表 4.14 元素依存パラメータ一覧 (1)

放出係数			
単位	(-)		WE 11-21
No.	元素	選定値	選定根拠
1	Н	1.15E+00	NUREG-0782
2	Be	3.0E-02	化学的性質の類似性からCaと同一に選定
3	С	1.0E-01	IAEA-TECDOC-401
4	F	1.0E-01	化学的性質の類似性からCIと同一に選定
5	Na	1.0E-01	IAEA-TECDOC-401
6	P	3.0E-02	IAEA-TECDOC-401
7	S	3.0E-02	IAEA-TECDOC-401
8	Cl	1.0E-01	化学的性質の類似性からIと同一に選定
9	Ca	3.0E-02	IAEA-TECDOC-401
10	Sc	3.0E-02	化学的性質の類似性からCoと同一に選定
11	Ti	3.0E-04	化学的性質の類似性からCeと同一に選定
12	V	3.0E-04	化学的性質の類似性からCeと同一に選定
13	Cr	3.0E-02	化学的性質の類似性からMnと同一に選定
14	Mn	3.0E-02	IAEA-TECDOC-401
15	Fe	3.0E-02	化学的性質の類似性からCoと同一に選定
16	Co	3.0E-02	IAEA-TECDOC-401
17	Ni	3.0E-02	化学的性質の類似性からCoと同一に選定
18	Zn	3.0E-02	化学的性質の類似性からCoと同一に選定
19	Ga	3.0E-04	化学的性質の類似性からSnと同一に選定
20	Ge	3.0E-04	化学的性質の類似性からSnと同一に選定
21	Se	3.0E-02	化学的性質の類似性からSと同一に選定
22	Rb	1.0E-02	化学的性質の類似性からCsと同一に選定
23	Sr	3.0E-02	IAEA-TECDOC-401
24	Y	3.0E-04	化学的性質の類似性からCeと同一に選定
25	Nb	3.0E-02	化学的性質の類似性からCoと同一に選定
26	Mo	3.0E-02	化学的性質の類似性からMnと同一に選定
27	Tc	1.0E-01	化学的性質の類似性からIと同一に選定
28 29	Ag Cd	3.0E-04 3.0E-04	NRPB-R161 NRPB-R161
30	In	1.0E-02	化学的性質の類似性からCsと同一に選定
31	Sn	3.0E-04	NRPB-R161
32	Sb	3.0E-04	NRPB-R161
33	Te	3.0E-04	NRPB-R161
34	I	1.0E-01	IAEA-TECDOC-401
35	Cs	1.0E-02	IAEA-TECDOC-401
36	Ba	3.0E-02	化学的性質の類似性からSrと同一に設定
37	Ce	3.0E-04	IAEA-TECDOC-401
38	Pm	3.0E-04	NRPB-R161
39	Eu	3.0E-04	化学的性質の類似性からCeと同一に選定
40	Gd	3.0E-04	化学的性質の類似性からEuと同一に選定
41	Tb	3.0E-04	化学的性質の類似性からEuと同一に選定
42	Yb	3.0E-04	化学的性質の類似性からEuと同一に選定
43	<u>Ta</u>	3.0E-02	化学的性質の類似性からNbと同一に選定
44	<u>W</u>	1.0E-01	化学的性質の類似性からTcと同一に選定
45	Re	1.0E-01	化学的性質の類似性からTcと同一に選定
46	<u>Ir</u>	3.0E-02	化学的性質の類似性からCoと同一に選定
47	Au	3.0E-04	化学的性質の類似性からAgと同一に選定
48	Hg	3.0E-02	化学的性質の類似性からCoと同一に選定
49		3.0E-04	NRPB-R161
50	Am	3.0E-04	IAEA-TECDOC-401
51	Cm	4.7E-04	NUREG-0782 ジナタレなっていなかった 三妻

調査文献 「原子炉クリアランス報告書」 「核燃施設クリアランス報告書」

「核燃施設クリアフンス報告書」「重水炉等クリアランス報告書」

IAEA-TECDOC-401 NRPB-R161

上記「NUREG-0782」の値については「核燃施設クリアランス報告書」を参照。

表 4.14 元素依存パラメータ一覧 (2)

		(M11)	世 本 国 土 権 の 公 即 低 粉
単位	(mL/g)		帯水層土壌の分配係数
平亚. No.	元素	選定値	選定根拠
1	Н	0.0E+00	IAEA-TECDOC-401
2	Be	2.4E+02	IAEA TRS No.364(砂)
3	C	2.0E+00	IAEA-TECDOC-401
4	F	1.5E+02	ORNL-5786
5	Na	1.0E+02	ORNL-5786
6	P	9.0E+00	IAEA TRS No.364(砂)
7	S	1.0E+01	加藤他、原子力学会誌Vol.28 No.4
8	Cl	1.0E+00	化学的性質の類似性からIと同一に選定
9	Ca	9.0E+00	IAEA TRS No.364(砂)
10	Sc	1.0E+03	ORNL-5786
11	Ti	1.0E+03	ORNL-5786
12	V	1.0E+03	ORNL-5786
13	Cr	6.7E+01	IAEA TRS No.364(砂)
14	Mn	4.9E+01	IAEA TRS No.364(砂)
15	Fe	2.2E+02	IAEA TRS No.364(砂)
16	Co	6.0E+01	IAEA TRS No.364(砂)
17	Ni	4.0E+02	IAEA TRS No.364(砂)
18	Zn	2.0E+02	IAEA TRS No.364(砂)
19	Ga	1.5E+03	ORNL-5786
20	Ge	2.5E+01	ORNL-5786
21	Se	1.5E+02	IAEA TRS No.364(砂)
22	Rb	5.5E+01	IAEA TRS No.364(砂)
23	Sr	1.3E+01	IAEA TRS No.364(砂)
24	Y	4.0E+03	IAEA-TECDOC-1000
25	Nb	1.6E+02	IAEA TRS No.364(砂)
26	Мо	7.4E+00	IAEA TRS No.364(砂)
27	Tc	1.4E-01	IAEA TRS No.364(砂)
28	Ag	9.0E+01	IAEA TRS No.364(砂)
29	Cd	7.4E+01	IAEA TRS No.364(砂)
30	In	1.0E+02	IAEA-TECDOC-1000
31	Sn	1.3E+02	IAEA TRS No.364(砂)
32	Sb Te	4.5E+01 3.0E+02	IAEA TRS No.364(砂)
34	I	3.0E+02 1.0E+00	ORNL-5786 IAEA TRS No.364(存少)
35	Cs	2.7E+02	IAEA TRS No.364(存)
36	Ba	1.3E+01	化学的性質の類似性からSrと同一に選定
37	Ce	4.9E+02	IAEA TRS No.364(砂)
38	Pm	1.0E+03	IAEA-TECDOC-1000
39	Eu	3.1E+01	JAERI-M93-113
40	Gd	6.5E+02	ORNL-5786
41	Tb	6.5E+02	ORNL-5786
42	Yb	6.5E+02	ORNL-5786
43	Ta	2.4E+02	IAEA TRS No.364(砂)
44	W	1.5E+02	ORNL-5786
45	Re	7.5E+00	ORNL-5786
46	Ir	1.5E+02	ORNL-5786
47	Au	2.5E+01	ORNL-5786
48	Hg	1.0E+01	ORNL-5786
49	Tl	1.5E+03	ORNL-5786
50	Am	2.0E+03	IAEA TRS No.364(砂)
51	Cm	4.0E+03	IAEA TRS No.364(砂)

調査文献 「原子炉クリアランス報告書」

「核燃施設クリアランス報告書」 「重水炉等クリアランス報告書」 加藤他、原子力学会誌Vol.28 No.4

IAEA TRS No.364(砂)

ORNL-5786 JAERI-M93-113

上記「IAEA-TECDOC-1000」の値については「核燃施設クリアランス報告書」を参照。

表 4.14 元素依存パラメータ一覧 (3)

	.IT /U/N		典批上権の公司核粉
単位	(mI /a)		農耕土壌の分配係数
平位. No.	(mL/g) =:≢	選定値	選定根拠
1	元素		
	Н В с	0.0E+00 3.0E+03	IAEA-TECDOC-401 IAEA TRS No.364(有機土)
2	Be		
3	C	2.0E+00	IAEA-TECDOC-401
4	F	1.5E+02	ORNL-5786
5	Na	1.0E+02	ORNL-5786
6	P	1.1E+02	IAEA TRS No.364(有機土)
7	S	7.5E+00	ORNL-5786
8	Cl	2.7E+01	化学的性質の類似性からIと同一に選定
9	Ca	1.1E+02	IAEA TRS No.364(有機土)
10	Sc	1.0E+03	ORNL-5786
11	Ti	1.0E+03	ORNL-5786
12	V	1.0E+03	ORNL-5786
13	Cr	2.7E+02	IAEA TRS No.364(有機土)
14	Mn	4.9E+02	IAEA TRS No.364(有機土)
15	Fe	4.9E+03	IAEA TRS No.364(有機土)
16	Co	9.9E+02	IAEA TRS No.364(有機土)
17	Ni	1.1E+03	IAEA TRS No.364(有機土)
18	Zn	1.6E+03	IAEA TRS No.364(有機土)
19	Ga	1.5E+03	ORNL-5786
20	Ge	2.5E+01	ORNL-5786
21	Se	1.8E+03	IAEA TRS No.364(有機土)
22	Rb	6.7E+02	IAEA TRS No.364(有機土)
23	Sr	1.5E+02	IAEA TRS No.364(有機土)
24	Y	4.0E+03	IAEA-TECDOC-1000
25	Nb	2.0E+03	IAEA TRS No.364(有機土)
26	Mo	2.7E+01	IAEA TRS No.364(有機土)
27	Tc	1.5E+00	IAEA TRS No.364(有機土)
28	Ag	1.5E+04	IAEA TRS No.364(有機土)
29	Cd	8.1E+02	IAEA TRS No.364(有機土)
30	In	1.0E+02	IAEA-TECDOC-1000
31	Sn	1.6E+03	IAEA TRS No.364(有機土)
32	Sb	5.4E+02	IAEA TRS No.364(有機土)
33	Te	3.0E+02	ORNL-5786
34	I	2.7E+01	IAEA TRS No.364(有機土)
35	Cs	2.7E+02	IAEA TRS No.364(有機土)
36	Ba	1.5E+02	化学的性質の類似性からSrと同一に選定
37	Ce	3.0E+03	IAEA TRS No.364(有機土)
38	Pm	1.0E+03	IAEA-TECDOC-1000
39	Eu	3.1E+01	JAERI-M93-113
40	Gd	6.5E+02	ORNL-5786
41	Tb	6.5E+02	ORNL-5786
42	Yb	6.5E+02	ORNL-5786
43	Ta	3.0E+03	IAEA TRS No.364(有機土)
44	W	1.5E+02	ORNL-5786
45	Re	7.5E+00	ORNL-5786
46	Ir	1.5E+02	ORNL-5786
47	Au	2.5E+01	ORNL-5786
48	Hg	1.0E+01	ORNL-5786
49	Tl	1.5E+03	ORNL-5786
50	Am	1.1E+05	IAEA TRS No.364(有機土)
51	Cm	1.2E+04	IAEA TRS No.364(有機土)
- 1 - 1	+ + 1 + 51	4 四分のボケー	対象となっていなかった元表

調査文献 「原子炉クリアランス報告書」

「核燃施設クリアランス報告書」

「重水炉等クリアランス報告書」

IAEA TRS No.364(有機土)

ORNL-5786

IAEA-TECDOC-401

IAEA-TECDOC-1000

JAERI-M93-113

表 4.14 元素依存パラメータ一覧 (4)

単位	(Bq/g-wet pe	er Bq/g)	
No.	元素	選定値	選定根拠
1	Н	5.0E+00	IAEA-TECDOC-401
2	Be	1.0E-02	ORNL-5786
3	С	5.5E-01	NUREG/CR-3585
4	F	6.0E-02	ORNL-5786
5	Na	5.0E-02	IAEA S.S. No.57
6	P	1.0E+00	IAEA S.S. No.57
7	S	6.0E-01	IAEA S.S. No.57
8	Cl	5.0E+00	NUREG/CR-3585
9	Ca	3.0E-01	IAEA-TECDOC-401
10	Sc	1.1E-03	NUREG/CR-3585
11	Ti	5.5E-03	ORNL-5786
12	V	5.5E-03	ORNL-5786
13	Cr	8.0E-04	IAEA S.S. No.57
14	Mn	2.6E-01	IAEA TRS No.364(シリアル)
15	Fe	7.0E-04	IAEA S.S. No.57
16	Co	3.2E-03	IAEA TRS No.364(シリアル)
17	Ni	2.6E-02	IAEA TRS No.364(小麦)
18	Zn	1.4E+00	IAEA TRS No.364(小麦)
19	Ga	3.0E-03	IAEA-TECDOC-1000
20	Ge	4.0E-01	ORNL-5786
21	Se	1.0E-01	IAEA-TECDOC-1000
22	Rb	1.3E-01	NUREG/CR-3585
23	Sr	1.8E-01	IAEA TRS No.364(シリアル)
24	Y	2.0E-03	IAEA S.S. No.57
25	Nb	1.0E-02	IAEA S.S. No.57
26	Мо	2.0E-01	IAEA-TECDOC-1000
27	Тс	6.3E-01	IAEA TRS No.364(シリアル)
28	Ag	2.0E-01	IAEA S.S. No.57
29	Cd	3.0E-01	NUREG/CR-3585
30	In	3.0E-03	IAEA-TECDOC-1000
31	Sn	2.5E-03	NUREG/CR-3585
32	Sb	1.0E-02	IAEA S.S. No.57
33	Te	6.0E-01	IAEA S.S. No.57
34	I	2.0E-02	IAEA S.S. No.57
35	Cs	7.1E-02	IAEA TRS No.364(シリアル)
36	Ba	5.0E-03	IAEA S.S. No.57
37	Ce	2.0E-03	IAEA S.S. No.57
38	Pm	2.0E-03	IAEA S.S. No.57
39	Eu	2.0E-03	IAEA S.S. No.57
40	Gd	2.0E-03	NCRP-123
41	Tb	2.0E-03	NCRP-123
42	Yb	2.5E-03	NUREG/CR-3585
43	Ta	2.0E-03	NCRP-123
44	W	4.5E-02	ORNL-5786
45	Re	1.5E+00	ORNL-5786
46	Ir	5.5E-02	ORNL-5786
47	Au	1.0E-01	IAEA-TECDOC-1000
48	Hg	3.0E-01	IAEA-TECDOC-1000
49	Tl	2.0E+00	IAEA-TECDOC-1000
50	Am	1.9E-05	IAEA TRS No.364(シリアル)
51	Cm	1.8E-05	IAEA TRS No.364(シリアル)

