イプシロンロケット 2 号機の打上げに係る 安全対策について (調査審議結果)

平成 28 年 9 月 29 日 科学技術·学術審議会 研究計画·評価分科会 宇宙開発利用部会

- 1. 概要
- 2. 調査審議の方法
- 3. 調査審議の結果

- 参考 1 科学技術・学術審議会 研究計画・評価分科会 宇宙開発利用部会 委員名簿
- 参考 2 科学技術・学術審議会 研究計画・評価分科会 宇宙開発利用部会 調査・安全小委員会 委員名簿
- 付録1 イプシロンロケット2号機の打上げに係る地上安全計画
- 付録2 イプシロンロケット2号機の打上げに係る飛行安全計画
- 付録3 「ロケットによる人工衛星等の打上げに係る安全対策の評価基準」に対する イプシロンロケット2号機の地上安全計画・飛行安全計画の評価結果

1. 概要

イプシロンロケット 2 号機によるジオスペース探査衛星(ERG)の打上げが予定されている。この打上げに当たっては、国立研究開発法人宇宙航空研究開発機構(以下「JAXA」という。)は打上管制隊という臨時組織を編成し、打上げ実施責任者の総合指揮のもと、打上げ安全監理責任者は飛行安全、射場、保安の「安全」に係る統括者として業務を実施する。

JAXA は、この打上げに当たって行う安全確保に係る業務の計画を、以下の文書に定めた。

- ・イプシロンロケット2号機の打上げに係る地上安全計画
- ・イプシロンロケット2号機の打上げに係る地上安全計画 別添*
- ・イプシロンロケット2号機の打上げに係る飛行安全計画
- ・イプシロンロケット2号機の打上げに係る飛行安全計画 別添※

科学技術・学術審議会 研究計画・評価分科会 宇宙開発利用部会(以下「宇宙開発利用部会」という。)では、上記の文書に定められた安全確保に係る業務の計画の妥当性について、調査審議を行った。本報告書は、その調査審議の結果を取りまとめたものである。

2. 調査審議の方法

宇宙開発利用部会及び宇宙開発利用部会が設置した調査・安全小委員会は、「ロケットによる人工衛星等の打上げに係る安全対策の評価基準(平成28年6月14日 科学技術・学術審議会 研究計画・評価分科会 宇宙開発利用部会)」(以下「評価基準」という。)に基づいて、JAXA が策定した飛行安全計画及び地上安全計画の内容の妥当性について、以下の日程で一部非公開※にて調査審議を行った。

- ・平成28年9月8日 調査・安全小委員会(第20回)
- · 平成 28 年 9 月 29 日 宇宙開発利用部会 (第 30 回)

調査・安全小委員会は、JAXA から示された資料について調査審議を行った。宇宙開発利用部会は、調査・安全小委員会における調査審議結果について報告を受けた上で、調査審議を行った。

※ ロケット打上げに係る施設・設備等に機微な情報が含まれることから、「宇宙開発利用部会運営規則」(平成27年4月9日 科学技術・学術審議会研究計画・評価分科会宇宙開発利用部会決定)の 第3条に従い、非公開で審議を行った。

3. 調査審議の結果

イプシロンロケット 2 号機の打上げにおいて定めた地上安全計画及び飛行安全計画 は、評価基準に規定する保安及び防御対策、地上安全対策、飛行安全対策、安全管理 体制の各要件を満たしており、射場周辺等における人命・財産の安全を確保するため の対策を適切に講じる計画となっているという観点から、妥当であると判断する。

(参考1)

科学技術·学術審議会 研究計画·評価分科会 宇宙開発利用部会 委員名簿

(五十音順)

(委員)

部会長代理 佐藤 勝彦 日本学術振興会学術システム研究センター所長

部会長 白石 隆 政策研究大学院大学長/日本貿易振興機構アジア経済研

究所長

(臨時委員)

青木 節子 慶應義塾大学大学院法務研究科教授

井川 陽次郎 読売新聞東京本社論説委員

柴崎 亮介 東京大学空間情報科学研究センター教授

白井 恭一 慶應義塾大学法学大学院講師(非常勤)/元東京海上日

動火災保険株式会社航空保険部部長

鈴木 真二 東京大学大学院工学系研究科教授

髙橋 徳行 トヨフジ海運株式会社代表取締役社長

永原 裕子 東京大学大学院理学系研究科教授

林田 佐智子 奈良女子大学研究院自然科学系教授

藤井 良一 情報・システム研究機構理事

星出 彰彦 国立研究開発法人宇宙航空研究開発機構有人宇宙技術部

門宇宙飛行士運用技術ユニット宇宙飛行士グループ長

松尾 亜紀子 慶應義塾大学理工学部教授

安岡 善文 東京大学名誉教授

横山 広美 東京大学大学院理学系研究科准教授

吉田 和哉 東北大学大学院工学研究科教授

米本 浩一 九州工業大学大学院工学研究院教授

(参考2)

科学技術·学術審議会 研究計画·評価分科会 宇宙開発利用部会 調査·安全小委員会 委員名簿

(五十音順)

	飯	田	光明	国立研究開発法人産業技術総合研究所環境安全本部
				安全管理部審議役
主査代理	折	井	武	衛星設計コンテスト実行委員会 会長
	門	脇	直人	国立研究開発法人情報通信研究機構執行役兼ワイヤレ
				スネットワーク総合研究センター長、オープンイノベ
				一ション推進本部長
	鈴	木	和幸	電気通信大学大学院総合情報学専攻教授
	田	村	圭 子	新潟大学危機管理室教授
主査	中	島	俊	帝京大学理工学部航空宇宙工学科教授
	野		和彦	横浜国立大学大学院環境情報研究院教授
	馬	嶋	秀行	鹿児島大学大学院医歯学総合研究科教授
	松	尾	亜紀子	慶應義塾大学理工学部教授
主査代理	渡	邉	篤太郎	元独立行政法人宇宙航空研究開発機構執行役

イプシロンロケット2号機の打上げに係る 地上安全計画

平成28年9月

国立研究開発法人 宇宙航空研究開発機構

ま え が き

本計画は、「人工衛星等打上げ基準」第4条に基づき、打上げに係る安全計画について定めるものであり、同第3条に従い宇宙開発利用部会の調査審議を受けるものである。

目 次

1.	総	則				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		1頁	Į
2.	地上	安全の目	的及7	び範	井		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		1頁	頁
3.		基法規、社																												1	頁
3.	1	国内法令	等			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		1頁	Į
3.	2	社内規程	₹、基準	隼等		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		1	Į
4.	搭載		7			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		2]	Į
5.	保多	7物貯蔵取	双扱施詞	没 設	備		-	_	-	-	_	-	-	-	-	_	_	_	_	_	_	_	_	-	-	_	_	-		3]	頁
5.	1	保安物	_			-	-	-	_	_	_	_	-	-	_	-	-	-	-	_	-	-	-	-	-	_	_	_		3]	頁
5.	2	防災施設	设設備			-	-	_	_	_	_	_	_	_	_	_	-	_	-	_	_	-	_	_	_	_	_	_		3]	Į
5.	3	施設設備	の安全	全対	策		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		3]	Į
6.	地上	-安全管制	施設	設備		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		3]	Į
7.	安全	≧対策																												4]	頁
7.	1	射場整備	情作業(の安:	全		-	-	-	-	_	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-		4]	Į
7.	2	発射整備	情作業(の安:	全		-	-	-	-	_	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-		7]	Į
7.	3	その他の	安全対	対策		-	-	-	-	-	_	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-		8]	Į
7.	4	警戒区均	はの設2	定及	び運	用	管:	理			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_		8]	湏
7.	5	船舶及び	が航空	幾に	対す	·る	通:	報			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_		9頁	湏
7.	6	射場の係	安及7	び防	御対	策			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0]	湏
8.	地上	-安全組織	战及び ӭ	業務		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0〕	Į
9.	安全	≧教育・訓	∥練																										1	0]	Į
9.		一般安全																												0]	Į
9.	2	作業別等	全教育	育訓																									1	1頁	Į
9.	3	総合防災	٤訓練			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1]	Į
9.	4	海上警戒	划練			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1]	Į
10.	事故	文等発生時 警戒体制	持の対策	策及	び措	置			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1頁	頁
10.	1	警戒体制	の発	勆	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1頁	Į
10.	2	事故等角	色生時(の緊急	急措	置			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1]	
11.	射点	[爆発に対	けする(保安]	距離	の	算	定		_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	1	1]	頁

表リスト

表-1	ロケット等搭載用保安物	リスト					-	-	 -	-	-	-	-	-	12]
		図	IJ	ス	۲										
図-1	イプシロンロケット搭載	保安物概	要					_	 -	_	_	_	_	-	13頁
図-2	打上げ時の陸上警戒区域						-	-	 -	-	-	-	-	-	14]
図-3	- 1 水路通報のための	海上警戒	区域	-				-	 -	-	-	-	-	-	15頁
図-3	-2 航空路通報のため	の海上警	戒区	∑域	_		_		 -	-	-	-	-	-	16頁
図-4	打上げ管制隊組織図 -						_		 -	-	-	-	-		17頁
図-5	地上安全組織及び業務						-	_	 -	-	-	-	-	-	18]
図-6	自衛消防隊の組織							-	 -	-	-	-	-	-	19]
図-7	現地事故対策本部の構成	;						-	 -	-	-	-	-	-	20]
図-8	安全に係る重大な事故発	生時の事	故対	策本	部の	構瓦	ţ	-	 -	-	-	-	-	-	2 1]
別紙—	1								 _	_	_	_	_	_	221

1. 総 則

宇宙航空研究開発機構(以下「JAXA」という。)は、イプシロンロケット2号機及びジオスペース探査衛星(ERG)(以下「ペイロード」という。)の打上げに係る業務を行うに当たって、安全確保に係る業務を行うものとする。本計画書は「イプシロンロケット2号機の打上げに係る地上安全計画」を定めたものである。

