6m×0.53m ×0.53m	アルミニウム	1,244kg	1,000m		物理探査、水路測量、機雷探査掃海、海底地形
ALISTAR (3000m configu.)	魚雷型 (Torpedo)	5m×1.68m ×1.45m	?	2,300kg	3,000m	24 時間 (通常負荷)	ケーブルルート調査
REMUS 6000(Standar d)	魚雷型(Torpedo)	$\begin{array}{c} 3.84\text{m}\times\\ 0.71\text{m}\times\\ 0.71\text{m} \end{array}$	チタン	862kg	6,000m	22 時間 (通常負荷)	環境モニタリング、水路測量、 海洋観測、海底地形、探査及び回収
REMUS 6000(SAMS)	魚雷型(Torpedo)	$\begin{array}{c} 3.84\text{m}\times\\ 0.71\text{m}\times\\ 0.71\text{m} \end{array}$	チタン	884.5kg	6,000m	16 時間 (通常負荷)	海洋観測、海底地形
Explorer (3000config.)	魚雷型(Torpedo)	4.5m×0.69m ×0.69m	GRP(ガラス繊 維強化プラスチ ック)	630kg	3,000m	?	指定なし
Explorer (5000config.)	魚雷型 (Torpedo)+翼 (wing)	5.5m×0.74m ×0.74m	GRP(ガラス繊 維強化プラスチ ック)	1,250kg	5,000m	22 時間(通 常負荷)	海底地形
Explorer (Eagle Ray configu.)	魚雷型(Torpedo)	4.5m×0.69m ×0.69m	GRP(ガラス繊 維強化プラスチ ック)	920kg	2,200m	36 時間 (通常負荷) 24 時間 (最高負荷)	海底地形

						ı	T
EAVA I(original configu)	フレーム型(Open space frame)	1.22m× 1.22m× 1.22m	?	700kg	3,000m	6 時間 (通常負荷)	パイプラインルート調査
Odyssey I (original configu.1992. 1)	涙滴型 (Teadrop)	2.15m× 0.59m× 0.59m	?	195kg	6,000m		海洋調査
Explorer (IFREMER config.)	魚雷型(Torpedo)	$4.5 \text{m} \times 0.69 \text{m}$ $\times 0.69 \text{m}$	GRP(ガラス繊 維強化プラスチ ック)	750kg	3,000m	18.5 時間 (通常負荷)	指定なし
Theseus(Cabl e-laying config.)	魚雷型(Torpedo)	$10.7\text{m} \times \\ 1.27\text{m} \times \\ 1.27\text{m}$	アルミニウム	8,600kg	2,000m	100 時間 (通常負荷)	ケーブル敷設
HUGIN1000(HUS configu.)	魚雷型(Torpedo)	$3.85 \mathrm{m} \times \\ 0.75 \mathrm{m} \times \\ 0.75 \mathrm{m}$?	775kg	3,000m	25 時間 (通常負荷) 20 時間 (最大負荷)	指定なし
HUGIN1000(MR configu.)	魚雷型(Torpedo)	3.85m× 0.75m× 0.75m	?	800kg	1,000m	24 時間 (通常負荷) 18 時間 (最大負荷)	諜報、偵察、探査、調査
HUGIN1000(MRS configu.)	魚雷型(Torpedo)	$3.85 \mathrm{m} \times \\ 0.75 \mathrm{m} \times \\ 0.75 \mathrm{m}$?	650kg	1,000m	24 時間 (通常負荷) 18 時間 (最大負荷)	対潜ミッション 機雷掃海ミッション、クイックアセスメント
HUGIN3000(C-Surveyor-I configu.)	魚雷型(Torpedo)	5.35m×1m ×1m	?	1,400kg	3,000m	50 時間 (通常負荷)	ケーブルルート調査、物理探査、パイプルート調査
Dorado(CTD configu.)	魚雷型(Torpedo)	$\begin{array}{c} 2.44\text{m}\times\\ 0.54\text{m}\times\\ 0.54\text{m} \end{array}$	ABS(Acrylonitri le Butadiene Styrene)	600kg	6,000m	22 時間 (通常負荷)	水路測量
Dorado(Mappi ng AUV configu.)	魚雷型(Torpedo)	$\begin{array}{c} 5.24\text{m}\times\\ 0.54\text{m}\times\\ 0.54\text{m} \end{array}$	ABS(Acrylonitri le Butadiene Styrene)	636kg	1,500m	8.5 時間 (通常負荷)	地球物理探查、海洋科学調査、海洋調査
Autosub 60 00 (Geosub Configu.)	魚雷型(Torpedo)	6.82m×0.9m ×0.9m	?	2,400kg	3,000m	60 時間 (通常負荷) 30 時間 (最大負荷)	ケーブルルート調査、地球物理探査、石油・ガス調査、パイプライン調査