調査文献 「原子炉クリアランス報告書」

「核燃施設クリアランス報告書」 「重水炉等クリアランス報告書」

IAEA TRS No.364 IAEA S.S. No.57 IAEA-TECDOC-401 IAEA-TECDOC-1000 NUREG/CR-3585 ORNL-5786 NCRP-123

表 4.14 元素依存パラメータ一覧 (5)

			葉菜、非葉菜、果実)への移行係数
単位	(Bq/g-wet pe		Servicios (re
No.	元素	選定値	
1	Н	5.0E+00	IAEA-TECDOC-401
2	Be	1.5E-03	IAEA Safety Reports Series No.44
3	С	5.5E-01	NUREG/CR-3585
4	F	6.0E-03	IAEA Safety Reports Series No.44
5	Na	5.5E-02	IAEA Safety Reports Series No.44
6	P	1.0E+00	IAEA Safety Reports Series No.44
7	S	6.0E-01	IAEA Safety Reports Series No.44
8	Cl	5.0E+00	NUREG/CR-3585
9	Ca	3.0E-01	IAEA-TECDOC-401
10	Sc	1.1E-03	NUREG/CR-3585
11	Ti	5.5E-03	ORNL-5786
12	V	5.0E-04	IAEA Safety Reports Series No.44
13	Cr	1.0E-03	IAEA Safety Reports Series No.44
14	Mn	3.0E-01	IAEA TRS No.364(人参)
15	Fe	7.0E-04	IAEA S.S. No.57
16	Co	2.4E-02	IAEA TRS No.364(緑色野菜)
17	Ni	3.0E-01	IAEA Safety Reports Series No.44
18	Zn	2.6E-01	IAEA TRS No.364(ほうれん草)
19	Ga	3.0E-03	IAEA Safety Reports Series No.44
20	Ge	6.0E-01	IAEA Safety Reports Series No.44
21	Se	1.0E-01	IAEA Safety Reports Series No.44
22	Rb	2.0E-01	IAEA Safety Reports Series No.44
23	Sr	5.5E-01	IAEA TRS No.364(えんどう豆)
24	Y	2.0E-03	IAEA S.S. No.57
25	Nb	4.3E-03	IAEA TRS No.364(えんどう豆)
26	Mo	2.0E-01	IAEA Safety Reports Series No.44
27	Tc	5.0E+00	IAEA Safety Reports Series No.44
28	Ag	1.0E-02	IAEA Safety Reports Series No.44
29	Cd	5.0E-01	IAEA Safety Reports Series No.44
30	In	3.0E-03	IAEA-TECDOC-1000
31	Sn	3.0E-01	IAEA Safety Reports Series No.44
32	Sb	1.0E-03	IAEA Safety Reports Series No.44
33	Te	6.0E-01	IAEA S.S. No.57
34	I	2.0E-02	IAEA S.S. No.57
35	Cs	5.7E-02	IAEA TRS No.364(ジャガイモ)
36	Ba	5.0E-03	IAEA S.S. No.57
37	Ce	5.0E-02	IAEA Safety Reports Series No.44
38	Pm	2.0E-03	IAEA S.S. No.57
39	Eu	2.0E-03	IAEA S.S. No.57
40	Gd	2.0E-03	NCRP-123
41	Tb	2.0E-03	NCRP-123
42	Yb	3.0E-03	IAEA Safety Reports Series No.44
43	Ta	2.0E-03	NCRP-123
44	W	1.0E-02	IAEA Safety Reports Series No.44
45	Re	3.5E-01	IAEA Safety Reports Series No.44
46	Ir	1.5E-02	IAEA Safety Reports Series No.44
47	Au	1.0E-01	IAEA Safety Reports Series No.44
48	Hg	3.0E-01	IAEA Safety Reports Series No.44
49	Tl	2.0E+00	IAEA Safety Reports Series No.44
50	Am	3.5E-04	IAEA TRS No.364(人参)
51	Cm	2.2E-04	IAEA TRS No.364(根菜) 「対象となっていなかった元素

調査文献 「原子炉クリアランス報告書」

「核燃施設クリアランス報告書」 「重水炉等クリアランス報告書」

IAEA Safety Reports Series No.44

IAEA TRS No.364

IAEA S.S. No.57

IAEA-TECDOC-401

IAEA-TECDOC-1000

NUREG/CR-3585

ORNL-5786

NCRP-123

表 4.14 元素依存パラメータ一覧 (6)

	17 /15	14 . 14	飼料への移行係数
単位	(Bq/g-dry p	or Da/a)	则付° ~0.7′约1.7㎡数
平亚 No.	元素	選定値	選定根拠
1	九糸 H	医足胆 5.0E+00	IAEA-TECDOC-401
2	Be	1.0E-02	ORNL-5786
3	C	2.8E+00	農作物wetの5倍
4		6.0E-02	ORNL-5786
5	Na Na	2.0E-01	IAEA S.S. No.57
6	P	3.0E+00	IAEA S.S. No.57
7	S	2.0E+00	IAEA S.S. No.57
8	Cl	7.0E+01	ORNL-5786
9	Ca	3.5E+00	ORNL-5786
10	Sc	6.0E-03	ORNL-5786
11	Ti	5.5E-03	ORNL-5786
12	V	5.5E-03	ORNL-5786
13	Cr	3.0E-03	IAEA S.S. No.57
14		9.8E+00	IAEA 5.5. No.37 IAEA TRS No.364(アルファルファ)
15	Mn Fe	4.0E-03	IAEA TRS No.364() /// /// // // // IAEA TRS No.364
16	Co	1.1E+00	IAEA TRS No.364 IAEA TRS No.364(アルファルファ)
17	Ni	5.1E-01	IAEA TRS No.364(クローバ)
18	Zn	9.9E-01	IAEA TRS No.364(牧草)
19	Ga	1.0E-01	IAEA-TECDOC-1000
20	Ge	4.0E-01	ORNL-5786
21	Se	1.3E+00	NUREG/CR-3585
22	Rb	1.3E-01	NUREG/CR-3585
23	Sr	1.7E+00	IAEA TRS No.364(牧草)
24	Y	1.0E-02	IAEA S.S. No.57
25	Nb	5.0E-02	IAEA TRS No.364(油菜)
26	Мо	1.2E-01	NUREG/CR-3585
27	Тс	7.6E+01	IAEA TRS No.364(牧草)
28	Ag	1.0E+00	IAEA S.S. No.57
29	Cd	3.0E-01	NUREG/CR-3585
30	In	1.0E-01	IAEA-TECDOC-1000
31	Sn	3.0E-02	ORNL-5786
32	Sb	4.0E-02	IAEA S.S. No.57
33	Te	2.0E+00	IAEA S.S. No.57
34	I	3.4E-03	IAEA TRS No.364(牧草)
35	Cs	5.3E-01	IAEA TRS No.364(牧草)
36	Ba	2.0E-02	IAEA S.S. No.57
37	Ce	4.0E-02	IAEA S.S. No.57
38		4.0E-02	IAEA S.S. No.57
39	Eu	4.0E-02	IAEA S.S. No.57
40	Gd	1.0E-02	ORNL-5786
41 42	Ть У <i>b</i>	1.0E-02 2.5E-03	ORNL-5786 NUREG/CR-3585
42			
43	Та W	1.0E-02 4.5E-02	ORNL-5786 ORNL-5786
45	Re	4.5E+02 1.5E+00	ORNL-5786
46	Ir	5.5E-02	ORNL-5786
47	Au	4.0E-01	IAEA-TECDOC-1000
48	Hg Tl	3.0E+00 2.0E+00	IAEA-TECDOC-1000 IAEA-TECDOC-1000
50		1.2E-03	IAEA-TECDOC-1000 IAEA TRS No.364(牧草)
51	Am Cm	1.2E-03 1.1E-03	IAEA TRS No.364(牧草) IAEA TRS No.364(牧草)
No k=			IAEA I KS NO.304(火阜) 計争しなっていなかった三圭

調査文献 「原子炉クリアランス報告書」

「核燃施設クリアランス報告書」

「重水炉等クリアランス報告書」

IAEA TRS No.364 IAEA S.S. No.57 IAEA-TECDOC-401 IAEA-TECDOC-1000 NUREG/CR-3585 ORNL-5786

表 4.14 元素依存パラメータ一覧 (7)

	17 儿示		牛乳への移行係数
単位	(d/L)		十孔、2019年11年数
平位. No.	元素	選定値	選定根拠
1	Н	1.5E-02	IAEA TRS No.364
2	Be	2.0E-06	PNL-3209
3	C	5.0E-03	IAEA-TECDOC-401
4	F	7.0E-03	PNL-3209
5	Na	4.0E-02	IAEA S.S. No.57
6	P	2.0E-02	IAEA S.S. No.57
7	S	2.0E-02	IAEA S.S. No.57
8	Cl	1.7E-02	IAEA TRS No.364
9	Ca	3.0E-03	IAEA TRS No.364
10	Sc	5.0E-06	NUREG/CR-3585
11	Ti	1.0E-02	ORNL-5786
12	V	2.0E-05	ORNL-5786
13	Cr	2.0E-03	IAEA S.S. No.57
14	Mn	3.0E-05	IAEA TRS No.364
15	Fe	3.0E-05	IAEA TRS No.364
16	Co	7.0E-05	IAEA TRS No.364
17	Ni	1.6E-02	IAEA TRS No.364
18	Zn	1.0E-02	IAEA S.S. No.57
19	Ga	1.0E-05	IAEA-TECDOC-1000
20	Ge	7.0E-02	ORNL-5786
21	Se	4.0E-03	NUREG/CR-3585
22	Rb	1.2E-02	NUREG/CR-3585
23	Sr	2.8E-03	IAEA TRS No.364
24	Y	2.0E-05	IAEA S.S. No.57
25	Nb	4.1E-07	IAEA TRS No.364
26	Mo	1.4E-03	NUREG/CR-3585
27	Tc	1.4E-04	IAEA TRS No.364
28	Ag	5.0E-05	IAEA TRS No.364
29	Cd	1.0E-03	NUREG/CR-3585
30	In	2.0E-04	IAEA-TECDOC-1000
31	Sn	1.2E-03	NUREG/CR-3585
32	Sb	2.5E-05	IAEA TRS No.364
33	Te	4.5E-04	IAEA TRS No.364
34	I	1.0E-02	IAEA TRS No.364
35	Cs	7.9E-03	IAEA TRS No.364
36 37	Ba	4.8E-04	IAEA TRS No.364
38	Ce Pm	3.0E-05 2.0E-05	IAEA TRS No.364 IAEA S.S. No.57
39	Eu	2.0E-05	IAEA S.S. No.57
40	Gd	2.0E-05	ORNL-5786
41	Tb	2.5E-06	PNL-3209
42	Yb	2.0E-05	NUREG/CR-3585
43	Ta	3.0E-06	ORNL-5786
44	W	2.5E-04	PNL-3209
45	Re	1.5E-03	ORNL-5786
46	Ir	2.0E-06	ORNL-5786
47	Au	1.0E-05	IAEA-TECDOC-1000
48	Нд	1.9E-02	PNL-3209
49	Tl	3.0E-03	IAEA-TECDOC-1000
50	Am	1.5E-06	IAEA TRS No.364
51	Cm	2.0E-05	IAEA S.S. No.57
	1	tt maket and the	りもした。マルカル、た二主

調査文献 「原子炉クリアランス報告書」

「核燃施設クリアランス報告書」 「重水炉等クリアランス報告書」

IAEA S.S. No.57 IAEA-TECDOC-401 NUREG/CR-3585 PNL-3209 IAEA TRS No.364 IAEA-TECDOC-1000

ORNL-5786

表 4.14 元素依存パラメータ一覧 (8)

