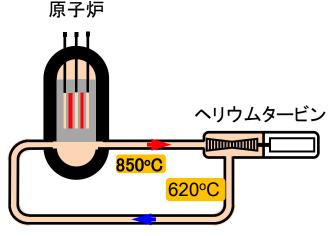
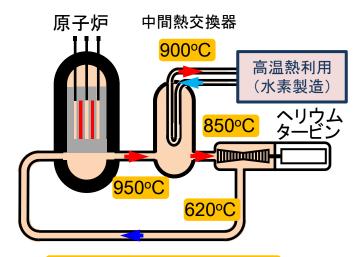

第2回作業部会における指摘事項への回答


1. 炉型と技術開発項目

高温ガス炉の実用化に向けて、炉型(温度、出力、出力密度、燃焼度)の条件に対して、既に完成した技術と今後必要な技術開発等を示す。

1-1 炉型と熱利用の形態



850℃の高温ガス炉 ガスタービン発電

利用可能な排熱温度:200°C

利用可能な排熱温度:200℃

950℃の高温ガス炉 ガスタービン発電+水素製造

1-2 炉型と技術開発項目

				技術開発・基準整備						データ整備			
	炉型			燃料	安全基準· 事故時安全性			熱利用施設			燃料	黒鉛	
温度	出力	出力密度	燃焼度	除熱性能向上燃料要素	HTTR試験	HTTR接続試験	安全基準実用高温ガス炉の	安全基準熱利用施設接続のための	蒸気タービン発電技術	ガスタービン発電技術	革新的水素製造技術	(内圧破損)を含む)(燃料被覆破損機構研究燃料の高燃焼度化	の黒鉛特性評価実用高温ガス炉条件下で
	250MW	低	低	開発済	データ不要	試験不要	要	基準不要	開発済			データ不要	データ不要
750°C	250MW	低	高	開発済	データ不要							要	要
	600MW	高	高	開発済 ^{注1}	データ不要 ^{注1}							要	要
	250MW	低	低	開発済	データ不要	要	要	基準不要		要		データ不要	データ不要
850°C	250MW	低	高	開発済	データ不要							要	要
	600MW	高	高	要	要							要	要
	250MW	低	低	開発済	データ不要	要	要	要		要	要	データ不要	データ不要
950°C	250MW	低	高	開発済	データ不要							要	要
	600MW	高	高	要	要							要	要

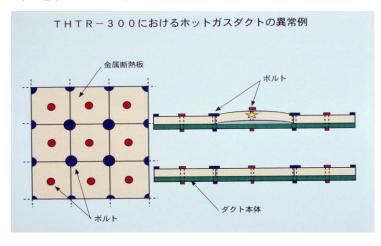
- 注1) 詳細設計による確認が必要。
- 注2) 炉工学における燃焼を考慮した核設計の計算手法の精度評価は、750℃、850℃、950℃に共通なデータ整備。
 - 使用済燃料・黒鉛廃棄物における使用済燃料の処理に関する検討、直接処分に関する検討、廃棄物低減に関する検討は、各炉型に共通な課題として実施。
- 注3) 本表は、これまで実施してきた研究開発、HTTR試験等の結果に基づき、JAEAで作成。

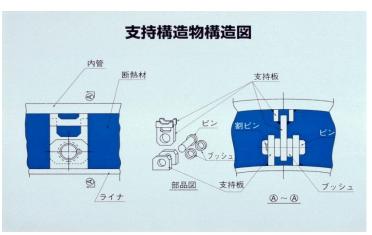
2. 海外高温ガス炉の停止理由

米国、ドイツにおける高温ガス炉が1980年代で停止した技術的な理由を示す。

また、HTTRの設計における反映内容を示す。

2-1 海外高温ガス炉の停止理由(1/2)