2. 地上安全の目的及び範囲

地上安全の目的は、次に掲げる打上げ業務について、所要の安全施策を実施することにより、 事故及び災害(以下「事故等」という。)を未然に防止し、また万一事故等が発生した場合に おいても、人命、財産に対する被害を最小限にとどめ、公共の安全を確保することである。

- (1) 射場における保安物の取扱い及び貯蔵の安全
- (2) ロケット及びペイロードの整備、組立、カウントダウン、後処置作業の安全
- (3) 打上げ時の射場及びその周辺、海上警戒区域並びにこれらの上空の安全
- (4) 射場における保安及び防御対策

3. 関連法規、社内規程、基準、要領等

地上安全計画の実施に関する国内法令及びJAXAが定める規程、基準及び要領は次のとおりである。基準・要領については最新版を適用するものとする。

3.1 国内法令等

- ① 火薬類取締法(昭和25年法律第149号)
- ② 高圧ガス保安法 (昭和26年法律第204号)
- ③ 消防法(昭和23年法律第186号)
- ④ 毒物及び劇物取締法(昭和25年法律第303号)
- ⑤ 労働安全衛生法 (昭和47年法律第57号)
- ⑥ 電気事業法 (昭和39年法律第170号)
- ⑦ 電波法 (昭和25年法律第131号)
- ⑧ 船舶安全法(昭和8年法律第11号)
- ⑨ 航空法(昭和27年法律第231号)
- ⑩ 大気汚染防止法 (昭和43年法律第97号)
- ① 水質汚濁防止法(昭和45年法律第138号)
- ⑩ 騒音規制法(昭和43年法律第98号)
- ③ 安全1-1-8 H-IIAロケット3号機による人工衛星の打上げに係る打上げ事故時の液体 推進薬の流出・拡散についての安全対策

(平成14年 宇宙開発委員会 安全部会(第1回))

- ④安全1-2 衛星搭載推進薬のガス拡散予測の見直しについて (平成17年 宇宙開発委員会 安全部会(第1回))
- (5) その他関連政令・規則等
- (ロケットによる人工衛星等の打上げに係る安全対策の評価基準 (平成 2 8 年 6 月 1 4 日 宇宙開発利用部会)

3.2 社内規程、基準等

- (1) 規程
 - ① 安全管理規程(平成16年 1月 9日、規程第16-2号)
 - ② 防火管理規程(平成15年10月 1日、規程第15-54号)
 - ③ 人工衛星等打上げ基準 (平成15年10月 1日、規程第15-37号)

- ④ 鹿児島宇宙センター射圏安全管理規程(平成17年2月15日、規程第17-4号)
- ⑤ 鹿児島宇宙センター射圏安全管理規程実施細則(平成17年2月15日、宇宙基幹システム 本部鹿児島宇宙センター所長・安全・信頼性管理部長通達第17-1号)
- ⑥ 内之浦宇宙空間観測所危害予防規程(高圧ガス、平成15年10月1日 規程第15-66号)
- ⑦ 内之浦宇宙空間観測所電気工作物保安規程

(長坪地区) (平成22年3月25日、規程第22-25号)

(宮原地区) (平成22年3月25日、規程第22-26号)

⑧ イプシロンロケット2号機打上げ管制隊の編成について(平成28年9月2日、第一宇宙技術部門長決定第28-4号)

(2) 基準

- ① 射場運用安全技術基準 (平成17年01月06日制定、JERG-1-007)
- ② 宇宙用高圧ガス機器技術基準 (平成16年06月09日制定、JERG-0-001)
- ③ 火薬類取扱基準 (平成16年04月01日制定、JERG-0-004)
- ④ 重油取扱基準 (平成16年04月01日制定、JERG-0-006)
- ⑤ ヒドラジン (N2H4) 取扱基準 (平成16年04月01日制定、JERG-0-007)
- ⑥ イソプロピルアルコール取扱基準 (平成16年04月01日制定、JERG-0-010)
- ⑦ 液化窒素取扱基準 (平成16年04月01日制定、JERG-0-012)
- ⑧ 一般危険作業安全基準 (平成16年04月01日制定、JERG-0-014)
- ⑨ ロケットシステム開発安全技術基準 (平成17年1月21日制定、JERG-1-006)
- ⑩ ロケットペイロード安全標準 (平成16年04月01日制定、JMR-002)

(3) 要領

- ① 鹿児島宇宙センターにおける事故発生時の処理要領 (KEN-07032)
- ② イプシロンロケットの打上げに係る射場内人員規制の基準(ロケット系作業) (KEN-16014)
- ③ イプシロンロケット2号機の打上げに係る射場内人員規制の基準 (ペイロード系作業) (KEN-16015)
- ④ イプシロンロケット2号機 海上警戒等実施要領(KEN-16016)
- ⑤ イプシロンロケット2号機 打上げに係る警備・警戒業務実施要領(KEN-16017)
- ⑥ 鹿児島宇宙センターにおけるロケット打上げ及び工事等に伴う安全心得(KEN-08003)
- ⑦ 内之浦宇宙空間観測所セキュリティカードの発行・管理・運用要領(KUX-06003)
- ⑧ 内之浦宇宙空間観測所 消防計画 (KUX-06002)
- ⑨ 平成28年度 内之浦宇宙空間観測所安全管理計画書(KUX-13003)
- ⑩ 鹿児島宇宙センターにおける信号、標識等の制定(KEX-06082)
- ① 鹿児島宇宙センター気象防災基準 (KEX-04105)
- ① 鹿児島宇宙センター安全教育実施基準 (KEN-06032)
- ③ 有害推進薬漏洩時の接近可否判断及び接近手順に対する安全要求 (KQD-05001)

4. 搭載用保安物

イプシロンロケット及び搭載されるペイロード用保安物の火薬類、高圧ガス及び危険物の概要を表-1及び図-1に示す。保安物としては、火薬類、高圧ガス、危険物及び毒物が存在する。

(1) 第1段、第2段、第3段固体ロケット、固体モータサイドジェット(SMSJ)、スピンモータ(SPM)用の固体推進薬及び火工品は、火薬類取締法に定める火薬類である。

- (2) 窒素ガス及びヘリウムガスは、高圧ガス保安法に定める高圧ガスである。
- (3) 第2段ガスジェット装置用(RCS)及びペイロード用ヒドラジンは、消防法に定める危険物に該当する。また、ヒドラジンは「毒物及び劇物取締法」で毒物にも指定されている。
- 5. 保安物貯蔵取扱施設設備
- 5. 1 保安物

搭載用保安物の他、機体パージ及び配管パージに使用する窒素ガス(GN_2)及びヘリウムガス(GHe)は、高圧ガス保安法に定める高圧ガスである。また、配管等洗浄用イソプロピルアルコール(IPA)及び自家発電用重油は、消防法に定める危険物である。

5. 2 防災施設設備

危険状態検出のための装置として、危険物及び高圧ガスを貯蔵取扱う各建屋には火災報知器、 火災検知器、ガス検知装置等が、火薬類を貯蔵または取扱う各建屋には火災報知器、火災検知 器、防犯警報装置等があり、これらの情報を常時監視することができる。また、射場内には火 災及び爆発の発生並びに有害物の拡散に備えて各種防火・消防施設設備がある。

その他、雷の接近を検知する襲雷予報装置、落雷を表示する閃絡表示器がある。

5.3 施設設備の安全対策

施設設備に対する主な安全対策は、以下のとおりである。

- (1) 推薬貯蔵庫、一級火薬庫、高圧ガス製造設備等保安物の貯蔵取扱いに係わる施設設備については、法定要求の他、JAXAの安全基準に合致するように設置している。
- (2) RCS用及びペイロード用ヒドラジンは、毒性を有するので、Mロケット組立室クリーンブースには固定型/可搬型の換気装置が設置できるようになっている。また、これらの取扱い場所にはヒドラジン等廃液の排液槽、作業要員数のエアラインマスク及び洗身洗眼装置を設けている。
- (3) 危険物の貯蔵取扱い設備周辺の所定範囲を可燃性ガス危険区域として、電気関係設備は 防爆タイプのもの、あるいはガス検知器による連動電源遮断としている。
- (4) 火薬類の貯蔵並びに取扱い場所の所定範囲を危険区域とし、電気関係設備は防爆タイプ のものとしている。
- (5) 静電気による事故等の発生のおそれのあるMロケット組立室の施設設備及びM型ロケット発射装置に設置された装置はすべて接地され、入口付近には人体の静電気を除去するための除電板を備え付けている。また、落雷による被害を防止するため、火薬類の取扱いまたは貯蔵を行うMロケット組立室、M型ロケット発射装置、一級火薬庫及び推薬貯蔵庫には突針型避雷装置を設けている。
- (6) 万一流出した場合、水質を汚濁するおそれのあるヒドラジン、IPA等については、配水槽に溜めた後、ドラム缶に回収し、廃液処理設備で処理する。

また、配管、タンク、充填装置から回収したヒドラジンは専門会社へ処理を依頼する。

(7) 保安物の取扱い作業中の危険状態を表示する信号及び標識灯を射場内各要所に設けている。

6. 地上安全管制施設設備

地上安全管制施設設備の概要は、以下のとおりである。

なお、地上安全管制施設設備について「別添 表 - 1」に、地上安全管制系統図を「別添 図 - 1」に示す。

(1)総合防災室

イプシロン管制センター(ECC)内の総合防災室は、射場及びその周辺、海上警戒区域並びにこれらの上空の安全管制のための機能を有している。また、ロケット打上げ作業の緊急停止機能を有している。

(2)射点安全班卓

ECC内の発射管制室の射点安全班卓は、射点作業のモニタ機能を持つ。

(3)陸上警戒前進指揮所

肝付町内之浦総合支所に陸上警戒前進指揮所を置き、総合防災室と連携し、警戒区域内の無人化確認を行い、その状況を保安主任へ報告する。

(4)海上監視所

ECC内の総合防災室は、海上警戒に係わる監視機能を有し、その状況を保安主任へ報告する。

7. 安全対策

7. 1 射場整備作業の安全

7.1.1 危険作業全般

Mロケット組立室、M型ロケット発射装置等における火薬類取扱い作業、高圧ガス、危険物取扱い作業等の実施に当っての共通の安全対策は次のとおりである。

なお、危険作業フローについて「別添 図-2」に示す。

(1) 作業手順書のチェックと射点安全要員の立合い

射場整備作業期間中の保安物の取扱い作業は、各種保安物の取扱基準等の安全要求に基づいて作成した作業手順書に従って実施するが、射点安全要員は予め危険作業の手順をチェックし、安全上特に配慮を必要とする保安物の取扱い作業については、消防車、救急搬送車、救護員を配置し、かつ射点安全要員が立合い安全を確認しつつ作業を行う。