			牛肉への移行係数
単位	(d/kg)		
No.	元素	選定値	選定根拠
1	Н	1.0E-02	IAEA-TECDOC-401
2	Be	8.0E-04	PNL-3209
3	C	2.0E-02	IAEA-TECDOC-401
4	F	2.0E-02	PNL-3209
5	Na	2.0E-01	IAEA S.S. No.57
6	P	8.0E-02	IAEA S.S. No.57
7	S	1.0E-01	IAEA S.S. No.57
8	Cl	2.0E-02	IAEA TRS No.364
9	Ca	2.0E-03	IAEA TRS No.364
10	Sc	1.6E-02	NUREG/CR-3585
11	Ti	3.0E-02	ORNL-5786
12	V	2.5E-03	ORNL-5786
13	Cr	3.0E-02	IAEA S.S. No.57
14	Mn	5.0E-04	IAEA TRS No.364
15	Fe	2.0E-02	IAEA TRS No.364
16	Co	1.0E-04	IAEA TRS No.364
17	Ni	5.0E-03	IAEA TRS No.364
18	Zn	1.0E-01	IAEA TRS No.364
19	Ga	3.0E-04	IAEA-TECDOC-1000
20	Ge	7.0E-01	ORNL-5786
21	Se	1.5E-02	NUREG/CR-3585
22	Rb	1.1E-02	NUREG/CR-3585
23	Sr	8.0E-03	IAEA TRS No.364
24	Y	1.0E-03	IAEA TRS No.364
25	Nb	3.0E-07	IAEA TRS No.364
26	Мо	6.8E-03	NUREG/CR-3585
27	Тс	1.0E-04	IAEA TRS No.364
28	Ag	3.0E-03	IAEA TRS No.364
29	Cd	5.3E-04	NUREG/CR-3585
30	In	4.0E-03	IAEA-TECDOC-1000
31	Sn	8.0E-02	NUREG/CR-3585
32	Sb	4.0E-05	IAEA TRS No.364
33	Te	7.0E-03	IAEA TRS No.364
34	I	4.0E-02	IAEA TRS No.364
35	Cs	5.0E-02	IAEA TRS No.364
36	Ba Ce	2.0E-04 2.0E-05	IAEA TRS No.364 IAEA TRS No.364
38	Pm	2.0E-03 2.0E-03	IAEA 1RS N0.304 IAEA S.S. No.57
39	Eu	2.0E-03	IAEA S.S. No.57
40	Gd	3.5E-03	ORNL-5786
41	Tb	5.0E-03	PNL-3209
42	Yb	4.0E-03	NUREG/CR-3585
43	Ta	6.0E-04	ORNL-5786
44	W	3.7E-02	NUREG/CR-2976
45	Re	8.0E-03	ORNL-5786
46	Ir	1.5E-03	ORNL-5786
47	Au	5.0E-03	IAEA-TECDOC-1000
48	Hg	1.0E-01	PNL-3209
49	Tl	1.0E-02	IAEA-TECDOC-1000
50	Am	4.0E-05	IAEA TRS No.364
51	Cm	2.0E-05	IAEA S.S. No.57
			が始となっていたかった元表

「原子炉クリアランス報告書」 調査文献

「核燃施設クリアランス報告書」 「重水炉等クリアランス報告書」

IAEA S.S. No.57

IAEA-TECDOC-401

NUREG/CR-3585

NUREG/CR-2976

PNL-3209

IAEA TRS No.364

IAEA-TECDOC-1000

ORNL-5786

表 4.14 元素依存パラメータ一覧 (9)

	·.14 /L Я		豚肉への移行係数
単位	(d/kg)		WALLA TO DO IN BLOOM
No.	元素	選定値	選定根拠
1	Н	8.0E-02	PNL-3209
2	Be	1.0E-02	PNL-3209
3	С	1.7E-01	PNL-3209
4	F	9.0E-02	PNL-3209
5	Na	1.0E-01	PNL-3209
6	P	5.4E-01	PNL-3209
7	S	3.2E-01	化学的性質の類似性からSeと同一に選定
8	Cl	3.3E-03	化学的性質の類似性からIと同一に設定
9	Ca	3.3E-03	PNL-3209
10	Sc	1.0E-02	PNL-3209
11	Ti	1.0E-03	化学的性質の類似性からZrと同一に選定
12	V	2.0E-04	化学的性質の類似性からNbと同一に選定
13	Cr	9.9E-04	PNL-3209
14	Mn	3.6E-03	IAEA TRS No.364
15	Fe	2.6E-02	IAEA TRS No.364
16	Co	2.0E-03	IAEA TRS No.364
17	Ni	5.0E-03	PNL-3209
18	Zn	1.5E-01	IAEA TRS No.364
19	Ga	3.1E+00	化学的性質の類似性からInと同一に選定
20	Ge	7.0E-03	化学的性質の類似性からSbと同一に選定
21	Se	3.2E-01	NUREG/CR-2976
22	Rb	2.0E-01	PNL-3209
23	Sr	4.0E-02	IAEA TRS No.364
24	Y	5.0E-03	PNL-3209
25	Nb	2.0E-04	IAEA TRS No.364
26	Mo	2.0E-02	PNL-3209
27	Tc	1.5E-04	IAEA TRS No.364
28	Ag	2.0E-02	IAEA TRS No.364
29	Cd	3.0E-03	NUREG/CR-2976
30	In	3.1E+00	Hg(豚肉への移行係数の最大値)と同一に設定
31	Sn	9.9E-04	PNL-3209
32	Sb	7.0E-03	PNL-3209
33	Te	1.0E-02	PNL-3209
34	I	3.3E-03	IAEA TRS No.364
35	Cs	2.4E-01	IAEA TRS No.364
36	Ba	1.0E-02	PNL-3209
37		1.0E-04 5.0E-03	IAEA TRS No.364
38	Pm Eu	5.0E-03 5.0E-03	PNL-3209 PNL-3209
40	Gd	5.0E-03	化学的性質の類似性からEuと同一に設定
41	Tb	5.0E-03	11子中が生員の規模性が9Duc に改定 PNL-3209
42	<i>Yb</i>	5.0E-03	化学的性質の類似性からEuと同一に選定
43	Ta	2.0E-04	化学的性質の類似性からNbと同一に設定
44	W	9.9E-04	PNL-3209
45	Re	1.5E-04	化学的性質の類似性からTcと同一に選定
46	Ir	2.0E-03	化学的性質の類似性からCoと同一に選定
47	Au	2.0E-02	化学的性質の類似性からAgと同一に選定
48	Hg	3.1E+00	PNL-3209
49	Tl	3.1E+00	化学的性質の類似性からInと同一に選定
50	Am	1.7E-04	IAEA TRS No.364
51	Cm	1.0E-02	PNL-3209
			対色は、ていわか。も二書

既往のクリアランス評価で使用された値: Zr=1.0E-03

調査文献 「原子炉クリアランス報告書」

「核燃施設クリアランス報告書」 「重水炉等クリアランス報告書」

NUREG/CR-2976

PNL-3209

IAEA TRS No.364

表 4.14 元素依存パラメータ一覧 (10)

			鶏肉への移行係数
単位	(d/kg)		2441 4 1 (2 IN 14 KLSM)
No.	元素	選定値	選定根拠
1	Н	2.5E+00	PNL-3209
2	Be	4.0E-01	PNL-3209
3	C	3.7E+00	PNL-3209
4	F	9.9E-04	PNL-3209
5	Na	1.0E-02	PNL-3209
6	P	1.9E-01	PNL-3209
7	S	8.5E+00	化学的性質の類似性からSeと同一に選定
8	Cl	1.0E-02	化学的性質の類似性からIと同一に設定
9	Ca	4.0E-02	IAEA TRS No.364
10	Sc	4.0E-03	PNL-3209
11	Ti	6.0E-05	化学的性質の類似性からZrと同一に選定
12	V	3.0E-04	化学的性質の類似性からNbと同一に選定
13	Cr	9.9E-04	PNL-3209
14	Mn	5.0E-02	IAEA TRS No.364
15	Fe	1.0E+00	IAEA TRS No.364
16	Co	2.0E+00	IAEA TRS No.364
17	Ni	1.0E-03	PNL-3209
18	Zn	7.0E+00	IAEA TRS No.364
19	Ga	1.0E+01	化学的性質の類似性からInと同一に選定
20	Ge	6.0E-03	化学的性質の類似性からSbと同一に選定
21	Se	8.5E+00	NUREG/CR-2976
22	Rb	2.0E+00	PNL-3209
23	Sr	8.0E-02	IAEA TRS No.364
24	Y	1.0E-02	IAEA TRS No.364
25	Nb	3.0E-04	IAEA TRS No.364
26	Mo	5.0E-02	NUREG/CR-2976
27	Tc	3.0E-02	IAEA TRS No.364 IAEA TRS No.364
28 29	Ag Cd	2.0E+00 8.4E-01	NUREG/CR-2976
30	In	1.0E+01	Cs(鶏肉への移行係数の最大値)と同一に設定
31	Sn	9.9E-04	CS(
32	Sb	6.0E-03	PNL-3209
33	Te	6.0E-01	IAEA TRS No.364
34	I	1.0E-02	IAEA TRS No.364
35	Cs	1.0E+01	IAEA TRS No.364
36	Ba	9.0E-03	IAEA TRS No.364
37	Ce	4.0E-03	IAEA TRS No.364
38	Pm	2.0E-03	IAEA TRS No.364
39	Eu	4.0E-03	PNL-3209
40	Gd	4.0E-03	化学的性質の類似性からEuと同一に設定
41	Tb	4.0E-03	PNL-3209
42	Yb	4.0E-03	化学的性質の類似性からEuと同一に選定
43	Ta	3.0E-04	化学的性質の類似性からNbと同一に設定
44	W	9.9E-04	PNL-3209
45	Re	3.0E-02	化学的性質の類似性からTcと同一に選定
46	Ir	2.0E+00	化学的性質の類似性からCoと同一に選定
47	Au	2.0E+00	化学的性質の類似性からAgと同一に選定
48	Hg	2.7E-02	NUREG/CR-2976
49	Tl	1.0E+01	化学的性質の類似性からInと同一に選定
50	Am	6.0E-03	IAEA TRS No.364
51	Cm	4.0E-03	PNL-3209 対象とたっていたかった元表

上記表中にない核種の既往のクリアランス評価で使用された値: Zr=6.0E-05

調査文献 「原子炉クリアランス報告書」

「核燃施設クリアランス報告書」 「重水炉等クリアランス報告書」

NUREG/CR-2976 PNL-3209 IAEA TRS No.364

表 4.14 元素依存パラメータ一覧 (11)

	鶏卵への移行係数				
単位	(d/kg)		NAAN L. LIGHT LA KLAMA		
No.	元素	選定値	選定根拠		
1	Н	2.7E+00	PNL-3209		
2	Be	2.0E-02	PNL-3209		
3	С	2.8E+00	PNL-3209		
4	F	9.9E-04	PNL-3209		
5	Na	6.1E+00	NUREG/CR-2976		
6	P	1.0E+01	PNL-3209		
7	S	9.3E+00	化学的性質の類似性からSeと同一に選定		
8	Cl	3.0E+00	化学的性質の類似性からIと同一に設定		
9	Ca	4.0E-01	IAEA TRS No.364		
10	Sc	9.9E-04	PNL-3209		
11	Ti	2.0E-04	化学的性質の類似性からZrと同一に選定		
12	V	1.0E-03	化学的性質の類似性からNbと同一に選定		
13	Cr	9.9E-04	PNL-3209		
14	Mn	6.0E-02	IAEA TRS No.364		
15	Fe	1.0E+00	IAEA TRS No.364		
16	Co	1.0E-01	IAEA TRS No.364		
17	Ni	1.0E-01	PNL-3209		
18	Zn	3.0E+00	IAEA TRS No.364		
19	Ga	1.0E+01	化学的性質の類似性からInと同一に選定		
20	Ge	7.0E-02	化学的性質の類似性からSbと同一に選定		
21	Se	9.3E+00	NUREG/CR-2976		
22	Rb	3.0E+00	PNL-3209		
23	Sr	2.0E-01	IAEA TRS No.364		
24	Y	2.0E-03	IAEA TRS No.364		
25	Nb	1.0E-03	IAEA TRS No.364		
26	Mo	5.0E-01	NUREG/CR-2976		
27	Tc	3.0E+00	IAEA TRS No.364		
28	Ag	9.9E-04	PNL-3209		
29	Cd	1.0E-01	NUREG/CR-2976		
30	In	1.0E+01	Pと同一(鶏卵への移行係数の最大値)に選定		
31	Sn	9.9E-04	PNL-3209		
32	Sb	7.0E-02	PNL-3209		
33	Te	5.0E+00	IAEA TRS No.364		
34	I	3.0E+00	IAEA TRS No.364		
35	Cs	4.0E-01	IAEA TRS No.364		
36	Ba Co	9.0E-01	IAEA TRS No.364		
38		9.0E-05	IAEA TRS No.364 IAEA TRS No.364		
39	Pm Eu	2.0E-02 7.0E-03	PNL-3209		
40	Gd	7.0E-03	化学的性質の類似性からEuと同一に選定		
41	Tb	7.0E-03 7.0E-03	PNL-3209		
42	Yb	7.0E-03	化学的性質の類似性からEuと同一に選定		
43	Ta	1.0E-03	化学的性質の類似性からNbと同一に選定		
44	W	9.9E-04	PNL-3209		
45	Re	3.0E+00	化学的性質の類似性からTcと同一に選定		
46	Ir	1.0E-01	化学的性質の類似性からCoと同一に選定		
47	Au	3.9E-03	IAEA-SM-237/54		
48	Hg	9.9E-04	PNL-3209		
49	Tl	1.0E+01	化学的性質の類似性からInと同一に選定		
50	Am	4.0E-03	IAEA TRS No.364		
51	Cm	2.0E-03	PNL-3209		
			で対象となっていなかった元妻		