炉	故障等	HTTRへの反映内容
Fort St. Vr ain (米国)	ヘリウム循環機の水軸受のシール水の炉心への侵入	回転軸をヘリウムガスの動圧により浮上させ るガス軸受を採用。
	炉心領域(燃料体、制御棒案内ブロック、可動反射体ブロックのある領域)の出口ガス温度の変動 ● 炉心の各領域の流量調節のためのオリフィスにより、炉心半径方向に最大42kPaの圧力差が発生。それに伴い、クロス流れが発生し、最大200℃の温度差が発生。 ● 圧力差により、炉心構成要素が動き、流量の再配分が起こり温度変動が発生。	炉心圧損を約10kPaに低減し、流量調節のためのオリフィスを設置しない。 径方向圧力差も僅かで、炉心構成要素が動くことはない。
	制御棒駆動機構の故障 ● ドライブシャフトの摩擦係数が予想以上に大きかったこと 及び駆動装置の腐食により制御棒挿入に失敗	摩擦係数に余裕を見込み、ギア比を低くして 駆動力に余裕をもたせる。 純化設備からヘリウムガスを導入し、ガスス イープする。
	溶接作業中にオイルを含んだ布に火が点き、ケーブル燃焼・ 破損	不燃性、難燃性のケーブルを採用。
	制御棒と制御棒駆動ワイヤの継目欠陥 蒸気発生器リングヘッダ部のクラック	水侵入事故を防止するための安全対策を採 用


注)制御棒駆動装置の腐食、ワイヤの継目欠陥、リングヘッダ部のクラックは水侵入に起因するものである。

2-2 海外高温ガス炉の停止理由(2/2)

炉	故障等	HTTRへの反映内容
THTR-300 (ドイツ)	球状燃料取出し管の冷却材流れ(燃料の流れと冷却材の流れが逆方向)による燃料球取出し不能	燃料形状と燃料取扱設備が異なる。
	制御棒の挿入による燃料球の多数破損	制御棒は制御棒案内ブロックに挿入し、燃料と接触しない。
	高温ガスダクト内の金属断熱板中心部の 留め具ボルトの頭の破損	ボルトは使用せず、高温二重配管の周方向4カ所に ライナ支持金具(支持板 ピン、ブッシュ)を使用。(ラ イナと内管の支持板に穴をあけ、細めのピンを通し、 遊びを持たせて連結し、熱膨張を拘束せず、自重を 支える。

注)これらの故障は運転を停止するような致命的な故障ではなく、軽微な故障で修理可能であったが、政治的、財政的理由 から運転を停止した。

3. 南アフリカPBMR、米国NGNPの状況

南アフリカPBMR、米国NGNPにおいて原子炉の建設に着手していない 理由を示す。

3-1 南アフリカPBMR、米国NGNPの状況

- PBMRプロジェクト 南アフリカの公共企業大臣は、以下の理由により、PBMRプロジェクトへの投資を中止する と発表*1(2010年9月)
 - ① 主要顧客、投資団体が未確保
 - ② 追加投資の必要性(\$4.2 billion)
 - ③ 実証炉建設スケジュールの遅れ
 - ④ 米国NGNPプロジェクトへの参画機会の逸失
 - ⑤ 南アフリカの原発新設プログラムにおける第二、第三世代原子炉の採用
 - ⑥ 南アフリカ経済の悪化
- NGNPプロジェクト
- ✓ 2005年包括エネルギー政策法(EPACT2005)で規定された、 産業界との建設費分担について合意が形成されていない*2。 米国規制委員会との規制の枠組みに関する協議、 官民パートナーシップの構築に向けた取組み、 燃料及び黒鉛を中心とした研究開発を引き続き実施中。
- ✓ 米国エネルギー省は、2014年6月に米国政府監査院が上院歳出委員会向けに発行した 新型炉研究に関する報告書中の「NGNPプロジェクト進展に向けた戦略を策定すべき」 との提言の受け入れを表明しており*3、近い将来のプロジェクトの進展が期待されている。

^{*1:} http://www.dpe.gov.za/newsroom/Pages/ADDRESS-BY-THE-MINISTER-OF-PUBLIC-ENTERPRISES,-BARBARA-HOGAN,-TO-THE-NATIONAL-ASSEMBLY,-ON-THE-PEBBLE-BED-MODULAR-REACTOR.aspx

^{*2:} S. Chu., Secretary of Energy's Letter to U.S. Senate Appropriations Committee, October 17, 2011.

^{*3:} US GAO, Report to the Chairman, Subcommittee on Energy and Water Development, Committee on Appropriations, U.S. Senate, June 23, 2014.