また、危険作業については、作業前ミーティングには射点安全要員が出席し、当該作業の作業手順の確認と安全上の遵守事項の教育を行い、作業後ミーティングにて不安全事項の有無の確認を行う。不安全事項があった場合は、その内容と是正処置を射場安全部門に報告する。

(2) 危険作業時の立入規制

危険作業実施時には、立入規制区域を設け、関係者以外の立入を禁止する。

(3)法定手続き

法定手続きが必要なものについては、許可又は届出が受理されたことを確認し、作業を 実施する。

(4) 法定保安責任者

保安物の取扱いについては、法定保安責任者の監督の下に契約相手方の安全責任者が立合い、安全を確認の上作業を実施する。

(5) 施設設備の機能点検

危険作業の実施に先立ち、チェックリストにより、関係施設設備の機能点検を行い、これらが正常に作動することを確認する。

(6)一般危険作業

フォークリフト、クレーン、玉掛、高所作業及び重量物運搬作業の安全については、「一般危険作業安全基準」を遵守して行うとともに、法に定められたクレーン、フォークリフト及び玉掛作業は、法定有資格者が行う。

(7)酸素欠乏

特に、タンク内及び密閉空間内作業をする場合は、酸素濃度計で安全を監視する。

(8) 発火性物品の持込禁止

保安物の存在する区域内には、マッチ、ライター、グラインダー、溶接機、バッテリー等の発火性物品の持込を禁止する。また、射場内は原則として屋外禁煙とし、許可された喫煙場所以外における喫煙を禁止する。

(9) 非防爆電気機器の使用及びフラッシュ撮影の禁止

爆発性危険雰囲気区域、その他指定する場所又は区域での非防爆写真用照明を含む非防 爆電気機器の使用を規制するとともにフラッシュ撮影及び携帯電話の使用を禁止する。

(10) 荒天時の注意

台風、強風、大雨及び襲雷時の場合は、屋外作業は行わない。保安物の取扱い等危険作業実施中に「台風警戒報」、「大雨警戒報」及び「雷警戒報」が発令された場合は、作業を停止し所定の荒天対策を実施の上、作業者及び隊員等は安全な場所に退避する。

「台風警戒報」、「大雨警戒報」及び「雷警戒報」解除後、又は強風通過後は、状況によりロケット、衛星、施設設備等の点検及び被害調査を実施し、安全を確認後平常作業に復帰する。

(11) 津波警報発令及び地震発生時の注意

「津波警報」が発令された場合又は「地震」が発生した場合には、鹿児島宇宙センター気象防災基準に基づき作業を停止し、応急の措置を講じ、作業者及び隊員等は安全な場所に退避する。

津波及び地震発生後に作業を再開する場合には、予めロケット、衛星、施設設備等を充分点検し、安全を確認する。

(12) 服 装

作業者は危険作業を行う場合は、それぞれ所定の保安帽、特殊作業衣、安全靴等を着用する。また、作業別に特に指定された者は所定の腕章を装着する。

7.1.2 電波機器の取扱い

無線設備の操作及び電波放射時には次の安全対策を講ずる。

(1) 電波放射時の立入禁止

人体に対する電波放射の危険区域にはその旨表示するとともに、人員の立入を禁止する。

(2) 放射前の安全確認

電波の放射に際しては、人体及びロケット等に危害を与えぬよう電波の放射方向、危険区域に人員が入っていないことを確認する。

(3)取扱基準の遵守

以上の他、無線設備の操作及び電波放射時の安全については、「電波法」及び「電波法 施行規則」を遵守して行う。

7.1.3 火薬類の取扱い

固体モータ各段、SMSJ、SPM及び火工品等の火薬類の取扱いについては次の安全対策を講ずる。

(1) 立入規制

火薬類取扱い作業中は、「火気厳禁」、「立入禁止」の標識を立て、黄色回転警告灯を 点灯させて関係者に周知させるとともに、関係者以外の作業場所内への立入を禁止する。

(2) 火工品試験装置の機能点検

火工品の導通・絶縁抵抗測定装置は、専用のものを使用するとともに、機能試験を行い、 これが正常に作動することを確認する。

(3) 静電気対策

火薬類の取扱い作業は、静電気除去板への触手及び固体モータ、台車、床等の接地を行

った上で開始する。関係する作業者は、全て帯電防止防炎作業衣と静電靴を着用し、火薬類に触れる際には、リストスタット又はレッグスタットを着用する。また、帯電性のプラスチック、ビニールシート等は火薬類取扱い時の使用を禁止する。

なお、作業中大気湿度が40%以下に低下した場合には、作業を一時中断し、湿度回復 後に再開する。

(4) 保護具の着用

必要に応じ導電性・耐火性作業衣、安全靴及び保護面等の使用前点検を行った後、これらを確実に着用する。

(5) 電波放射及び大電流を必要とする機器の制限

火工品結線及び機体アーミング作業中は、搭載電波機器及び地上設備からの電波放射並びに当該作業施設内の大電流を必要とする機器(エレベータ等)の使用を禁止する。また、原則として機体及び衛星系の電源は断とする。

(6) クレーン操作

クレーンで火薬類の吊上げ、吊下げを行う場合は、操作前にストレイ電圧の測定を行ない、異常がないことを確認する。

(7)取扱基準の遵守

以上の他、火薬類取扱いの安全については、「火薬類取扱基準」を遵守して行う。

7.1.4 高圧ガスの取扱い

GN₂、GHe等高圧ガスの取扱いについては、次の安全対策を講ずる。

(1) 立入規制

高圧ガス取扱い作業中は、「火気厳禁」、「立入禁止」の標識を立て黄色回転警告灯を 点灯させて関係者に周知させるとともに、関係者以外の作業場所内への立入を禁止する。

(2) 高圧ガスの充填・加圧作業

搭載タンクへの所定圧力以上の充填・加圧作業は遠隔操作により行う。

なお、機側操作を行う場合は、特定の人員が所定の保護具、器具及び防護設備を使用して安全を確認しつつ行う。

(3) ガス検知装置等の機能点検

作業開始前にガス検知装置、消火設備、強制換気装置等の機能点検を行い、これらが正常に作動することを確認する。

(4) 保護具の着用

必要に応じ特殊作業衣、革手袋、安全靴及び保護面等の使用前点検を行った後、これら を確実に着用する。

(5)酸欠防止

機体内又は室内での窒素ガス漏洩等による酸欠のおそれのある作業は、酸素濃度計及び酸欠警報器を使用して安全確認の上、強制換気装置を設置し酸欠防止対策を講じる。

(6) 取扱基準の遵守

以上の他、高圧ガス取扱いの安全については、「内之浦宇宙空間観測所危害予防規程」 による他、それぞれの取扱基準を遵守して行う。

7.1.5 危険物及び毒物の取扱い

危険物及び毒物は、それぞれ可燃性、毒性、腐食性等があるので取扱いについては、次の 安全対策を講ずる。

(1) 立入規制

危険物取扱い作業中は、「火気厳禁」、「立入禁止」の標識、さらにヒドラジン取扱い

時には「毒物取扱中」の標識を立て黄色回転警告灯を点灯させて関係者に周知させるとと もに、関係者以外の立入を禁止する。

(2) ガス検知装置、洗身洗眼装置等の機能点検

作業開始前に、ガス検知装置、洗身洗眼装置、呼吸装置、強制換気装置等の機能点検を 行い、これらが正常に作動することを確認する。

(3) 保護具の着用

必要に応じ特殊作業衣、ゴム長靴、ゴム手袋、呼吸装置等の使用前点検を行った後、これらを着用する。

(4) 静電気対策

可燃性液体を移送する場合の静電気対策は、火薬類の取扱に準ずる。

(5) 風向の監視

危険物が万一流出した場合、作業者に退避方向を知らせるとともに、近隣道路の通行規制の要否の判断を行い、また、大量の流出があった場合に備えて、作業者の退避誘導を行うために必要な、吹き流しあるいは風向風速計による風向監視を行う。

(6) 廃液の処理

Mロケット組立室におけるヒドラジン取扱い時の流出等による低濃度廃液水、及びドラム缶に回収した配管、タンク、充填装置の高濃度廃液は、専門会社へ処理の依頼を行う。また、M型ロケット発射装置の整備塔におけるヒドラジン取扱い時の流出等による低濃度廃液水は専門会社へ処理の依頼を行う。

(7)環境モニタ

ヒドラジンの取扱い作業中、又は保管されている環境下での作業中は、ヒドラジン濃度 測定器により常時環境モニタを行ない、安全を確認する。

(8) 取扱基準の遵守

以上の他、危険物の取扱いの安全については、それぞれの取扱基準を遵守する。

7.1.6 保安物の射場内運搬

保安物の射場内運搬に当っては、予め場内放送により通行規制の周知を図るとともに、所定の道路を用い、保安責任者の管理・監督の下、保安主任は要所に警戒員を配置して所要の保安距離を確保し、所定のスピードで走行して安全を確保する。

7.2 発射整備作業の安全

射場整備作業スケジュールに従って、組立、整備の完了したペイロード、ロケットは、Y-1日から発射整備作業に入る。Y-1日以降の発射整備作業の安全対策は次のとおりである。

(1) Y-1以降の作業の安全

Y-1日とY-0日の作業は、予め設定したタイムスケジュールに従って進める。ロケットに点火用等火工品が結線されるに伴って危険度は増大する。従って、各作業とも特定の作業者が、手順書に従い安全を確認しつつ行い、その状況は射点安全班卓、総合防災室において常時監視する。