上記表中にない核種の既往のクリアランス評価で使用された値: Zr = 1.0E-03

調査文献 「原子炉クリアランス報告書」

「核燃施設クリアランス報告書」 「重水炉等クリアランス報告書」

NUREG/CR-2976 PNL-3209 IAEA-SM-237/54 IAEA TRS No.364

表 4.14 元素依存パラメータ一覧 (12)

	. / 1 / 1	似 付 ハ ノ ク	
出体	(I /lea)		魚類への濃縮係数
単位	(L/kg) 元素	温少店	语
No.		選定値	選定根拠
1	H Ra	1.0E+00	IAEA TRS No.364
2	Be	2.0E+00	UCRL-50564 Rev.1
3 4	C <i>F</i>	5.0E+04	IAEA TRS No.364
		1.0E+01	UCRL-50564 Rev.1
5	Na	2.0E+01	IAEA SS No.57
7	<u> </u>	1.0E+05	IAEA SS No.57
\vdash	S	8.0E+02	IAEA SS No.57
8	Cl	5.0E+01 6.0E+01	UCRL-50564 IAEA-TECDOC-401
10	Ca Sc		IAEA-TECHOC-401
11	Ti	1.0E+02 1.0E+03	UCRL-50564 Rev.1
12	$\frac{I}{V}$	1.0E+01	UCRL-50564 Rev.1
13	Cr	2.0E+02	IAEA SS No.57
14			IAEA TRS No.364
15	Mn Fe	4.0E+02 2.0E+02	IAEA TRS No.364
16	Co	3.0E+02	IAEA TRS No.364
17	Ni	1.0E+02	IAEA TRS No.364
18	Zn	1.0E+03	IAEA TRS No.364
19	Ga	3.3E+02	UCRL-50564 Rev.1
20	Ge	3.3E+03	UCRL-50564 Rev.1
21	Se	1.7E+02	NUREG/CR-3585
22	Rb	2.0E+03	NUREG/CR-3585
23	Sr	6.0E+01	IAEA TRS No.364
24	Y	3.0E+01	IAEA TRS No.364
25	Nb	3.0E+02	IAEA TRS No.364
26	Мо	1.0E+01	NUREG/CR-3585
27	Тс	2.0E+01	IAEA TRS No.364
28	Ag	5.0E+00	IAEA TRS No.364
29	Cd	2.0E+02	NUREG/CR-3585
30	In	1.0E+04	IAEA TECDOC-1000
31	Sn	3.0E+03	IAEA TRS No.364
32	Sb	1.0E+02	IAEA TRS No.364
33	Te	4.0E+02	IAEA TRS No.364
34	I	4.0E+01	IAEA TRS No.364
35	Cs	2.0E+03	IAEA TRS No.364
36 37	Ba Ce	4.0E+00	IAEA TRS No.364 IAEA TRS No.364
38	Pm	3.0E+01 3.0E+01	IAEA TRS No.364
39	Eu	5.0E+01	IAEA TRS No.364
40		2.5E+01	UCRL-50564
41	Tb	2.5E+01	UCRL-50564
42	Yb	2.5E+01	NUREG/CR-3585
43	Ta	1.0E+02	IAEA TRS No.364
44	W	1.2E+03	UCRL-50564 Rev.1
45	Re	1.2E+02	UCRL-50564 Rev.1
46	Ir	1.0E+01	UCRL-50564 Rev.1
47	Au	3.3E+01	UCRL-50564 Rev.1
48	Hg	1.0E+03	UCRL-50564 Rev.1
49	Tl	1.0E+04	UCRL-50564 Rev.1
50	Am	3.0E+01	IAEA TRS No.364
51	Cm	3.0E+01	IAEA TRS No.364
** 1 -	I Ail	4. mm /	対色しなっていなかった二書

調査文献 「原子炉クリアランス報告書」

「核燃施設クリアランス報告書」 「重水炉等クリアランス報告書」

IAEA SS No.57 IAEA-TECDOC-401 NUREG/CR-3585 UCRL-50564 Rev.1 IAEA TRS No.364 IAEA-TECDOC-1000

上記「UCRL-50564」の値については「原子炉クリアランス報告書」(CI)、「核燃施設クリアランス報告書」(Gd、Tb)を参照。

表 4.14 元素依存パラメータ一覧 (13)

単位	()		インゴットへの移行割合
	(-)	選定値	湿 定相枷
No.	元素		選定根拠
2	H Be	0.0E+00 1.0E-01	Chapuisの文献 化学的性質の類似性からSrと同一に選定
3	С	1.0E+00	
4	<i>F</i>	0.0E+00	保守的に選定 化学的性質の類似性からHと同一に選定
5	Na Na	1.0E-01	NUREG-1640
6	P		NUREG-1640
7	S	1.0E-01 2.0E-01	NUREG-1640
8			
9	Cl Ca	0.0E+00 1.0E-01	化学的性質の類似性からHと同一に選定 化学的性質の類似性からSrと同一に選定
10	Sc	1.0E+00	11年明生員の規模性があると同一に選定 ※1
11	Ti	1.0E-02	化学的性質の類似性からZrと同一に選定
12	V	1.0E+00	化学的性質の類似性からNbと同一に選定
13	Cr	9.9E-01	NUREG-1640
14	Mn	1.0E+00	IAEA S.S. No.111-P-1.1
15	Fe	1.0E+00	IAEA S.S. No.111-1-1.1
16	Co	1.0E+00	IAEA S.S. No.111-P-1.1
17	Ni	1.0E+00	IAEA S.S. No.111-P-1.1
18	Zn	1.0E+00	IAEA S.S. No.111-P-1.1
19	Ga	1.0E+00	化学的性質の類似性からInと同一に選定
20	Ge	1.0E+00	化学的性質の類似性からSnと同一に選定
21	Se	8.0E-01	NUREG-1640
22	Rb	1.0E-03	化学的性質の類似性からCsと同一に選定
23	Sr	1.0E-01	IAEA S.S. No.111-P-1.1
24	Y	1.0E-02	NUREG-1640
25	Nb	1.0E+00	IAEA S.S. No.111-P-1.1
26	Mo	1.0E+00	NUREG-1640
27	Tc	1.0E-01	IAEA S.S. No.111-P-1.1
28	Ag	1.0E+00	Chapuisの文献
29	Cd	1.0E-02	NUREG-1640
30	In	1.0E+00	% 1
31	Sn	1.0E+00	※ 1
32	Sb	1.0E+00	Chapuisの文献
33	Te	1.0E-02	*1
34	I	0.0E+00	化学的性質の類似性からHと同一に選定
35	Cs	1.0E-03	IAEA S.S. No.111-P-1.1
36	Ba	1.0E-01	化学的性質の類似性からSrと同一に選定
37 38	Ce Pm	1.0E-02 1.0E-02	NUREG-1640 NUREG-1640
39	Eu	5.0E-02	IAEA TECDOC-807
40	Gd	1.0E+00	MEA TECHOC-807
41	Tb	1.0E+00	*1 *1
42	Yb	1.0E+00	化学的性質の類似性からTbと同一に選定
43	Ta	1.0E+00	*1
44	W	1.0E+00	Radiation protection 117
45	Re	9.9E-01	NUREG-1640
46	Ir	1.0E+00	NUREG-1640
47	Au	1.0E+00	化学的性質の類似性からAgと同一に選定
48	Hg	1.0E-02	化学的性質の類似性からCdと同一に選定
49	Tl	1.0E-01	Radiation protection 117
50	Am	1.0E-01	IAEA S.S. No.111-P-1.1
51	Cm	1.0E-01	Chapuisの文献
51			Chapuisの文献 対象となっていなかった元素

上記表中にない核種の既往のクリアランス評価で使用された値: Zr=1.0E-02

※1: 文献を元に選定することが不可能であるため、元素の沸点と電気炉での鉄の平均的な溶融温度(1823~1923K)との比較及び酸化物の標準生成エネルギーを基に、類似性を判断して選定。

調査文献 「原子炉クリアランス報告書」

「核燃施設クリアランス報告書」 「重水炉等クリアランス報告書」

IAEA S.S. No.111-P-1.1

NUREG-1640

Radiation protection 117

Chapuisの文献

IAEA TECDOC-807

表 4.14 元素依存パラメータ一覧 (14)

			スラグへの移行割合
単位	(-)		7777 - 10 E1 E1 E1
No.	元素	選定値	選定根拠
1	Н	0.0E+00	Chapuisの文献
2	Be	1.0E+00	化学的性質の類似性からSrと同一に選定
3	C	1.0E-01	保守的に選定
4	F	0.0E+00	化学的性質の類似性からHと同一に選定
5	Na	5.5E-01	NUREG-1640
6	P	7.7E-01	NUREG-1640
7	S	3.0E-02	NUREG-1640
8	Cl	0.0E+00	化学的性質の類似性からHと同一に選定
9	Ca	1.0E+00	化学的性質の類似性からSrと同一に選定
10	Sc	1.0E-01	<u>%</u> 1
11	Ti	1.0E+00	化学的性質の類似性からZrと同一に選定
12	V	1.0E-01	化学的性質の類似性からNbと同一に選定
13	Cr	5.0E-01	NUREG-1640
14	Mn	1.0E-01	IAEA S.S. No.111-P-1.1
15	Fe	1.0E-02	IAEA S.S. No.111-P-1.1
16	Co	1.0E-02	IAEA S.S. No.111-P-1.1
17	Ni	1.0E-02	IAEA S.S. No.111-P-1.1
18	Zn	1.0E-02	IAEA S.S. No.111-P-1.1
19	Ga	1.0E-02	化学的性質の類似性からInと同一に選定
20	Ge	1.0E-02	化学的性質の類似性からSnと同一に選定
21	Se	7.7E-01	NUREG-1640
22	Rb	1.0E+00	化学的性質の類似性からCsと同一に選定
23	Sr	1.0E+00	IAEA S.S. No.111-P-1.1
24	Y	1.0E+00	NUREG-1640
25	Nb	1.0E-01	IAEA S.S. No.111-P-1.1
26	Мо	1.0E-02	NUREG-1640
27	Tc	1.0E-01	IAEA S.S. No.111-P-1.1
28	Ag	1.0E+00	Chapuisの文献
29	Cd	5.0E-02	NUREG-1640
30	In	1.0E-02	<u>*1</u>
31	Sn	1.0E-02	*1 Classic O-7 #4
32	Sb Te	1.0E-02 1.0E+00	Chapuisの文献 ※1
34	I	0.0E+00	化学的性質の類似性からHと同一に選定
35	Cs	1.0E+00	1AEA S.S. No.111-P-1.1
36	Ba	1.0E+00	化学的性質の類似性からSrと同一に選定
37	Ce	1.0E+00	NUREG-1640
38	Pm	1.0E+00	NUREG-1640
39	Eu	1.0E+00	IAEA S.S. No.111-P-1.1
40	Gd	1.0E-01	% 1
41	Tb	1.0E-01	% 1
42	Yb	1.0E-01	化学的性質の類似性からTbと同一に選定
43	Ta	1.0E-01	* 1
44	W	1.0E+00	Radiation protection 117
45	Re	8.7E-01	NUREG-1640
46	Ir	3.0E-02	NUREG-1640
47	Au	1.0E+00	化学的性質の類似性からAgと同一に選定
48	Hg	5.0E-02	化学的性質の類似性からCdと同一に選定
49	Tl	1.0E+00	Radiation protection 117
50	Am	1.0E+00	IAEA S.S. No.111-P-1.1
51	Cm	1.0E+00	Chapuisの文献 対象となっていなかった元素

上記表中にない核種の既往のクリアランス評価で使用された値: Zr = 1.0E+00

※1: 文献を元に選定することが不可能であるため、元素の沸点と電気炉での鉄の平均的な溶融温度(1823~1923K)との比較及び酸化物の標準生成エネルギーを基に、類似性を判断して選定。

調査文献 「原子炉クリアランス報告書」

「核燃施設クリアランス報告書」「重水炉等クリアランス報告書」

IAEA S.S. No.111-P-1.1

NUREG-1640

Radiation protection 117

Chapuisの文献

表 4.14 元素依存パラメータ一覧 (15)