Autosub 60 00 (Standard Configu., 2007.1)	魚雷型(Torpedo)	5.5m×0.9m ×0.9m	?	2,000kg	6,000m	206.4 時間 (通常負荷)	指定なし
Autosub-2 (Original Configu.)	魚雷型(Torpedo)	6.8m×0.9m ×0.9m	Carbon Fiber	2,400kg	1,600m	166 時間 (通常負荷)	指定なし
OdysseyIII (Caribou Configu.)	涙滴型(teadrop)	3.4m×0.58m ×0.58m	HDPE	400kg	3,000m (最大 4,500m)	20 時間 (通常負荷)	指定なし
Odyssey IV Standard configu.	フレーム型(Open space frame)	2.2m×1.3m ×1.3m	?	350kg	6,000m		指定なし
Seahorse(Sea horse II cofigu.)	魚雷型(Torpedo)	8.66m× 0.97m× 0.97m	?	4,762kg	1,000m	125 時間 (通常負荷) 72 時間 (微負荷)	海底地形
Spray(Standar d configu.)	魚雷型+翼 (Torpedo+wing)	1.8m×1.01m ×0.3m (body size:1.8m× 0.3m×0.3 m)	アルミニウム	51.8kg	1,500m	6,666.7 時間(通常負荷)	指定なし
Advanced Unmanned Search System(origin al configu.)	魚雷型(Torpedo)	5.18m× 0.79m× 0.79m	グラファイトーエ ポキシ	1,270kg	6,096m	15 時間 (通常負荷)	調査及び回収
OdysseyIId Configu.	涙滴型(teadrop)	$\begin{array}{c} 2.2\text{m} \times 0.58\text{m} \\ \times 0.58\text{m} \end{array}$	HDPE	200kg	3,000m	8 時間 (通常負荷)	指定なし
MANTA Test Vehicle(proto type configu.)	偏球型(Oblate)	10.44m× 4.72m×1.8m (body size: 10.44m× 2.44m× 0.9m)	?	14,060k g	800m	6 時間 (通常負荷)	指定なし
Seahorse(Sea horse I configu.)	魚雷型(Torpedo)	8.66m× 0.97m× 0.97m	?	4,490kg	1,000m	125 時間 (通常負荷) 72 時間 (微負荷)	海底地形調査

Slowcum Electric Glider(1km configu.)	魚雷型+翼 (Torpedo+wing)	1.79m× 1.01m× 0.49m (body size:1.5m× 0.21m×0.21 m)	アルミニウム	52kg	1,000m	720 時間 (通常負荷)	指定なし
Slowcum Thermal Glider(standa rd configu.)	魚雷型+翼 (Torpedo+wing)	1.79m× 1.01m× 0.49m (body size:1.5m× 0.21m×0.22 m)	?	60kg	2,000m	43,800 時間 (通常負荷)	指定なし
Autonomous Benthic Explorer(origi nal configu.)	Open space frame	3.2m×1.68m ×1.5m	?	680 kg	6,000m	20 時間 (通常負荷) 14 時間 (最大負荷)	地質調査、水路調査、海洋科学調査、鉱物資源調査、海洋調査、海底地形調査
SeaBED(origi nal configu.)	Open space frame	2.0m×1.5m ×1.5m (body size:1.9m× 0.34m×0.34 m)	?	200kg	700m	8 時間 (通常負荷)	海底地形
SeaBED(sirius configu.)	Open space frame	2.0m×1.5m ×1.5m (body size:1.9m× 0.34m×0.34 m)	?	200kg	700m	?	指定なし
Seaglider (iRobot Seaglider cofigu.)	涙型(teardrop)	$3.3m\times1m\times$ $0.4m$ (body size: $1.8m\times$ $0.3m\times0.3$ m)	fiverglass	52 kg	1,000m	5,113 時間 (通常負荷)	港湾セキュリティ、諜報、調査、偵察、海洋調査
Seaglider (original cofigu.)	涙型(teardrop)	2.16m× 1.19m×0.4m (body size:2.16m× 0.2m×0.2 m)	fiverglass	52 kg	1,000m	5,333.3 時 間 (通常負荷)	指定なし

(海洋資源の有効活用に向けた検討委員会宮崎委員ご発表資料より抜粋)