(2) 打上げ作業の停止

打上げ作業は、射点安全班卓、総合防災室において常時監視しており、「鹿児島宇宙センター射圏安全管理規程」第22条に定める「安全上支障が生じ又は生ずるおそれがあるとき等」は、打上げ実施責任者(安全に係る事項について緊急の場合は保安主任)は打上げ等に係る業務の全部又は一部の停止を指令し、事故等の発生及びその拡大防止を図る。

(3) 逆行作業

緊急停止等によって作業を中断し、打上げを延期する場合には火工品結線解除等は、特

に安全上の配慮をした逆行スケジュール、手順書に従って実施する。

(4)後処置作業の安全

ロケット打上げ後の作業は、「7.1射場整備作業の安全」に準じて実施する。

7.3 その他の安全対策

(1) 計器類の点検整備

保安用計測器の校正管理を行い、常に良好な状態に保つよう点検整備を行う。

(2)情報連絡の記録

安全に係わる状況の正確な把握を行うため、安全上の指示、情報、連絡及びそれらに対する措置の記録を十分に行う。

(3)交通安全

特殊車両、作業用車両の運転者の指定、速度制限、一旦停止等の交通標識及び表示板を整備し交通安全の徹底を図る。

(4) 夜間、休日における緊急連絡体制

打上げ作業期間中の夜間、休日における緊急連絡に備え、内之浦宇宙空間観測所警備員を含む緊急連絡体制を整備する。

(5) その他

打上げに係わる仮設物の設置、運用については、安全の徹底を図る。

7.4 警戒区域の設定及び運用管理

JAXAは「ロケットによる人工衛星等の打上げに係る安全対策の評価基準」に基づき、射場整備作業の各段階に応じて警戒区域を設定する。

7.4.1 射場整備作業期間中の警戒区域と運用管理

(1)警戒区域

射場整備作業期間の警戒区域は、保安物を中心として「ロケットによる人工衛星等の打上げに係る安全対策の評価基準」に従った保安距離以上の半径をもつ円(作業規制区域)を包含する範囲とする。

なお、整備作業期間中の作業規制区域について「別添 表 - 2」及び「別添 図 - 3」 に示す。

(2) 陸上警戒区域の運用管理

上記により設定された警戒区域は、保安主任が、指定又は許可した者以外の立入禁止区域であり、必要により警備員を配置して警戒を行う。射場整備作業の各段階に応じた警戒 区域の設定時期は、次のとおりである。

①Mロケット組立室における射場整備作業期間

ペイロード系推薬充填作業から射点ヘロケットが移動するまでの作業を実施する期間

②M型ロケット発射装置における射場整備作業期間

M型ロケット発射装置に機体が移動された後、打上げ前陸上警戒開始までの作業期間

(3) 水路通報のための海上警戒区域の運用管理

本期間中の水路通報のための海上警戒区域については、JAXAが要所に立札による表示を行うとともに、肝付町等に本区域に立ち入らないよう協力を求める。

7.4.2 ロケット打上げ時の警戒区域と運用管理

(1)警戒区域

ロケット打上げ時の陸上警戒区域を図ー2に、水路通報のための海上警戒区域を図ー

3-1に、また、陸上警戒区域及び高度18km通過域を包含した区域の航空路通報のための海上警戒区域を図-3-2に示す。

(2) 陸上警戒区域と運用管理

ロケット打上げ時の警戒区域は、ロケット打上げ時において万一爆発事故を起こした場合に爆風、飛散物等による人命、財産の被害を防止するために予め一般人の立入規制を行う区域とし、JAXAは射点を中心とした半径約2.1 km及び飛行安全に係る警戒区域を包絡して設定する。

- ① JAXAは警戒区域内の住民等に対しては、警戒区域外への避難を肝付町、住民等の協力のもと行う。
- ②JAXAは射場内要所に警戒員を配置して警戒を行う。
- ③ J A X A は警戒区域境界において、一般人は本区域内へ立ち入らないよう内之浦区域の 全戸に周知し協力を求めるとともに、本区域の警戒について立札による表示を要所に行 い人員規制の徹底を図る。

また、警戒区域周辺地域の警備については、要所に警戒員を配置するとともに、警戒 区域内の巡回監視の徹底を図る。更に、鹿児島県警察本部、肝付警察署及び肝付町に協 力を依頼する。

- ④射点警戒員は、作業の進捗状況に合わせ所定の警戒に当る。
- ⑤ J A X A は本区域内の農作業、工事関係者等に必要時間、当該区域内に立ち入らないよう協力を求める。
- ⑥本区域内の国有林及び町有地については、大隅森林管理署及び肝付町の協力を得てJA XAが人員規制を行う。

(3) 海上警戒区域と運用管理

水路通報のための海上警戒区域(図3-1)は、打上げ時刻に支障を及ぼすおそれのある 船舶の航行及び操業を規制する。

なお、水路通報のための海上警戒区域の警戒については、射場に設置した海上監視レーダ、自動船舶識別装置(AIS)及び海上監視カメラ装置を使用するとともに、海上保安庁第十管区海上保安本部(巡視船)、鹿児島県(漁業指導取締船)及び宮崎県(漁業取締船)に依頼する他、JAXAにおいても傭船による警戒を行い、水路通報のための海上警戒区域における船舶の状況を把握し、必要に応じてJAXA又は上記巡視船等による退避勧告等の措置を講ずる。

7.4.3 警戒区域上空の警戒

打上げ時における陸上及び高度 1 8 km通過域を包含した区域の航空路通報のための警戒 区域の上空(図 3 - 2)については、JAXAが要所に配置した陸上並びに海上の警戒員が監視する。

7.5 船舶及び航空機に対する通報

(1) 船舶に係わる通報

打上げ当日の水路通報のための海上警戒区域(図3-1)の船舶の航行規制を行うため、 JAXAは事前に海上保安庁に対して打上げを行う旨の通知をし、船舶への周知を依頼する。

また、ロケットカレンダーを作成し、関係する県漁業協同組合連合会及び各漁業協同組合に提供し、情報の周知を図る。

なお、ロケット打上げ時刻に変更が生じた場合、速やかに海上保安庁等関係機関に通知する。

(2) 航空機に係わる通報

JAXAは、航空法第99条の2及びこれに関連する規定に基づき、ロケット打上げ実施の計画について事前に国土交通大臣に通報するとともに、打上げ直前までの打上げ時刻の変更等について情報を通報する。

連絡先は、航空情報センター、大阪航空局鹿児島空港事務所及び宮崎空港事務所、航空 交通管制センター並びに東京、福岡及び那覇の各航空交通管制部である。

7.6 射場の保安及び防御対策

打上げ作業期間中の保安物の取扱い施設及び貯蔵所、並びに打上げに係る情報等の保管場所 を含む射場の保安及び防御対策は次のとおりである。

- (1) 固体ロケット等の保安物の取扱い施設及び貯蔵所は、各々の周辺にフェンス等を設置している。
- (2) ロケット、ペイロード及び保安物等の取扱い施設では、入退場管理システムによる作業者以外の者の入場禁止を行うと共に、作業終了後、出入口の施錠を確認する。

また、防犯警報装置により常時監視するとともに、夜間及び休日には内之浦宇宙空間観測所の警備員による巡視を行う。

- (3) 射点周辺については24時間体制の警戒及び周辺巡視を行う。また、入退場管理システムによりあらかじめ名簿を提出し、許可された者以外の関連建屋への入場を禁止する。
- (4) 打上げ関連建屋は、許可された後、入退場管理システムに登録された者以外の入場を禁止する。
- (5) 打上げに係る保安上重要なデータ及び情報については、許可された者以外のアクセスができないよう、ネットワークシステムを含めて、適切な対策を講じる。

8. 地上安全組織及び業務

打上げ作業の実施に当たっては、打上げ作業に直接従事する役職員をもって打上げ管制隊が編成され、打上げ実施責任者の下に保安主任が置かれる。保安主任は、所掌範囲において業務内容に応じた班体制に基づき要員を統括指揮すると共に、打上げ時等の警戒業務の実施にあたっては、トランシーバ等により警戒監視の状況を等を報告させ、必要に応じて安全及びセキュリティ確保のための指示を行い、適宜、打上げ実施責任者に状況報告する等安全確保について緊密な通信、連絡を行う。

なお、保安主任は、所掌範囲において打上げ作業期間中に発生する安全、警備及びセキュリティの問題点全てを、直ちに打上げ実施責任者に報告する。

また、打上げ実施責任者の下、システム安全評価責任者を置き、射場整備作業に係るシステム安全評価を行う。

打上げ管制隊編成及び地上安全組織と業務を図-4及び図-5に示す。

9. 安全教育・訓練

鹿児島宇宙センター安全教育実施基準に従い、保安主任が承認したJAXA及び契約会社の講師が、隊員を含む射場整備作業に従事する全ての作業者を対象として、JAXA及び契約会社において、以下に示す一般安全教育及び作業別安全教育等に区分して行い、作業の安全確保を図る。

9. 1 一般安全教育

射場整備作業の安全確保に資するため、JAXA及び契約会社は、射場整備作業に従事する

全作業者を対象として、作業の実施に必要な安全知識、作業安全に関する一般的注意事項、保 安物に関する注意、事故処理手順等について「鹿児島宇宙センターにおけるロケット打上げ及び工 事等に伴う安全心得」等をテキストとして、安全教育を実施する。

9.2 作業別安全教育訓練

JAXA及び契約会社は保安物の取扱い及び危険作業を行う隊員を対象として、作業開始前に保安物取扱い並びに危険作業時の作業安全基準、保護具の使用方法、想定事故のケーススタディ、作業着手前の安全注意事項等の作業別安全教育訓練を実施する。