単位	
1 H 1.0E+00 Chapuisの文献 2 Be 1.0E-01 化学的性質の類似性からSrと同一に選定 3 C 1.0E+00 保守的に選定 4 F 1.0E+00 化学的性質の類似性からHと同一に選定 5 Na 5.0E-01 NUREG-1640 NUREG-1640 NUREG-1640 7 S 9.7E-01 NUREG-1640 化学的性質の類似性からHと同一に選定 9 Ca 1.0E+00 化学的性質の類似性からSrと同一に選定 10 Sc 5.0E-02 ※1 ※1 ※1 ※1 ※2 ※1 ※2 ※1 ※2 ※1 ※1	
2 Be 1.0E-01 化学的性質の類似性からSrと同一に選定 3 C 1.0E+00 保守的に選定 4 F 1.0E+00 化学的性質の類似性からHと同一に選定 5 Na 5.0E-01 NUREG-1640 6 P 9.7E-01 NUREG-1640 7 S 9.7E-01 NUREG-1640 8 C1 1.0E-00 化学的性質の類似性からHと同一に選定 9 Ca 1.0E-01 化学的性質の類似性からSrと同一に選定 10 Sc 5.0E-02 ※1 11 Ti 5.0E-02 ※1 11 Ti 5.0E-02 化学的性質の類似性からSrと同一に選定 12 V 1.0E-02 化学的性質の類似性からNbと同一に選定 13 Cr 1.0E-02 NUREG-1640 14 Mn 5.0E-02 IAEA S.S. No.111-P-1.1 15 Fe 5.0E-03 IAEA S.S. No.111-P-1.1 16 Co 5.0E-03 IAEA S.S. No.111-P-1.1 17 Ni 5.0E-03 化学的性質の類似性からSrと同一に選定 20 Ge 5.0E-03	
3 C 1.0E+00 保守的に選定 4 F 1.0E+00 化学的性質の類似性からHと同一に選定 5 Na 5.0E-01 NUREG-1640 6 P 9.7E-01 NUREG-1640 7 S 9.7E-01 NUREG-1640 8 Cl 1.0E+00 化学的性質の類似性からHと同一に選定 9 Ca 1.0E-01 化学的性質の類似性からSrと同一に選定 10 Sc 5.0E-02 ※1 11 Ti 5.0E-02 化学的性質の類似性からNbと同一に選定 12 V 1.0E-02 化学的性質の類似性からNbと同一に選定 13 Cr 1.0E-02 NUREG-1640 14 Mn 5.0E-02 IAEA S.S. No.111-P-1.1 15 Fe 5.0E-03 IAEA S.S. No.111-P-1.1 16 Co 5.0E-03 IAEA S.S. No.111-P-1.1 17 Ni 5.0E-03 IAEA S.S. No.111-P-1.1 18 Zn 1.0E+00 IAEA S.S. No.111-P-1.1 19 Ga 5.0E-03 化学的性質の類似性からNbと同一に選定 20 Ge 5.0E-03 化学的性質の類似性からNbと同一に選定 21 Se 8.0E-01 NUREG-1640 22 Rb 1.0E+00 化学的性質の類似性からSrと同一に選定 24 Y 5.0E-03 化学的性質の類似性からSrと同一に選定 25 Nb 1.0E-00 化学的性質の類似性からSrと同一に選定 26 Mo 2.0E-02 NUREG-1640 27 Tc 1.0E+00 化学的性質の類似性からCsと同一に選定 27 Tc 1.0E+00 IAEA S.S. No.111-P-1.1 28 Ag 1.0E+00 Chapuisの文献 29 Cd 1.0E+00 NUREG-1640 30 In 5.0E-03 ※1	
## ## ## ## ## ## ## ## ## ## ## ## ##	
S Na S.OE-01 NUREG-1640	
6 P 9.7E-01 NUREG-1640 7 S 9.7E-01 NUREG-1640 8 C1 1.0E+00 化学的性質の類似性からHと同一に選定 9 Ca 1.0E-01 化学的性質の類似性からSrと同一に選定 110 Sc 5.0E-02 ※1 11 Ti 5.0E-02 化学的性質の類似性からZrと同一に選定 12 V 1.0E-02 化学的性質の類似性からNbと同一に選定 13 Cr 1.0E-02 NUREG-1640 14 Mn 5.0E-02 IAEA S.S. No.111-P-1.1 15 Fe 5.0E-03 IAEA S.S. No.111-P-1.1 16 Co 5.0E-03 IAEA S.S. No.111-P-1.1 17 Ni 5.0E-03 IAEA S.S. No.111-P-1.1 18 Zn 1.0E+00 IAEA S.S. No.111-P-1.1 19 Ga 5.0E-03 化学的性質の類似性からInと同一に選定 20 Ge 5.0E-03 化学的性質の類似性からInと同一に選定 21 Se 8.0E-01 NUREG-1640 22 Rb 1.0E+00 化学的性質の類似性からCsと同一に選定 23 Sr 1.0E-01 IAEA S.S. No.111-P-1.1 24 Y 5.0E-02 NUREG-1640 25 Nb 1.0E-02 IAEA S.S. No.111-P-1.1 26 Mo 2.0E-02 NUREG-1640 27 Tc 1.0E+00 IAEA S.S. No.111-P-1.1 28 Ag 1.0E+00 Chapuisの文献 29 Cd 1.0E+00 NUREG-1640 30 In 5.0E-03 ※1	
8 CI 1.0E+00 化学的性質の類似性からHと同一に選定 9 Ca 1.0E-01 化学的性質の類似性からSrと同一に選定 10 Sc 5.0E-02 ※1 11 Ti 5.0E-02 化学的性質の類似性からZrと同一に選定 12 V 1.0E-02 化学的性質の類似性からNbと同一に選定 13 Cr 1.0E-02 NUREG-1640 14 Mn 5.0E-02 IAEA S.S. No.111-P-1.1 15 Fe 5.0E-03 IAEA S.S. No.111-P-1.1 16 Co 5.0E-03 IAEA S.S. No.111-P-1.1 17 Ni 5.0E-03 IAEA S.S. No.111-P-1.1 18 Zn 1.0E+00 IAEA S.S. No.111-P-1.1 19 Ga 5.0E-03 化学的性質の類似性からInと同一に選定 20 Ge 5.0E-03 化学的性質の類似性からSnと同一に選定 21 Se 8.0E-01 NUREG-1640 22 Rb 1.0E+00 化学的性質の類似性からCsと同一に選定 23 Sr 1.0E-01 IAEA S.S. No.111-P-1.1 24 Y 5.0E-02 NUREG-1640 25 Nb 1.0E-02 IAEA S.S. No.111-P-1.1 26 Mo 2.0E-02 NUREG-1640 27 Tc 1.0E+00 IAEA S.S. No.111-P-1.1 28 Ag 1.0E+00 Chapuisの文献 29 Cd 1.0E+00 NUREG-1640 30 In 5.0E-03 ※1	
9 Ca 1.0E-01 化学的性質の類似性からSrと同一に選定 10 Sc 5.0E-02 ※1 11 Ti 5.0E-02 化学的性質の類似性からZrと同一に選定 12 V 1.0E-02 化学的性質の類似性からNbと同一に選定 13 Cr 1.0E-02 NUREG-1640 14 Mn 5.0E-02 IAEA S.S. No.111-P-1.1 15 Fe 5.0E-03 IAEA S.S. No.111-P-1.1 16 Co 5.0E-03 IAEA S.S. No.111-P-1.1 17 Ni 5.0E-03 IAEA S.S. No.111-P-1.1 18 Zn 1.0E+00 IAEA S.S. No.111-P-1.1 19 Ga 5.0E-03 化学的性質の類似性からInと同一に選定 20 Ge 5.0E-03 化学的性質の類似性からSnと同一に選定 21 Se 8.0E-01 NUREG-1640 22 Rb 1.0E+00 化学的性質の類似性からCsと同一に選定 23 Sr 1.0E-01 IAEA S.S. No.111-P-1.1 24 Y 5.0E-02 NUREG-1640 25 Nb 1.0E-02 IAEA S.S. No.111-P-1.1 26 Mo 2.0E-02 NUREG-1640 27 Tc 1.0E+00 IAEA S.S. No.111-P-1.1 28 Ag 1.0E+00 Chapuisの文献 29 Cd 1.0E+00 NUREG-1640 30 In 5.0E-03 ※1	
10 Sc 5.0E-02 ※1 11 Ti 5.0E-02 化学的性質の類似性からZrと同一に選定 12 V 1.0E-02 化学的性質の類似性からNbと同一に選定 13 Cr 1.0E-02 NUREG-1640 NUREG-1640 NUREG-1640 14 Mn 5.0E-02 IAEA S.S. No.111-P-1.1 15 Fe 5.0E-03 IAEA S.S. No.111-P-1.1 16 Co 5.0E-03 IAEA S.S. No.111-P-1.1 17 Ni 5.0E-03 IAEA S.S. No.111-P-1.1 18 Zn 1.0E+00 IAEA S.S. No.111-P-1.1 19 Ga 5.0E-03 化学的性質の類似性からInと同一に選定 20 Ge 5.0E-03 化学的性質の類似性からSnと同一に選定 21 Se 8.0E-01 NUREG-1640 22 Rb 1.0E+00 化学的性質の類似性からCsと同一に選定 23 Sr 1.0E-01 IAEA S.S. No.111-P-1.1 24 Y 5.0E-02 NUREG-1640 25 Nb 1.0E-02 IAEA S.S. No.111-P-1.1 26 Mo 2.0E-02 NUREG-1640 27 Tc 1.0E+00 IAEA S.S. No.111-P-1.1 28 Ag 1.0E+00 Chapuisの文献 29 Cd 1.0E+00 NUREG-1640 30 In 5.0E-03 ※1	
11 Ti 5.0E-02 化学的性質の類似性からZrと同一に選定 12 V 1.0E-02 化学的性質の類似性からNbと同一に選定 13 Cr 1.0E-02 NUREG-1640 NUREG-1640 14 Mn 5.0E-02 IAEA S.S. No.111-P-1.1 15 Fe 5.0E-03 IAEA S.S. No.111-P-1.1 16 Co 5.0E-03 IAEA S.S. No.111-P-1.1 17 Ni 5.0E-03 IAEA S.S. No.111-P-1.1 18 Zn 1.0E+00 IAEA S.S. No.111-P-1.1 19 Ga 5.0E-03 化学的性質の類似性からInと同一に選定 20 Ge 5.0E-03 化学的性質の類似性からSnと同一に選定 21 Se 8.0E-01 NUREG-1640 22 Rb 1.0E+00 化学的性質の類似性からCsと同一に選定 23 Sr 1.0E-01 IAEA S.S. No.111-P-1.1 24 Y 5.0E-02 NUREG-1640 25 Nb 1.0E-02 IAEA S.S. No.111-P-1.1 26 Mo 2.0E-02 NUREG-1640 27 Tc 1.0E+00 IAEA S.S. No.111-P-1.1 28 Ag 1.0E+00 Chapuisの文献 29 Cd 1.0E+00 NUREG-1640 30 In 5.0E-03 ※1	
12 V 1.0E-02 化学的性質の類似性からNbと同一に選定 13 Cr 1.0E-02 NUREG-1640 14 Mn 5.0E-02 IAEA S.S. No.111-P-1.1 15 Fe 5.0E-03 IAEA S.S. No.111-P-1.1 16 Co 5.0E-03 IAEA S.S. No.111-P-1.1 17 Ni 5.0E-03 IAEA S.S. No.111-P-1.1 18 Zn 1.0E+00 IAEA S.S. No.111-P-1.1 19 Ga 5.0E-03 化学的性質の類似性からInと同一に選定 20 Ge 5.0E-03 化学的性質の類似性からSnと同一に選定 21 Se 8.0E-01 NUREG-1640 22 Rb 1.0E+00 化学的性質の類似性からCsと同一に選定 23 Sr 1.0E-01 IAEA S.S. No.111-P-1.1 24 Y 5.0E-02 NUREG-1640 25 Nb 1.0E-02 IAEA S.S. No.111-P-1.1 26 Mo 2.0E-02 NUREG-1640 27 Tc 1.0E+00 IAEA S.S. No.111-P-1.1 28 Ag 1.0E+00 Chapuisの文献 29 Cd 1.0E+00 NUREG-1640 30 In 5.0E-03 ※1	
13	
14 Mn 5.0E-02 IAEA S.S. No.111-P-1.1 15 Fe 5.0E-03 IAEA S.S. No.111-P-1.1 16 Co 5.0E-03 IAEA S.S. No.111-P-1.1 17 Ni 5.0E-03 IAEA S.S. No.111-P-1.1 18 Zn 1.0E+00 IAEA S.S. No.111-P-1.1 19 Ga 5.0E-03 化学的性質の類似性からInと同一に選定 20 Ge 5.0E-03 化学的性質の類似性からSnと同一に選定 21 Se 8.0E-01 NUREG-1640 22 Rb 1.0E+00 化学的性質の類似性からCsと同一に選定 23 Sr 1.0E-01 IAEA S.S. No.111-P-1.1 24 Y 5.0E-02 NUREG-1640 25 Nb 1.0E-02 IAEA S.S. No.111-P-1.1 26 Mo 2.0E-02 NUREG-1640 27 Tc 1.0E+00 IAEA S.S. No.111-P-1.1 28 Ag 1.0E+00 Chapuisの文献 29 Cd 1.0E+00 NUREG-1640 30 In 5.0E-03 ※1	
15 Fe 5.0E-03 IAEA S.S. No.111-P-1.1 16 Co 5.0E-03 IAEA S.S. No.111-P-1.1 17 Ni 5.0E-03 IAEA S.S. No.111-P-1.1 18 Zn 1.0E+00 IAEA S.S. No.111-P-1.1 19 Ga 5.0E-03 化学的性質の類似性からInと同一に選定 20 Ge 5.0E-03 化学的性質の類似性からSnと同一に選定 21 Se 8.0E-01 NUREG-1640 22 Rb 1.0E+00 化学的性質の類似性からCsと同一に選定 23 Sr 1.0E-01 IAEA S.S. No.111-P-1.1 24 Y 5.0E-02 NUREG-1640 25 Nb 1.0E-02 IAEA S.S. No.111-P-1.1 26 Mo 2.0E-02 NUREG-1640 27 Tc 1.0E+00 IAEA S.S. No.111-P-1.1 28 Ag 1.0E+00 Chapuisの文献 29 Cd 1.0E+00 NUREG-1640 30 In 5.0E-03 ※1	
16 Co 5.0E-03 IAEA S.S. No.111-P-1.1 17 Ni 5.0E-03 IAEA S.S. No.111-P-1.1 18 Zn 1.0E+00 IAEA S.S. No.111-P-1.1 19 Ga 5.0E-03 化学的性質の類似性からInと同一に選定 20 Ge 5.0E-03 化学的性質の類似性からSnと同一に選定 21 Se 8.0E-01 NUREG-1640 22 Rb 1.0E+00 化学的性質の類似性からCsと同一に選定 23 Sr 1.0E-01 IAEA S.S. No.111-P-1.1 24 Y 5.0E-02 NUREG-1640 25 Nb 1.0E-02 IAEA S.S. No.111-P-1.1 26 Mo 2.0E-02 NUREG-1640 27 Tc 1.0E+00 IAEA S.S. No.111-P-1.1 28 Ag 1.0E+00 Chapuisの文献 29 Cd 1.0E+00 NUREG-1640 30 In 5.0E-03 ※1	
17 Ni 5.0E-03 IAEA S.S. No.111-P-1.1 18 Zn 1.0E+00 IAEA S.S. No.111-P-1.1 19 Ga 5.0E-03 化学的性質の類似性からInと同一に選定 20 Ge 5.0E-03 化学的性質の類似性からSnと同一に選定 21 Se 8.0E-01 NUREG-1640 22 Rb 1.0E+00 化学的性質の類似性からCsと同一に選定 23 Sr 1.0E-01 IAEA S.S. No.111-P-1.1 24 Y 5.0E-02 NUREG-1640 25 Nb 1.0E-02 IAEA S.S. No.111-P-1.1 26 Mo 2.0E-02 NUREG-1640 27 Tc 1.0E+00 IAEA S.S. No.111-P-1.1 28 Ag 1.0E+00 Chapuisの文献 29 Cd 1.0E+00 NUREG-1640 30 In 5.0E-03 ※1	
18 Zn 1.0E+00 IAEA S.S. No.111-P-1.1 19 Ga 5.0E-03 化学的性質の類似性からInと同一に選定 20 Ge 5.0E-03 化学的性質の類似性からSnと同一に選定 21 Se 8.0E-01 NUREG-1640 22 Rb 1.0E+00 化学的性質の類似性からCsと同一に選定 23 Sr 1.0E-01 IAEA S.S. No.111-P-1.1 24 Y 5.0E-02 NUREG-1640 25 Nb 1.0E-02 IAEA S.S. No.111-P-1.1 26 Mo 2.0E-02 NUREG-1640 27 Tc 1.0E+00 IAEA S.S. No.111-P-1.1 28 Ag 1.0E+00 Chapuisの文献 29 Cd 1.0E+00 NUREG-1640 30 In 5.0E-03 ※1	
20 Ge 5.0E-03 化学的性質の類似性からSnと同一に選定 21 Se 8.0E-01 NUREG-1640 22 Rb 1.0E+00 化学的性質の類似性からCsと同一に選定 23 Sr 1.0E-01 IAEA S.S. No.111-P-1.1 24 Y 5.0E-02 NUREG-1640 25 Nb 1.0E-02 IAEA S.S. No.111-P-1.1 26 Mo 2.0E-02 NUREG-1640 27 Tc 1.0E+00 IAEA S.S. No.111-P-1.1 28 Ag 1.0E+00 Chapuisの文献 29 Cd 1.0E+00 NUREG-1640 30 In 5.0E-03 ※1	
21 Se 8.0E-01 NUREG-1640 22 Rb 1.0E+00 化学的性質の類似性からCsと同一に選定 23 Sr 1.0E-01 IAEA S.S. No.111-P-1.1 24 Y 5.0E-02 NUREG-1640 25 Nb 1.0E-02 IAEA S.S. No.111-P-1.1 26 Mo 2.0E-02 NUREG-1640 27 Tc 1.0E+00 IAEA S.S. No.111-P-1.1 28 Ag 1.0E+00 Chapuisの文献 29 Cd 1.0E+00 NUREG-1640 30 In 5.0E-03 ※1	
22 Rb 1.0E+00 化学的性質の類似性からCsと同一に選定 23 Sr 1.0E-01 IAEA S.S. No.111-P-1.1 24 Y 5.0E-02 NUREG-1640 25 Nb 1.0E-02 IAEA S.S. No.111-P-1.1 26 Mo 2.0E-02 NUREG-1640 27 Tc 1.0E+00 IAEA S.S. No.111-P-1.1 28 Ag 1.0E+00 Chapuisの文献 29 Cd 1.0E+00 NUREG-1640 30 In 5.0E-03 ※1	
23 Sr 1.0E-01 IAEA S.S. No.111-P-1.1	
24 Y 5.0E-02 NUREG-1640 1.0E-02 IAEA S.S. No.111-P-1.1 26 Mo 2.0E-02 NUREG-1640 27 Tc 1.0E+00 IAEA S.S. No.111-P-1.1 28 Ag 1.0E+00 Chapuisの文献 29 Cd 1.0E+00 NUREG-1640 30 In 5.0E-03 ※1	
25 Nb 1.0E-02 IAEA S.S. No.111-P-1.1 26 Mo 2.0E-02 NUREG-1640 27 Tc 1.0E+00 IAEA S.S. No.111-P-1.1 28 Ag 1.0E+00 Chapuisの文献 29 Cd 1.0E+00 NUREG-1640 30 In 5.0E-03 ※1	
26 Mo 2.0E-02 NUREG-1640 27 Tc 1.0E+00 IAEA S.S. No.111-P-1.1 28 Ag 1.0E+00 Chapuisの文献 29 Cd 1.0E+00 NUREG-1640 30 In 5.0E-03 ※1	
27 Tc 1.0E+00 IAEA S.S. No.111-P-1.1 28 Ag 1.0E+00 Chapuisの文献 29 Cd 1.0E+00 NUREG-1640 30 In 5.0E-03 ※1	
28 Ag 1.0E+00 Chapuisの文献 29 Cd 1.0E+00 NUREG-1640 30 In 5.0E-03 ※1	
29 Cd 1.0E+00 NUREG-1640 30 In 5.0E-03 ※1	
30 In 5.0E-03 <u>%</u> 1	
I 31 Sn 5.0F-03 I.₩1	
32 Sb 1.0E+00 Chapuisの文献	
33 Te 1.0E+00 <u>%1</u>	
34 I 1.0E+00 化学的性質の類似性からHと同一に選定 1.0E+00 LAFA S.S. N. 111 P.1.1	
35 Cs 1.0E+00 IAEA S.S. No.111-P-1.1 36 Ba 1.0E-01 化学的性質の類似性からSrと同一に選定	
30 Ba 1.0E-01 代子中が主員が規模性がある12同一で歴史 37 Ce 5.0E-02 NUREG-1640	
38 Pm 5.0E-02 NUREG-1640	
39 Eu 5.0E-03 IAEA S.S. No.111-P-1.1	
40 Gd 5.0E-02 <u>%</u> 1	
41 Tb 5.0E-02 <u>%</u> 1	
42 Yb 5.0E-02 化学的性質の類似性からTbと同一に選定	
43 Ta 5.0E-02 <u>%</u> 1	
44 W 1.0E-01 Radiation protection 117	
45 Re 9.7E-01 NUREG-1640	
46 Ir 1.0E+00 NUREG-1640	
47 Au 1.0E+00 化学的性質の類似性からAgと同一に選定	
48 Hg 1.0E+00 化学的性質の類似性からCdと同一に選定	
49 Tl 1.0E-01 Radiation protection 117	
50 Am 5.0E-03 IAEA S.S. No.111-P-1.1	
51 Cm 5.0E-03 Chapuisの文献	

上記表中にない核種の既往のクリアランス評価で使用された値: Zr = 5.0E-02

※1: 文献を元に選定することが不可能であるため、元素の沸点と電気炉での鉄の平均的な溶融温度(1823~1923K)との比較及び酸化物の標準生成エネルギーを基に、類似性を判断して選定。

調査文献 「原子炉クリアランス報告書」

「核燃施設クリアランス報告書」

「重水炉等クリアランス報告書」

IAEA S.S. No.111-P-1.1

NUREG-1640

Radiation protection 117

Chapuisの文献

表 4.14 元素依存パラメータ一覧 (16)

A 4.	14 儿子		
出任	()	焼 却 処 :	理において核種が排気に移行する割合
単位 No.	(-)	選定値	選定根拠
1	Н	5.0E-1	IAEA TECDOC 401
2	С	5.0E-1	IAEA – TECDOC – 401
3	F	1.0E-2	化学的性質の類似性から CI の値と同じとした
4	Na	1.0E-3	IAEA-TECDOC-401
5	P	1.0E-1	IAEA-TECDOC-401
6	S	1.0E-1	IAEA-TECDOC-401
7	Cl	1.0E-2	EUR - 16198
8	Ca	1.0E-4	IAEA-TECDOC-401
9	V	1.0E-3	化学的性質の類似性から、EUR-16198 の Nb の値と同じとした
10	Cr	1.0E-3	EUR - 16198
11	Mn	1.0E-4	IAEA-TECDOC-401
12	Fe	1.0E-3	EUR - 16198
13	Co	1.0E-4	IAEA-TECDOC-401
14	Ni	1.0E-3	EUR - 16198
15	Zn	1.0E-3	EUR - 16198
16	Ga	1.0E-3	EUR - 16198
17	Ge	1.0E-3	化学的性質の類似性から EUR-16198 の Sn の値と同じとした
18	Se	1.0E-3	EUR - 16198
19	Rb	1.0E-3	EUR - 16198
20	Sr	1.0E-4	IAEA-TECDOC-401
21	Y	1.0E-3	EUR - 16198
22	Mo	1.0E-3	EUR - 16198
23	Tc	1.0E-3	EUR-16198
24	Cd	1.0E-3	EUR - 16198
25	In	1.0E-3	EUR - 16198
26	Sb	1.0E-3	EUR - 16198
27	I	1.0E-1	IAEA-TECDOC-401
28	Cs	1.0E-3	IAEA-TECDOC-401
29	Ва	1.0E-3	EUR-16198
30	Ce	1.0E-4	IAEA-TECDOC-401
31	Pm	1.0E-3	EUR - 16198
32	Eu	1.0E-3	EUR-16198
33	Gd	1.0E-3	EUR-16198
34	Yb	1.0E-3	化学的性質の類似性から Gd の値と同じとした
35	W	1.0E-3	化学的性質の類似性から Mo の値と同じとした
36	Re	1.0E-3	EUR-16198
37	Ir	1.0E-3	EUR-16198
38	Au	1.0E-3	EUR-16198
39	Tl	1.0E-3	EUR-16198
40	Am	1.0E-4	IAEA-TECDOC-401
41	Cm	1.0E-3	EUR - 16198
			ı

調査文献 IAEA-TECDOC-401 EUR-16198

表 4.14 元素依存パラメータ一覧 (17)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
(-)	合 際 火	型理において核種が排気に移行する割合
` '	選定値	選定根拠
Н	1.0E+0	09 廃輸報-0003*1から設定
С	1.0E+0	09 廃輸報-0003*1から設定
F	5.0E-1	化学的性質の類似性から C1 の値と同じとした
Na	0.0	NUREG-1640 から STEEL の値
P	0.0	NUREG-1640 から STEEL の値
S	0.0	NUREG-1640 から STEEL の値
C1	5.0E-1	NUREG-1640 から STEEL の値
Ca	0.0	NUREG-1640 から STEEL の値
V	1.0E-3 *2	化学的性質の類似性から EUR-16198 の Nb の値と同じとした
Cr	0.0	NUREG-1640 から STEEL の値
Mn	0.0	NUREG-1640 から STEEL の値
Fe	0.0	NUREG-1640 から STEEL の値
Co	2.5E-2	09 廃輸報-0003*1から設定
Ni	0.0	09 廃輸報-0003*1から設定
Zn	0.0	NUREG-1640 から STEEL の値
Ga	1.0E-3 *2	EUR-16198
Ge	1.0E-3 *2	化学的性質の類似性から EUR-16198 の Sn の値と同じとした
Se	0.0	NUREG-1640 から STEEL の値
Rb	1.0E-3 *2	EUR-16198
Sr	0.0	09 廃輸報-0003*1から設定
Y	0.0	NUREG-1640 から STEEL の値
Mo	0.0	NUREG-1640 から STEEL の値
Тс	0.0	09 廃輸報-0003*1から設定
Cd	0.0	NUREG-1640 から STEEL の値
In	1.0E-3 *2	EUR-16198
Sb	0.0	NUREG-1640 から STEEL の値
I	1.0E+0	09 廃輸報-0003*1から設定
Cs	5.3E-1	09 廃輸報-0003*1から設定
Ba	0.0	NUREG-1640 から STEEL の値
Ce	0.0	NUREG-1640 から STEEL の値
Pm	0.0	NUREG-1640 から STEEL の値
Eu	0.0	NUREG-1640 から STEEL の値
Gd	0.0	NUREG-1640 から STEEL の値
Yb	0.0	化学的性質の類似性から Gd の値と同じとした
W	0.0	NUREG-1640 から STEEL の値
Re	1.0E-3 *2	EUR-16198
Ir	0.0	NUREG-1640 から STEEL の値
Au	1.0E-3 *2	EUR-16198
Tl	0.0	NUREG-1640 から STEEL の値
Am	0.0	09 廃輸報-0003*1から設定
	(-) 元素 H C F Na P S C1 Ca V Cr Mn Fe Co Ni Zn Ga Ge Se Rb Sr Y Mo Tc Cd In Sb I Cs Ba Ce Pm Eu Gd Yb W Re Ir Au	(-)