また、JAXA及び契約会社は連携して、作業で想定される事故に対して避難方法、人員救助、酸素マスク等の保護具の使用方法等に関する訓練を実施する。

9.3 総合防災訓練

JAXAは万一の重大な事故等に備えて、現地事故対策本部が迅速かつ的確に運営できるよう、外部関係機関を含めた総合防災訓練を実施する。

9. 4 海上警戒訓練

JAXAは警戒に当たる要員の習熟度等を考慮し、必要に応じて、打上げ時の海上警戒を想定して、船舶、レーダ等を使用し、海上警戒、通信連絡、退避勧告等の訓練を行う。

10. 事故等発生時の対策及び措置

打上げ作業期間において、重大な事故等が発生した場合又は発生のおそれがある場合は、 あらかじめ定める要領に従って必要な措置を講じ、被害を最小限にとどめることとする。

10.1 警戒体制の発動

打上げ実施責任者は重大な事故等が予測されるときは、警戒体制を宣言し、直ちに放送、 電話等により射場内に周知徹底を図るとともに、関係者に必要な措置をとらせる。

10.2 事故等発生時の緊急措置

- (1)事故等が発生した場合は、その発見者は直ちにその状況を警察署、消防署及び総合防災室(保安主任等)に通報するとともに、状況に応じて必要な処置を講ずる。
- (2)打上げ安全監理責任者は、直ちに自衛消防隊等を現地に急行させ、事故等の状況把握、 初期消火、危険物等の緊急防災処置、立入り制限、人員の安全確認等の緊急処置を講ずる。
- (3)打上げ実施責任者は、事故等の状況により、現地事故対策本部を設置するとともに、緊急体制を宣言して作業停止の確認、自衛消防隊の出動及び事故処理等の指揮に当たる。
- (4)打上げ実施責任者は、事故等の状況により、地方公共団体等外部関係機関(緊急連絡先を予め定める。)に緊急連絡し応援を要請する。
- (5) ロケット打上げ執行作業における安全に係る重大な事故等が発生した場合は、JAX Aが事故対策本部を設置し、必要な措置を講ずる

自衛消防隊の組織を図ー6、現地事故対策本部の構成を図ー7、安全に係る重大な事故 発生時の事故対策本部の構成を図ー8に示す。

11. 射点爆発に対する保安距離の算定

イプシロンロケット試験機の射点爆発に対する保安距離の算定結果を別紙ー1に示す。

表一1 ロケット等搭載用保安物リスト

(火薬類、高圧ガス及び危険物)

名 称	使用	箇 所	ロケット等搭載量	法令上の種類
固体推進薬	固体口气	アット	83.5 ton *1)	
四种证定来	SMSJ,	SPM等	1 2 5 . O kg *2)	火薬類
火工品	ロケット	各段* ³⁾	2. 4 kg	
ヘリウムガス	ペイロード	常温	15.5l (2.41MPaG)	IV-
窒素ガス	2段ガスジェット	常温	3 O. 4 l (1.88MPaG)	高圧ガス
危険物等*4)	ペイロ 2 段ガス S		44. 1 kg	危険物第4類 第2石油類 毒物

- (注) ロケット等に搭載する主な保安物は上記のとおりであり、搭載量の数量は標準値。
 - *1) 第1~3段固体推進薬の合計
 - *2) 固体推進薬、イグナイタの合計
 - *3) 指令破壊系、ペイロード分離系、フェアリング分離系の火工品を含む
 - *4) ヒドラジンの合計(最大値)

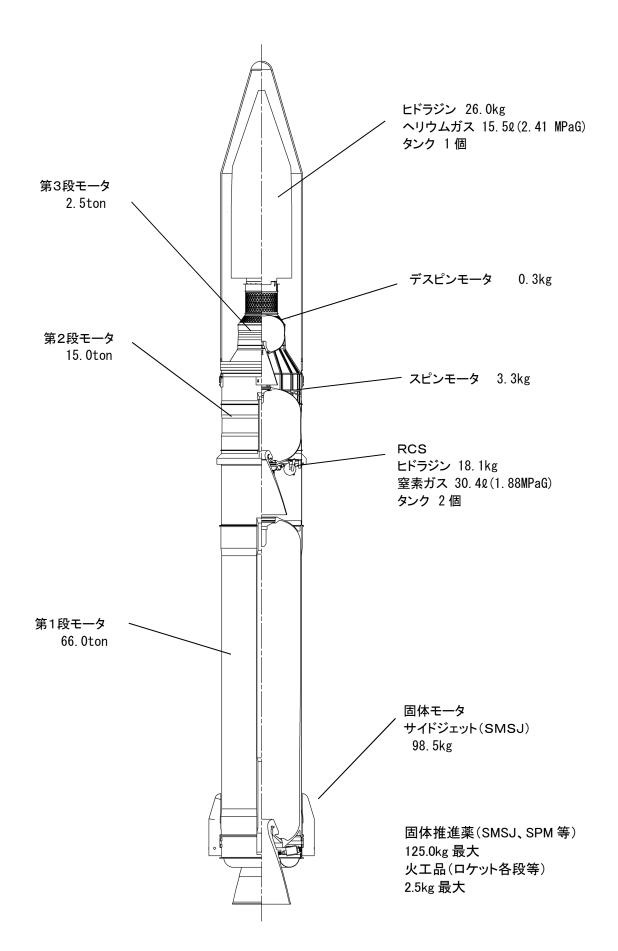


図-1 イプシロンロケット2号機搭載保安物概要(火薬類、高圧ガス、危険物)