^{*1:}独立行政法人 原子力安全基盤機構「平成 20 年度 放射性廃棄物処分に関する調査(浅地中処分に関する調査)報告書」、09 廃輸報-0003(平成 21 年 8 月) *2:「焼却処理において核種が排気に移行する割合」と同じ選定値とした。

09 廃輸報-0003 NUREG-1640 EUR-16198 調査文献

表 4.15 核種依存パラメータ一覧 (1) (内部被ばく線量係数)

						(線量係数			
No.	核種	半減期	作業者 (IC	RP Publ. 68)	(Sv.	/Bq) 一般公衆 (IC	CRP Publ. 72)		- 換算係数に含め
		(y)	吸入	経口	吸	入	経	П	考慮した核種
1 1	H-3	1.23E+01	4.1E-11	4.2E-11	成人 4.5E-11	子ども 2.7E-10	成人 4.2E-11	子ども 1.2E-10	
	Be-7	1.46E-01	4.6E-11	2.8E-11	5.5E-11	2.4E-10	2.8E-11	1.3E-10	
3	C-14	5.73E+03	5.8E-10	5.8E-10	2.0E-09	6.6E-09	5.8E-10	1.6E-09	
4	F-18	2.09E-04	9.3E-11	4.9E-11	5.9E-11	3.1E-10	4.9E-11	3.0E-10	
	Na-22	2.60E+00	2.0E-09	3.2E-09	1.3E-09	7.3E-09	3.2E-09	1.5E-08	
	P-32	3.90E-02	2.9E-09	2.4E-09	3.4E-09	1.5E-08	2.4E-09	1.9E-08	
	P-33	6.94E-02	1.3E-09	2.4E-10	1.5E-09	4.6E-09	2.4E-10	1.8E-09	
	S-35 Cl-36	2.40E-01 3.01E+05	1.1E-09 5.1E-09	7.7E-10 9.3E-10	1.4E-09 7.3E-09	4.5E-09 2.6E-08	7.7E-10 9.3E-10	5.4E-09 6.3E-09	
	Ca-41	1.03E+05	1.9E-10	2.9E-10	9.5E-11	2.6E-10	1.9E-10	5.2E-10	
	Ca-45	4.49E-01	2.3E-09	7.6E-10	2.7E-09	8.8E-09	7.1E-10	4.9E-09	
12	Sc-46	2.30E-01	4.8E-09	1.5E-09	6.8E-09	2.3E-08	1.5E-09	7.9E-09	
	Ti-44 +	4.73E+01	7.2E-08	6.2E-09	1.2E-07	3.1E-07	6.2E-09	3.3E-08	Sc-44 (1.0)
	V-49	9.25E-01	2.6E-11	1.8E-11	3.4E-11	2.1E-10	1.8E-11	1.4E-10	
	Cr-51	7.58E-02	3.6E-11	3.8E-11	3.7E-11	2.1E-10	3.8E-11	2.3E-10	
	Mn-54	8.55E-01	1.2E-09	7.1E-10	1.5E-09	6.2E-09	7.1E-10	3.1E-09	
	Fe-55 Fe-59	2.73E+00 1.22E-01	9.2E-10 3.2E-09	3.3E-10 1.8E-09	3.8E-10 3.7E-09	1.4E-09 1.3E-08	3.3E-10 1.8E-09	2.4E-09 1.3E-08	
	Co-56	2.11E-01	4.9E-09	2.5E-09	4.8E-09	2.1E-08	2.5E-09	1.5E-08	
	Co-57	7.44E-01	6.0E-10	2.1E-10	5.5E-10	2.2E-09	2.1E-10	1.6E-09	
	Co-58	1.94E-01	1.7E-09	7.4E-10	1.6E-09	6.5E-09	7.4E-10	4.4E-09	
	Co-60	5.27E+00	1.7E-08	3.4E-09	1.0E-08	3.4E-08	3.4E-09	2.7E-08	
23	Ni-59	7.50E+04	2.2E-10	6.3E-11	1.3E-10	6.2E-10	6.3E-11	3.4E-10	
24	Ni-63	1.00E+02	5.2E-10	1.5E-10	4.8E-10	1.9E-09	1.5E-10	8.4E-10	
	Zn-65	6.68E-01	2.8E-09	3.9E-09	1.6E-09	6.5E-09	3.9E-09	1.6E-08	
	Ga-67	8.93E-03	2.8E-10	1.9E-10	2.4E-10	1.0E-09	1.9E-10	1.2E-09	
	Ge-68 +	7.86E-01	8.0E-09	1.4E-09	1.4E-08	5.0E-08	1.4E-09	8.7E-09	Ga-68 (1.0)
	Se-75 Rb-81	3.28E-01 5.22E-04	1.7E-09 6.8E-11	2.6E-09 5.4E-11	1.0E-09 3.4E-11	6.0E-09 2.5E-10	2.6E-09 5.4E-11	1.3E-08 3.2E-10	
	Rb-86	5.22E-04 5.11E-02	1.3E-09	2.8E-09	9.3E-10	7.7E-09	2.8E-09	2.0E-08	
	Sr-85	1.78E-01	6.4E-10	5.6E-10	6.4E-10	3.1E-09	5.6E-10	3.1E-09	
	Sr-89	1.38E-01	5.6E-09	2.6E-09	6.1E-09	2.4E-08	2.6E-09	1.8E-08	
33	Sr-90 +	2.91E+01	7.9E-08	3.1E-08	3.8E-08	1.2E-07	3.1E-08	9.3E-08	Y-90 (1.0)
34	Y-90	7.31E-03	1.7E-09	2.7E-09	1.5E-09	8.8E-09	2.7E-09	2.0E-08	
	Nb-93m	1.61E+01	8.6E-10	1.2E-10	5.1E-10	2.4E-09	1.2E-10	9.1E-10	
	Nb-94	2.03E+04	2.5E-08	1.7E-09	1.1E-08	3.7E-08	1.7E-09	9.7E-09	
	Mo-99 +	7.52E-03	1.1E-09	1.2E-09	9.1E-10	4.5E-09	6.2E-10	3.6E-09	Tc-99m (0.876)
	Гс-99 Гс-99m	2.11E+05	3.2E-09 2.9E-11	7.8E-10 2.2E-11	4.0E-09	1.3E-08	6.4E-10	4.8E-09	
	Ag-108m+	6.86E-04 4.18E+02	2.9E-11 1.9E-08	2.2E-11 2.3E-09	1.9E-11 7.4E-09	9.9E-11 2.7E-08	2.2E-11 2.3E-09	1.3E-10 1.1E-08	Ag-108 (0.089)
	Ag-110m+	6.84E-01	7.3E-09	2.8E-09	7.6E-09	2.8E-08	2.8E-09	1.4E-08	Ag-110 (0.013)
	Cd-109	1.27E+00	9.6E-09	2.0E-09	8.1E-09	3.7E-08	2.0E-09	9.5E-09	3 ()
	In-111	7.75E-03	3.1E-10	2.9E-10	2.3E-10	1.2E-09	2.9E-10	1.7E-09	
44	Sn-113 +	3.15E-01	1.9E-09	7.6E-10	2.7E-09	1.0E-08	7.6E-10	5.2E-09	In-113m (1.0)
	Sb-124	1.65E-01	4.7E-09	2.5E-09	6.4E-09	2.4E-08	2.5E-09	1.6E-08	
	Sb-125 +	2.73E+00	4.0E-09	1.3E-09	5.6E-09	1.9E-08	1.3E-09	7.5E-09	Te-125m (0.228)
	Te-123m	3.28E-01	3.4E-09	1.4E-09	4.0E-09	1.3E-08	1.4E-09	8.8E-09	
	I-123 I-125	1.51E-03	1.1E-10 7.3E-09	2.1E-10	7.4E-11	7.9E-10	2.1E-10	1.9E-09	
	I-125 I-131	1.65E-01 2.20E-02	1.1E-08	1.5E-08 2.2E-08	5.1E-09 7.4E-09	2.3E-08 7.2E-08	1.5E-08 2.2E-08	5.7E-08 1.8E-07	
	Cs-134	2.20E+02 2.06E+00	9.6E-09	1.9E-08	6.6E-09	7.2E-08 7.3E-09	1.9E-08	1.6E-08	
	Cs-137 +	3.00E+01	6.7E-09	1.3E-08	4.6E-09	5.4E-09	1.3E-08	1.2E-08	Ba-137m (0.946)
	Ba-133	1.05E+01	1.8E-09	1.0E-09	3.1E-09	1.0E-08	1.5E-09	6.2E-09	
	Ce-139	3.77E-01	1.4E-09	2.6E-10	1.7E-09	6.1E-09	2.6E-10	1.6E-09	
	Ce-141	8.90E-02	3.1E-09	7.1E-10	3.2E-09	1.1E-08	7.1E-10	5.1E-09	
	Pm-147	2.62E+00	3.5E-09	2.6E-10	5.0E-09	1.8E-08	2.6E-10	1.9E-09	
	Eu-152	1.33E+01 8.50E+00	2.7E-08	1.4E-09	4.2E-08	1.0E-07	1.4E-09	7.4E-09	
	Eu-154 Gd-153	8.59E+00 6.62E-01	3.5E-08 2.5E-09	2.0E-09 2.7E-10	5.3E-08 2.1E-09	1.5E-07 1.2E-08	2.0E-09 2.7E-10	1.2E-08 1.8E-09	
	Tb-160	1.98E-01	5.4E-09	1.6E-09	7.0E-09	2.5E-08	1.6E-09	1.0E-09	
	Yb-169	8.77E-02	2.4E-09	7.1E-10	3.0E-09	9.8E-09	7.1E-10	4.6E-09	
	Га-182	3.15E-01	7.4E-09	1.5E-09	1.0E-08	3.4E-08	1.5E-09	9.4E-09	
	W-188 +	1.90E-01	1.6E-09	3.7E-09	1.1E-09	9.4E-09	3.5E-09	2.6E-08	Re-188(1.0)
	Re-186	1.03E-02	1.2E-09	1.5E-09	1.1E-09	5.7E-09	1.5E-09	1.1E-08	
	Ir-192	2.02E-01	4.9E-09	1.4E-09	6.6E-09	2.2E-08	1.4E-09	8.7E-09	
	Au-195	5.01E-01	1.2E-09	2.5E-10	1.7E-09	6.6E-09	2.5E-10	1.7E-09	
	Au-198	7.38E-03	1.1E-09	1.0E-09	8.6E-10	4.4E-09	1.0E-09	7.2E-09	
	Hg-203	1.28E-01	1.9E-09	1.9E-09	2.4E-09	7.9E-09	5.4E-10	3.6E-09	
	Γl-201 Γl-204	8.32E-03 3.78E+00	7.6E-11 6.2E-10	9.5E-11 1.3E-09	4.4E-11 3.9E-10	3.3E-10 3.3E-09	9.5E-11 1.2E-09	5.5E-10 8.5E-09	
	Am-241	4.32E+02	2.7E-05	2.0E-07	4.2E-05	6.9E-05	2.0E-07	3.7E-07	
	Cm-244	1.81E+01	1.7E-05	1.2E-07	2.7E-05	5.7E-05	1.2E-07	2.9E-07	

※:核種名の後の"+"は、短半減期子孫核種の線量換算係数を含めている核種であることを示す。子孫核種名の後の括弧内の数値は分岐比を示す (分岐比の出典: EPA-402-R-93-081 (1993))。

表 4.15 核種依存パラメータ一覧 (2)

(皮膚被ばく及び埋設処分に係る評価経路の外部被ばく線量換算係数)