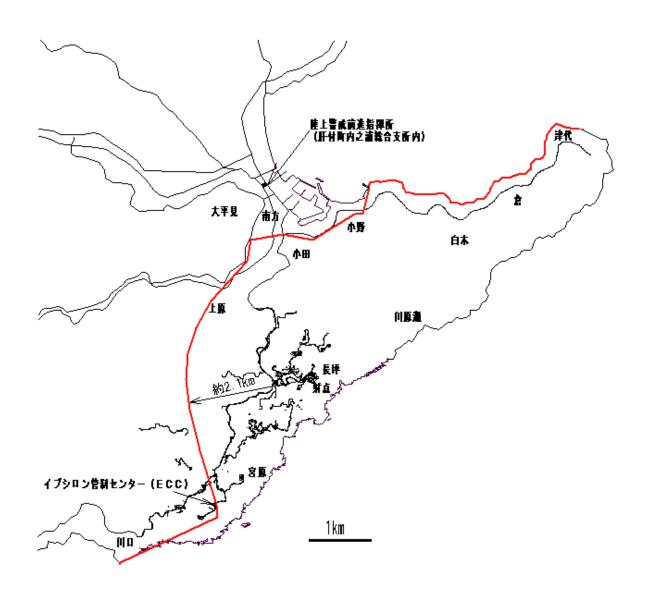


図-2 打上げ時の陸上警戒区域

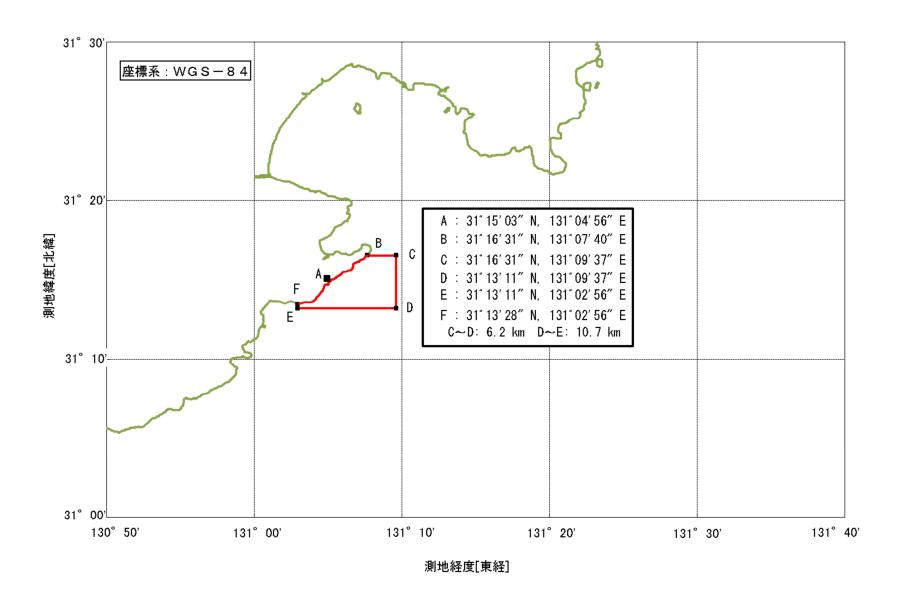


図-3-1 水路通報のための海上警戒区域

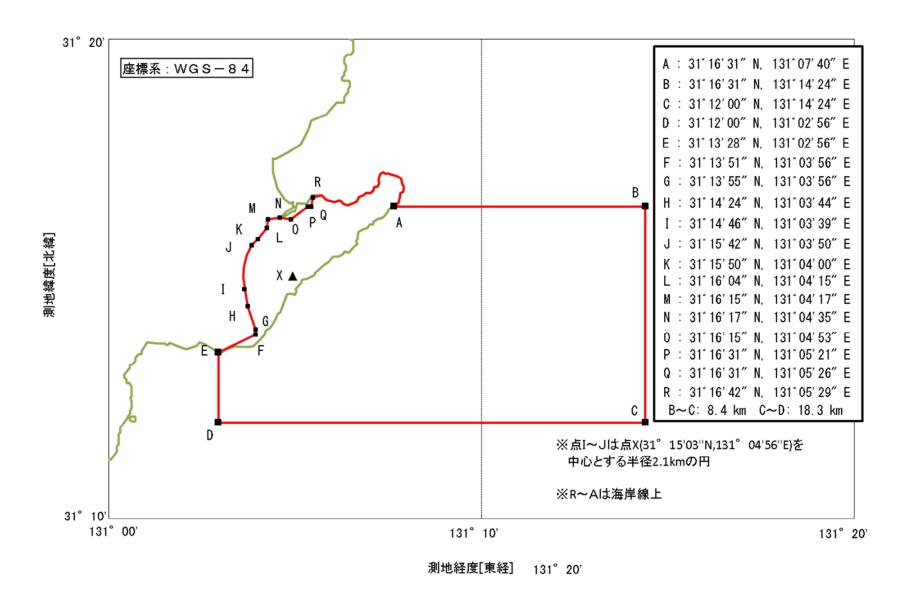


図-3-2 航空路通報のための海上警戒区域*

*図に示す領域の海上/陸上から高度 18km までの空域をいう。

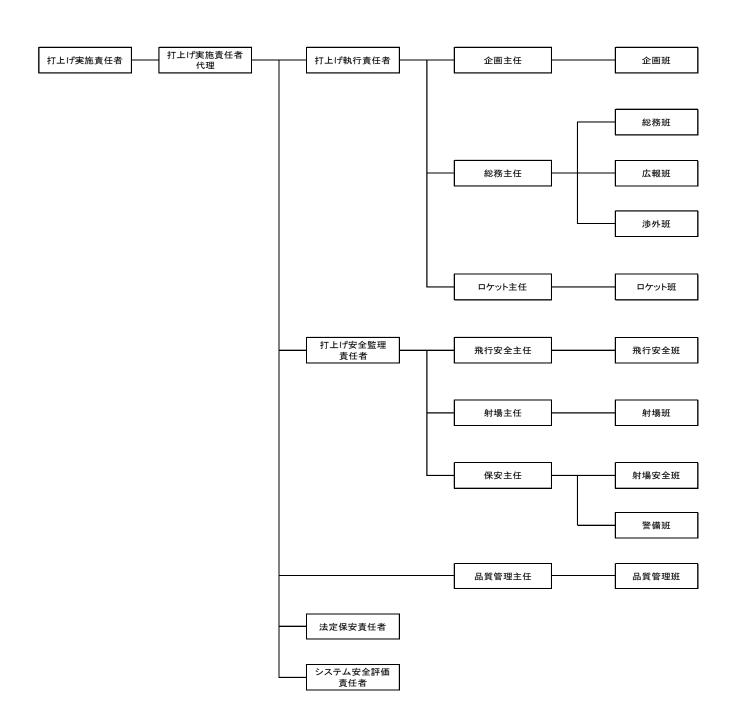


図-4 打上げ管制隊編成図

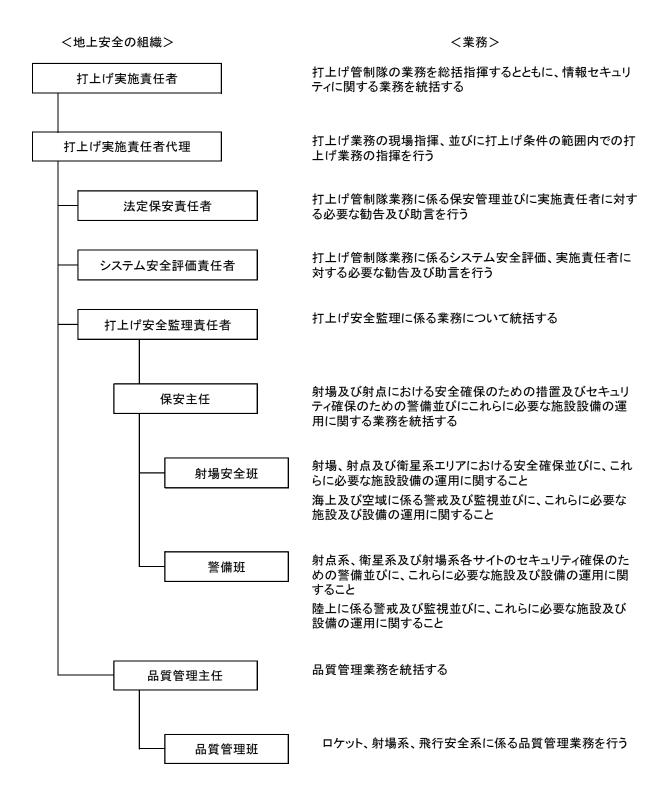
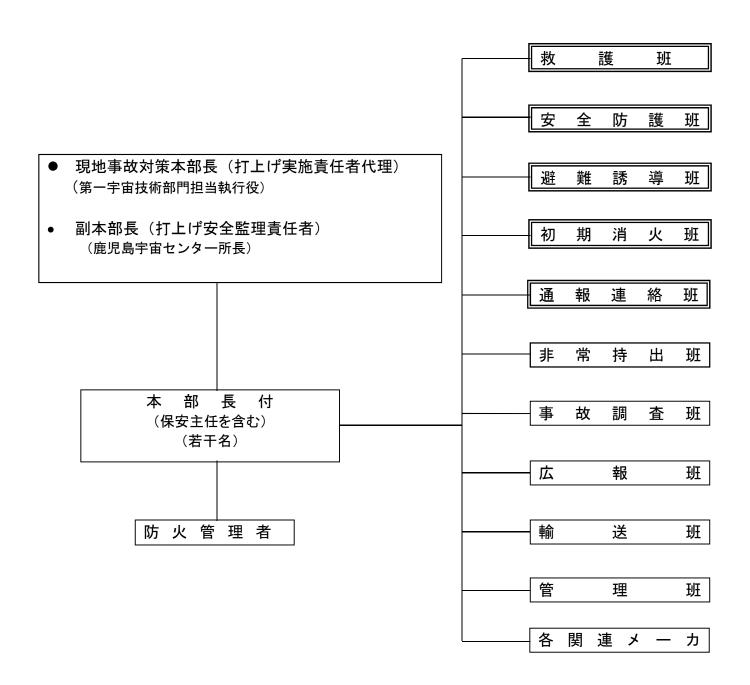



図-5 地上安全組織及び業務

- (注1) 各班の業務分担は、「内之浦宇宙空間観測所 消防計画」に定めるところによる。
- (注2) 各班には班長、副班長及び班員をもって構成する。
- (注3) 安全防護班は、射点危険区域の火災時に出動し、ガス検知、その他消火作業の保安を行う。また、支援チームは、状況により出動し応急の非常持ち出し、その他の支援に当る。
- (注4) 消防隊長が必要と認めた場合は、適宜組織及び業務分担を改編する。
- (注5) 緊急時の関係各メーカの体制を明確にしておく。

- (注1) 救護班、安全防護班、避難誘導班、消火班、及び通報連絡班は、自衛消防隊の編成で構成する。
- (注2) 各関連メーカは緊急時の体制を明確にし、事前にJAXAに届出を行う。
- (注3) 現地事故対策本部長が必要と認めた場合は、適宜組織及び業務分担を改編する。

JAXA事故対策本部

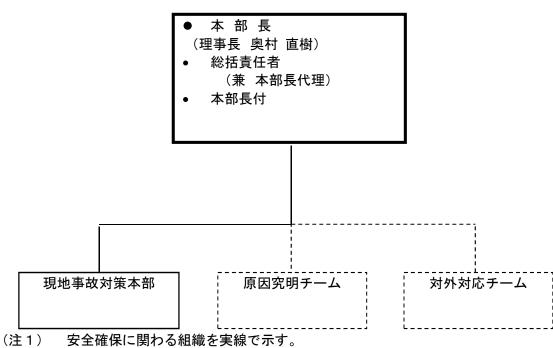


図-8 安全に係る重大な事故発生時の事故対策本部の構成

別紙一1

1. 目的

イプシロンロケット試験機の射点爆発に対する保安距離を算定する。

- 2. 関連文書
 - (1)「ロケットによる人工衛星等の打上げに係る安全対策の評価基準」 H28.6.14 宇宙開発利用部会
- 3. 保安距離算定方針

イプシロンロケット試験機の打上げ時に射点爆発事故が発生した場合について、関連文書(1)に基づいた計算方法により、爆風、飛散物及びファイアボールによる放射熱に対する保安距離をそれぞれ計算し、これらの距離の中で最大の距離を保安距離とする。

4. 要因別保安距離計算方法

固体ロケットの打上げ時の射点事故を想定し、爆風、飛散物、ファイアボールによる放射熱 について、それぞれの保安距離計算方法を以下に示す。

なお、計算は、全段が同時に爆発するという影響度が最も大きい状態を想定して行った。

4. 1 爆風に対する保安距離

爆風に対する保安距離を求めるために、試験機の固体推進薬、液体推進薬等の質量を元に、それぞれのTNT換算質量を求める。

それぞれの推進薬等の爆風圧基準の換算率は以下のとおりである。尚、イプシロンロケットにLOX/LH2は搭載しないのでインパルスによる評価は行わない。

固体推進薬 $T_{eo} = 0.05$

火工品 $T_{eo} = 1$

ヒドラジン類/NTO $T_{eo} = 0.1$

ここで、

W。: 推進薬等質量 (kg)

爆風圧基準の推進薬等換算質量 W_{ao}(kg) は、

 $W_{eo} = T_{eo} \times W_{p}$

で求める。

爆風に対する保安距離 R(m) は、以下の式による。

$$R = (74/\Delta P^{1/1.41}) \times (\sum W_{eo})^{1/3}$$
 (1)

ここで、 ΔPは基準爆風圧(kPa)を表し、以下により定められる。

$$\Delta P = 1.379 (kPa) \tag{2}$$

4. 2 飛散物に対する保安距離

飛散物に対する保安距離は、推進薬等の種類により以下の2つのケースに分けて計算を 行う。

(1) 固体推進薬及び火工品の場合

$$D = 117 \times W_p^{0.21}$$

ここで、

D:保安距離(m)

W ": 推進薬等質量の合計 (kg)

(2) 液体推進薬のみの場合

$$D = 59 \times W_p^{0.21}$$

ここで、D及び $W_{_{\mathrm{D}}}$ の意味は、上記(1)項と同じである。

(3) 固体推進薬等及び液体推進薬が共存する場合

$$D = 117 \times W_p^{0.21}$$

ここで、

D:保安距離(m)

W ": 推進薬等質量の合計 (kg)

4. 3 ファイアボールによる放射熱に対する保安距離

(1) 固体推進薬及び火工品の場合

ファイアボールの放射強度を $I_s(W/m^2)$ 、ファイアボールの持続時間を $t_s(s)$ 、

保安距離をF(m)とすると、Eisenberg らによる第一度の火傷を生じない限界の放射強度は、以下の式で与えられる。

$$I_s = 2.69 \times 10^7 \times W_{efs}^{0.65} / F^2$$
 (5)

$$t_s = 0.258 \times W_{efs}^{0.349} \tag{6}$$

$$t_s \times I_s^{1.15} = 550000 \tag{7}$$

ここで、Wefsは推進薬等の換算質量を表し、以下により定められる。

$$W_{efs} = \sum T_{efs} \times W_{p}$$

固体推進薬 T_{afs} = 0.05

火工品
$$T_{efs} = 1$$

式 (5)、(6)、(7) より F は以下の式で求まる。

$$F = 9.1901 \times W_{efs}^{0.47674}$$

また、NASA基準によれば、(5)式で $I_s = 12560$ として求めたFを放射熱に対する保安距離としている。

Eisenberg らの基準による保安距離とNASAの基準による保安距離の両方を求め、 大きい方の値を放射熱に対する保安距離とする。

(2) 液体推進薬の場合

ファイアボールの放射強度を $I_i(W/m^2)$ 、ファイアボールの持続時間を $t_i(s)$ 、

保安距離を F(m) とすると、Eisenberg らによる第一度の火傷を生じない限界の放射強度は、以下の式で与えられる。

$$I_1 = 8.58 \times 10^6 \times A \times W_p^{2/3} / F^2$$
 (8)

$$t_1 = 1.82 \times W_p^{1/6} \tag{9}$$

$$\mathbf{t}_{1} \times \mathbf{I}_{1}^{1.15} = 550000 \tag{10}$$

ここで、係数Aは

ヒドラジン/NTOのみ場合

A = 1

であり、W₀は、推進薬質量(kg)を表す。

式(8)、(9)及び(10)よりFは以下の式で求まる。

$$F = 12.134 \times A^{1/2} \times W_p^{0.4058}$$

また、NASA基準によれば、(8)式で $I_1 = 12560$ として求めたFを放射熱に対する保安距離としている。

Eisenberg らの基準による保安距離とNASAの基準による保安距離の両方を求め、大きい方の値を放射熱に対する保安距離とする。

(3) 固体推進薬等及び液体推進薬が共存する場合

上記(1)項及び(2)項で求めたとの関係により以下のケース別に計算する。

(a) t₁≥t₅の場合

式 (5)、(6)、(8)、(9) 及び
$$t_s \times (I_l + I_s)^{1.15} + (t_l - t_s) \times I_l^{1.15} = 550000$$

により

$$\begin{split} \mathbf{F} = & \big[\big\{ \mathbf{t}_s \times (8.58 \times 10^6 \times \mathbf{W}_p^{2/3} + 2.69 \times 10^7 \times \mathbf{W}_{\mathrm{efs}}^{0.65} \big)^{1.15} \\ & + \big(\mathbf{t}_l - \mathbf{t}_s \big) \times \big(8.58 \times 10^6 \times \mathbf{W}_p^{2/3} \big)^{1.15} \big\} \, / \, 550000 \, \big]^{1/2.3} \end{split}$$

で計算したFと、式(5)、(6)、(8)、(9) 及び

$$I_1 + I_s = 12560$$

により

$$F = (2.69 \times 10^7 \times W_{efs}^{0.65} + 8.58 \times 10^6 \times W_p^{2/3})^{0.5} / 112.07$$

で計算したFのうち、大きい方の値を放射熱に対する保安距離とする。

(b) t くt の場合

式 (5)、(6)、(8)、(9) 及び
$$t_1 \times (I_s + I_1)^{1.15} + (t_s - t_1) \times I_s^{1.15} = 550000$$

により

$$\begin{split} \mathrm{F} = & \big[\big\{ \mathrm{t}_{l} \times (2.69 \times 10^{7} \times \mathrm{W}_{efs}^{0.65} + 8.58 \times 10^{6} \times \mathrm{W}_{p}^{2/3} \big)^{1.15} \\ & + \big(\mathrm{t}_{s} - \mathrm{t}_{l} \big) \times \big(2.69 \times 10^{7} \times \mathrm{W}_{efs}^{0.65} \big)^{1.15} \big\} / 550000 \, \big]^{1/2.3} \end{split}$$

で計算したFと、式(5)、(6)、(8)、(9)及び

$$I_{\perp} + I_{c} = 12560$$

により

$$F = (2.69 \times 10^{7} \times W_{efs}^{0.65} + 8.58 \times 10^{6} \times W_{p}^{2/3})^{0.5} / 112.07$$

で計算したFのうち、大きい方の値を放射熱に対する保安距離とする。

5. イプシロンロケット試験機搭載の推進薬等

イプシロンロケット試験機に搭載する、固体推進薬、液体推進薬等の種類と質量を別紙表ー 1に示す。

- 6. 計算結果
 - 6. 1 打上げ時の保安距離計算結果
 - (1) 爆風に対する保安距離
 - 4. 1項の推進薬等質量を用いて計算した結果、TNT換算質量合計は、基準爆風 圧に対して 4188.2kg となった。基準爆風圧は、1.379kPa となった。爆風に対する保 安距離は、950m となった。
 - (2) 飛散物に対する保安距離
 - 4. 2項の推進薬等質量を用いて計算した結果、推進薬等質量合計は 83671.6kg で、飛散物に対する保安距離は、1270m となった。
 - (3) ファイアボールによる放射熱に対する保安距離
 - 4.3項の推進薬等質量を用いて計算した結果、固体推進薬及び火工品の換算質量は4183.8kg、液体推進薬等の換算質量は44.1kgと求められ、保安距離は、Eisenbergらの基準で480m、NASA基準で710mとなったため、大きい方の710mをファイアボールによる放射熱に対する保安距離とする。
 - (4) 保安距離のまとめ

各保安距離の計算結果は、飛散物 1270(m) > 爆風 950(m) > ファイアボールによる放射熱710(m) となった。

これより、打上げ時の射点爆発に対して必要な保安距離は、1270mとする。

別紙表-1 イプシロンロケット2号機搭載の推進薬等質量

名称	使 用 箇 所	ロケット等搭載量	備考
	第1段モータ	66. O ton	
	第2段モータ	15. O ton	
固体推進薬	第3段モータ	2. 5 ton	
	SMSJ、スピンモータ、 デスピンモータ	102.1 kg	
	第1、2、3段イグナイタ	22. 9 kg	
	第1段指令破壊用	1. 8 kg	
火工品	第2、3段指令破壊用	O. 4 Kg	
	ペイロード/フェアリング分離系*	O. 3 kg	
ヒドラジン	ペイロード	26. O kg	
	2 段ガスジェット	18. 1 kg	

*:パイロ弁、段間分離用火工品含む

イプシロンロケット2号機の打上げに係る 飛行安全計画

平成28年9月

国立研究開発法人 宇宙航空研究開発機構

まえがき

本計画は、「人工衛星等打上げ基準」第4条に基づき、打上げに係る安全計画について定める ものであり、同第3条に従い宇宙開発利用部会の調査審議を受けるものである。

目次

1.	. 全般	. 1
	1.1 飛行安全の目的	. 1
	1.2 飛行安全の実施範囲	. 1
	1.3 関連法規等	. 2
	1.3.1 法令	. 2
	1.3.2 宇宙開発利用部会 基準	. 2
	1.3.3 国立研究開発法人 宇宙航空研究開発機構 規程・要領等	. 2
2.	. 飛行経路の安全性	. 3
	2.1 飛行経路	. 3
	2.2 落下予想区域と海上警戒区域及び陸上警戒区域	
	2.3 落下予測点軌跡	
	2.4 地上局の電波リンク	
	2.5 軌道上のロケット機体等の処置	
	2.6 軌道上の国際宇宙ステーション(ISS)及びISSへの有人宇宙船に対する安全対策	
3.	. 飛行安全管制	
	3.1 飛行安全システム	
	3.1.1 システムの概要	
	3.1.2 飛行安全情報の流れ	
	3.1.3 ロケットの飛行を中断すべき条件	
	3.2 落下限界線の設定	
	3.2.1 内之浦周辺の落下限界線	
	3.2.2 内之浦周辺以外の落下限界線	
4.	. 航空機及び船舶に対する通報	
	4.1 航空機に対する通報	
_	4.2 船舶に対する通報	
5.	7013 21 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1	
О.	. 安全教育・訓練	
	6.1 安全教育	
	6.2 飛行安全管制訓練	
7	6.3 飛行中断時の情報連絡訓練	
1.	. ロケット飛行中断後の対策及び措置	
	7.1 射点近傍での飛行中断	
	/. 2 別はリ゙汚以タトじ切が17甲断	1/

図表目次

表 1 イ	′プシロンロケット2号機の飛行計画概要	5
図 1	イプシロンロケット2号機の飛行経路概要(機体現在位置)	6
図 2	投棄物の落下予想区域	7
図3	落下予想区域と航空路	8
図4-1	水路通報のための海上警戒区域	9
図4-2	航空路通報のための海上警戒区域1	10
図 5	ロケットの落下予測点 $^{\scriptscriptstyle ({}^{\scriptscriptstyle ()}})}}})}})}}).$	11
図 6	飛行安全システム概念図1	
図 7	射点周辺の落下限界線1	15
図8	打上げ管制隊編成図1	18
図 9	飛行安全関連組織	19
図10	現地事故対策本部の構成2	20
図11	安全に関わる重大な事故発生時の事故対策本部の構成	21

1. 全般

JAXAは、イプシロンロケット2号機及びジオスペース探査衛星(ERG)(以下「ERG」という。) の打上げに係る業務を行うに当たって、飛行安全確保業務を行うものとする。本計画書は「イプシロンロケット2号機の打上げに係る飛行安全計画」を定めたものである。

1.1 飛行安全の目的

飛行安全は、地上より打上げられたロケットの燃え殻、投棄物、故障した機体、もしくは その破片等が落下する際、落下点または落下途中において人命または財産に対し被害を与え る可能性を最小限にとどめ、公共の安全を確保することを目的とする。

1.2 飛行安全の実施範囲

上記の目的を達成するために、ロケットの打上げに際して実施すべき飛行安全の作業範疇 は以下の通りである。

- (1) 設定されたロケットの飛行経路が、上記目的に照らして適当であることを確認する。
- (2) ロケットの燃え殻、及び投棄物の落下予想区域に関連し、必要に応じて国内外に 事前通報を行う。
- (3) リフトオフより2/3段分離確認までを飛行安全管制期間とし、この期間中、ロケットが設定された飛行経路に沿って飛行しているか否かを判定し、その経路を外れて落下予測域^(注)が地表に危害を与えるおそれが生じた場合は、災害を最小限に抑えるための措置を講じる。また、このために必要な準備作業を行う。
 - (注) ロケットの落下予測域とは、ロケットの飛行を中断した場合に、落下物の衝突、飛行中の爆発に伴う爆風、固体推進薬破片の地上落下時の二次爆発及び二次破片の飛散、並びに搭載推進薬の流出及び拡散等により危害が及ぶおそれのある範囲。

1.3 関連法規等

1.3.1 法令

国内法令等には、飛行安全という用語はなく、また、特にその内容を直接規定する条文はない。航空機及び船舶に対する通報に関しては「航空法」等に基づき実施する。国際的には「宇宙物体により引き起こされる損害についての国際的責任に関する条約」があり、ロケット打上げ国の損害賠償に関する義務が明文化されている。日本は本条約に1983年6月に加入した。上記の飛行安全の目的及び実施範囲は本条約の主旨に沿っている。

1.3.2 宇宙開発利用部会 基準

- (1) ロケットによる人工衛星等の打上げに係る安全対策の評価基準 (平成28年6月14日 宇宙開発利用部会)
- 1.3.3 国立研究開発法人 宇宙航空研究開発機構 規程・要領等
 - (1) 安全管理規程(規程第16-2号 平成25年4月9日改訂版)
 - (2) 人工衛星等打上げ基準 (規程第15-37号 平成27年7月28日改訂版)
 - (3) 人工衛星等打上げ用ロケットの飛行安全に関する基本要求(JERG-1-011NC)
 - (4) 飛行安全解析要求書(KQE-14720A)
 - (5) イプシロンロケット2号機打上げ管制隊の編成について(第一宇宙技術部門長決定 第28-4号)

2. 飛行経路の安全性

2.1 飛行経路

ロケットの飛行計画を表1に、飛行経路を図1に示す。

2.2 落下予想区域と海上警戒区域及び陸上警戒区域

ロケットが正常に飛行した場合の落下物としては衛星フェアリング、第1段機体及び第2段機体がある。図2にこれらの落下予想区域を示す。また、これらの落下予想区域を航空路図の上に示すと図3のとおりである。衛星フェアリング、第1段機体及び第2段機体の落下予想区域については航空機の安全航行のため、第4章に記す通報の手続きを確実に行い安全を確保する。

また、打上げ直後の飛行中断に伴う破片の落下分散を解析し、ロケットの落下破片が船舶に当たるおそれのある海域を図4-1のように水路通報のための海上警戒区域として、射点を含む周辺の陸地において、破片抗力落下予測域を収めることができる適切な範囲を陸上警戒区域として設定する。また、図4-2のように、水路通報のための海上警戒区域、並びに陸上警戒区域、及び高度18km通過域を包含した区域を航空路通報のための海上警戒区域として設定する。

なお、落下予想区域及び海上警戒区域について、第4章に記す方法によって、航空機及び 船舶に対し周知を図る。

2.3 落下予測点軌跡

ロケットの落下予測点軌跡及び3 σ分散範囲を図5に示す。3 σ分散飛行経路を飛行中のロケットが推力を停止したと想定した場合の落下域は、人口稠密地域から可能な限り離れて通過するよう飛行経路が設定されている。また、万一ロケットが異常を生じた場合に災害を最小にとどめられるように飛行安全管制を実施する。その方法については第3章に述べる。

2.4 地上局の電波リンク

イプシロンロケット2号機の打上げでは、打上げから2/3段分離確認まで飛行安全管制を実施するため、その期間の電波リンク確保に必要な追尾局(レーダ、テレメータ)、及びコマンド局を使用する。

2.5 軌道上のロケット機体等の処置

ミッション終了後のロケット第3段機体が残留燃料等のため軌道上で破壊、爆発等に至った場合、大量の宇宙デブリ破片の発生が想定される。また、衛星分離機構を作動させる際、 軌道上に火工品の破片等が放出される可能性がある。イプシロンロケットではこれらを防止する処置として以下を考慮している。

- (1) 搭載されている電池については、内部圧力上昇により破壊することを防止する目 的で、内部圧力が規定以上に上昇した場合には、ベントできる機能を有している。
- (2) 衛星分離機構はマルマンバンド方式であり、作動時に破片等を放出しない方式を採用している。

2.6 軌道上の国際宇宙ステーション(ISS)及びISSへの有人宇宙船に対する安全対策

ロケットの打上げに際しては、軌道上において活動する者の生命の安全を確保するため、 打上げ実施後に軌道上のISS及びISSへの有人宇宙船(以下合わせて「有人宇宙船」という。) がロケットの軌道投入段及びその分離物からの安全を確保するための対応が可能と考えら れるまでの間を考慮した干渉解析を実施し、当該有人宇宙船との衝突を回避する打上げ時刻 を設定する。

表 1 イプシロンロケット2号機の飛行計画概要

事象		打上後経過時間(秒)	距離 (km)	高度 (km)	慣性速度 <u>(km/s)</u>
(1)	1段点火	0	0	0	0.4
(2)	1段燃焼終了 ^(※)	108	75	69	2.6
(3)	衛星フェアリング分離	150	151	114	2.4
(4)	1/2段分離	161	171	124	2.4
(5)	2段点火	165	178	127	2.3
(6)	2段燃焼終了 ^(※)	294	582	194	6.0
(7)	スピンモータ点火	378	1028	224	5.9
(8)	スピンモータ燃焼終了(※)	383	1055	225	5.9
(9)	2/3段分離	398	1134	227	5.9
(10)	3段点火	402	1155	228	5.9
(11)	3段燃焼終了 ^(※)	490	1758	224	10.2
(12)	衛星分離 ^(※※)	803	4618	532	9.9

^(※) 燃焼室圧力最大値の5%時点。 (※※) 衛星分離時間は機体・衛星特性の実測値をもとに最終決定されるため参考値 (※※※) 【 _ _ 【 は飛行安全管制期間。飛行安全管制終了時刻は打上げ後398秒後。

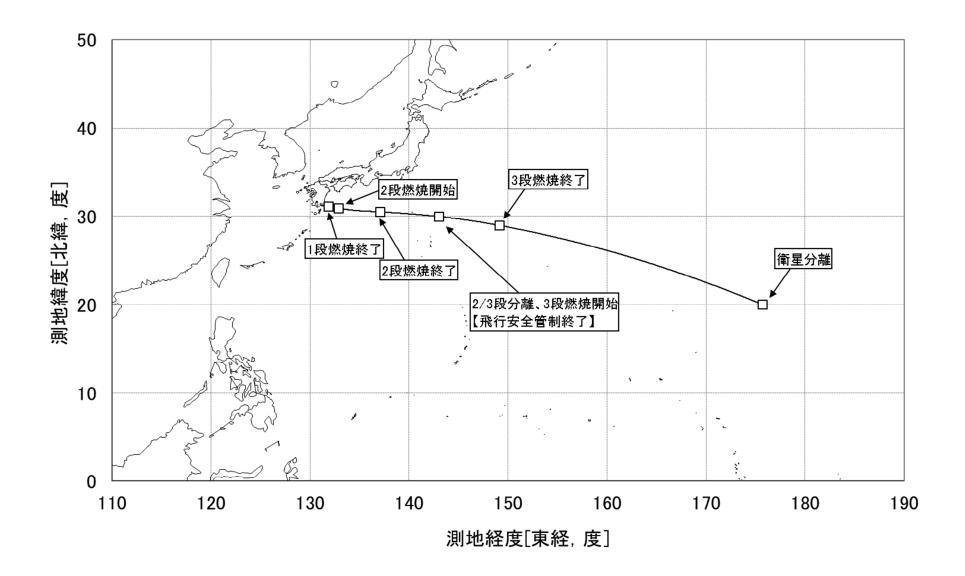


図1 イプシロンロケット2号機の飛行経路概要(機体現在位置)

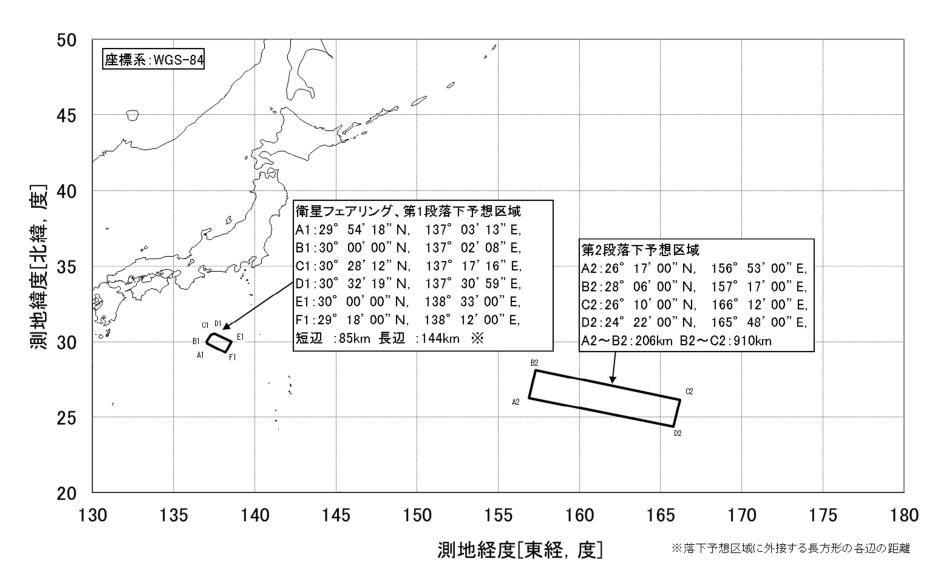


図2 投棄物の落下予想区域