					泉量換算係数 per Bq/g)	
No.	核種		Bq/cm²)	積み下ろし	埋立作業者	換算係数に含めて
	NE	β線 	γ線 - · · · · · · · · · · · · · · · · · · ·	作業者	跡地利用	考慮した核種
		(4mg/cm ²)	(7mg/cm ²)	運転作業者	地下水移行	
	H-3	0.0E+00	0.0E+00	0.0E+00	0.0E+00	
	Be-7	0.0E+00	2.7E-09	4.0E-03	1.5E-02	
	C-14 F-18	9.0E-07	0.0E+00	0.0E+00	0.0E+00	
	r-18 Na-22	2.6E-06 2.4E-06	5.9E-08 1.3E-07	7.9E-02 1.7E-01	3.0E-01 6.5E-01	
	P-32	2.7E-06	0.0E+00	0.0E+00	0.0E+00	
	P-33	1.6E-06	0.0E+00	0.0E+00	0.0E+00	
	S-35	9.0E-07	0.0E+00	0.0E+00	0.0E+00	
9	Cl-36	2.5E-06	1.1E-11	1.2E-05	4.6E-05	
	Ca-41	N.A.	N.A.	0.0E+00	0.0E+00	
	Ca-45 Sc-46	1.6E-06 1.9E-06	2.1E-13 1.3E-07	3.4E-19 1.5E-01	7.8E-14 5.9E-01	
13	Ti-44 +	N.A.	N.A.	1.7E-01	6.7E-01	Sc-44 (1.0)
14	V-49	N.A.	N.A.	0.0E+00	0.0E+00	()
15	Cr-51	0.0E+00	1.5E-08	2.7E-03	1.0E-02	
	Mn-54	0.0E+00	6.1E-08	6.4E-02	2.5E-01	
17	Fe-55	0.0E+00	1.6E-08	1.3E-11	5.0E-11	
	Fe-59 Co-56	1.9E-06 1.3E-06	6.2E-08 1.7E-07	8.9E-02 2.6E-01	3.5E-01 1.0E+00	
	Co-56 Co-57	1.3E-06 1.1E-07	4.0E-08	9.9E-03	3.7E-02	
21	Co-58	4.1E-07	7.0E-08	7.5E-02	2.9E-01	
22	Co-60	1.8E-06	1.3E-07	1.9E-01	7.3E-01	
	Ni-59	0.0E+00	1.5E-10	1.3E-06	4.9E-06	
	Ni-63	1.8E-08	0.0E+00	0.0E+00	0.0E+00	
	Zn-65 Ga-67	3.8E-08 8.7E-07	5.0E-08 3.4E-08	4.3E-02 1.3E-02	1.7E-01 4.7E-02	
	Ga-67 Ge-68 +	N.A.	N.A.	7.5E-02	2.9E-01	Ga-68 (1.0)
	Se-75	1.7E-07	4.2E-08	3.2E-02	1.2E-01	GE 00 (1.0)
29	Rb-81	N.A.	5.4E-08	5.1E-02	1.9E-01	
	Rb-86	2.6E-06	5.1E-09	7.0E-03	2.7E-02	
	Sr-85	1.7E-08	4.7E-08	3.9E-02	1.5E-01	
	Sr-89 Sr-90 +	2.6E-06 5.1E-06	4.7E-12 2.4E-12	6.4E-06 1.3E-11	2.5E-05 2.2E-09	Y-90 (1.0)
34	Y-90	2.7E-06	2.4E-12	1.3E-11	2.2E-09	1-90 (1.0)
35	Nb-93m	0.0E+00	1.1E-10	4.0E-08	3.3E-06	
36	Nb-94	2.2E-06	9.5E-08	1.2E-01	4.7E-01	
	Mo-99 +	2.9E-06	1.6E-08	2.1E-02	7.9E-02	Tc-99m (0.876)
38	Tc-99	1.6E-06	0.0E+00	4.2E-08	1.5E-07	
39 40	Tc-99m Ag-108m+	3.3E-07 2.8E-07	7.6E-09 N.A.	1.1E-02 1.3E-01	4.0E-02 4.9E-01	Ag-108 (0.089)
	Ag-110m+	8.2E-07	1.5E-07	2.1E-01	8.1E-01	Ag-110 (0.013)
	Cd-109	0.0E+00	1.7E-08	2.5E-04	1.0E-03	
43	In-111	4.8E-07	3.4E-08	3.3E-02	1.2E-01	
	Sn-113 +	9.6E-07	3.1E-08	2.1E-02	8.0E-02	In-113m (1.0)
	Sb-124	2.4E-06	9.5E-08	1.4E-01	5.3E-01	T. 125(0.220)
46 47	Sb-125 + Te-123m	2.0E-06 2.3E-06	3.5E-08 1.3E-08	3.3E-02 1.1E-02	1.3E-01 4.3E-02	Te-125m (0.228)
	I e-123m I-123	2.3E-06 4.9E-07	2.1E-08	1.1E-02 1.3E-02	4.3E-02 4.8E-02	
	I-125	0.0E+00	2.1E-08	2.1E-04	8.4E-04	
	I-131	2.4E-06	2.2E-08	3.1E-02	1.2E-01	
51	Cs-134	1.8E-06	8.8E-08	1.2E-01	4.7E-01	
	Cs-137 +	2.5E-06	3.3E-08	4.4E-02	1.7E-01	Ba-137m (0.946)
	Ba-133	N.A. 3.5E.07	3.0E-08	3.0E-02	1.1E-01 4.3E-02	
	Ce-139 Ce-141	3.5E-07 2.9E-06	1.9E-08 5.9E-09	1.2E-02 6.0E-03	4.3E-02 2.3E-02	
	Pm-147	1.3E-06	4.9E-13	3.0E-07	1.1E-06	
	Eu-152	1.6E-06	6.8E-08	8.6E-02	3.3E-01	
58	Eu-154	3.4E-06	7.4E-08	9.3E-02	3.6E-01	
	Gd-153	4.0E-07	6.3E-09	5.1E-03	1.9E-02	
	Tb-160	3.4E-06	6.7E-08	8.5E-02	3.3E-01	
	Yb-169 Ta-182	1.6E-06 2.3E-06	N.A. 7.8E-08	2.1E-02 9.6E-02	7.8E-02 3.7E-01	
	W-188 +	2.3E-06 N.A.	N.A.	4.6E-03	1.8E-02	Re-188(1.0)
	Re-186	2.3E-06	3.0E-09	1.3E-03	4.6E-03	()
	Ir-192	2.6E-06	4.9E-08	6.7E-02	2.5E-01	
	Au-195	N.A.	N.A.	4.6E-03	1.7E-02	
	Au-198	2.6E-06	2.4E-08	3.3E-02	1.3E-01	
	Hg-203	1.8E-06	1.5E-08	2.0E-02	7.5E-02	
	TI-201 TI-204	6.1E-07 2.4E-06	2.1E-08 3.2E-10	5.9E-03 7.1E-05	2.2E-02 2.6E-04	
71	Am-241	2.4E-06 5.5E-08	3.2E-10 1.7E-08	9.6E-04	3.5E-03	
, ,	Cm-244	0.0E+00	2.2E-09	1.7E-06	9.9E-06	

※1:核種名の後の"+"は、短半減期子孫核種の線量換算係数を含めている核種であることを示す。子孫核種名の後の括弧内の数値は分岐比を示す(分岐比の出典: EPA-402-R-93-081 (1993))。

※2:皮膚被ばく線量換算係数は、等価線量換算係数であり、IAEA Safety Reports Series No.44 (2005) 、"Kocher et.al. Health Physics Vol.53 No.2 (1987)"、CEA-R-5441 (1998)より。「N.A.」はこれらの文献から値が得られないことを示す。

※3:外部被ばく線量換算係数は、QAD-CGGP2R コードによる計算結果であり、「ウラン及び TRU 廃棄物のクリアランスレベル評価のための外部被ばく線量換算係数」(JAEA-Data/Code 2008-001 (2008)) と同一の手法で計算した。ICRP Publ. 74のAP 照射ジオメトリ実効線量、ICRP Publ.38 (1983) 及び JAERI-Data/Code 2001-004 (2001)のエネルギーを使用している。

※4:「跡地利用-居住者」の子どもの外部被ばく線量換算係数は、表の数値を 1.3 倍する (NCRP Report No.129 (1999)など)。

表 4.15 核種依存パラメータ一覧 (3-1) (再利用に係る評価経路の外部被ばく線量換算係数)

					波ばく線量換算 μSv/h per Bq/g			
No.	核種			,				
		冷蔵庫	ベッド	鉄筋	壁材	積み下ろし	運転	前処理 作業
	H-3	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Be-7	3.4E-04	4.9E-04	1.7E-04	1.5E-02	2.6E-04	2.3E-04	6.1E-05
	C-14	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	F-18	6.7E-03	9.6E-03	3.4E-03	3.0E-01	5.3E-03	4.6E-03	1.2E-03
	Na-22	1.4E-02	2.0E-02	8.3E-03	7.0E-01	1.3E-02	1.1E-02	3.0E-03
	P-32	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	P-33	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	S-35	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Cl-36 Ca-41	1.0E-06	1.5E-06	5.3E-07	4.6E-05	8.1E-07	7.1E-07	1.9E-07
	Ca-41 Ca-45	4.3E-10 6.7E-15	2.2E-09 4.2E-14	0.0E+00 0.0E+00	4.4E-09 2.0E-13	7.3E-30 6.8E-16	0.0E+00 1.8E-16	9.2E-14 2.5E-16
	Sc-46	1.2E-02	1.8E-02	7.8E-03	6.5E-01	1.2E-02	1.8E-10 1.1E-02	2.3E-16 2.9E-03
	Ti-44 +	1.4E-02	2.1E-02	8.1E-03	6.9E-01	1.2E-02 1.2E-02	1.1E-02	2.9E-03
-	V-49	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Cr-51	2.2E-04	3.2E-04	9.8E-05	8.9E-03	1.4E-04	1.2E-04	3.2E-05
	Mn-54	5.3E-03	7.6E-03	3.1E-03	2.6E-01	5.0E-03	4.3E-03	1.2E-03
	Fe-55	1.4E-09	8.5E-09	2.7E-13	1.3E-07	2.5E-13	2.0E-13	3.3E-11
	Fe-59	7.0E-03	1.0E-02	4.7E-03	3.9E-01	7.4E-03	6.4E-03	1.7E-03
	Co-56	2.0E-02	2.9E-02	1.4E-02	1.2E+00	2.2E-02	1.9E-02	5.1E-03
20	Co-57	5.6E-04	1.1E-03	2.0E-04	2.3E-02	1.7E-04	1.5E-04	3.9E-05
21	Co-58	6.2E-03	9.0E-03	3.6E-03	3.1E-01	5.7E-03	5.0E-03	1.3E-03
	Co-60	1.5E-02	2.1E-02	1.0E-02	8.2E-01	1.6E-02	1.4E-02	3.7E-03
23	Ni-59	1.1E-07	1.8E-07	5.6E-08	5.1E-06	8.5E-08	7.5E-08	2.0E-08
24	Ni-63	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Zn-65	3.5E-03	5.0E-03	2.3E-03	1.9E-01	3.6E-03	3.1E-03	8.3E-04
	Ga-67	8.8E-04	1.5E-03	3.7E-04	3.6E-02	4.5E-04	4.0E-04	1.1E-04
	Ge-68 +	6.3E-03	9.2E-03	3.3E-03	2.9E-01	5.1E-03	4.5E-03	1.2E-03
	Se-75	2.4E-03	3.8E-03	1.0E-03	9.7E-02	1.3E-03	1.1E-03	3.0E-04
	Rb-81	4.1E-03	6.1E-03	2.1E-03	1.8E-01	3.0E-03	2.6E-03	7.0E-04
	Rb-86	5.6E-04	8.1E-04	3.6E-04	3.0E-02	5.7E-04	5.0E-04	1.3E-04
	Sr-85	3.3E-03	4.8E-03	1.7E-03	1.5E-01	2.6E-03	2.3E-03	6.1E-04
	Sr-89 Sr-90 +	5.2E-07 8.1E-11	7.6E-07 5.0E-10	3.2E-07 3.6E-28	2.7E-05 2.3E-09	5.1E-07 1.2E-11	4.5E-07 7.3E-12	1.2E-07 3.1E-12
	S1-90 ∓ Y-90	8.1E-11	5.0E-10 5.0E-10	3.6E-28	2.3E-09 2.3E-09	1.2E-11 1.2E-11	7.3E-12 7.3E-12	3.1E-12 3.1E-12
-	Nb-93m	1.1E-07	6.8E-07	8.3E-23	3.1E-06	1.7E-08	1.1E-08	4.3E-09
	Nb-94	1.0E-02	1.5E-02	5.9E-03	5.0E-01	9.3E-03	8.1E-03	2.2E-03
	Mo-99 +	1.5E-03	2.4E-03	7.3E-04	6.8E-02	9.8E-04	8.6E-04	2.3E-04
	Tc-99	1.7E-09	5.1E-09	5.1E-10	8.0E-08	3.8E-10	3.4E-10	9.0E-11
39	Tc-99m	6.5E-04	1.2E-03	2.4E-04	2.6E-02	2.1E-04	1.9E-04	5.0E-05
40	Ag-108m+	1.1E-02	1.5E-02	5.8E-03	5.0E-01	8.9E-03	7.8E-03	2.1E-03
41	Ag-110m+	1.7E-02	2.4E-02	1.0E-02	8.7E-01	1.6E-02	1.4E-02	3.8E-03
42	Cd-109	1.3E-05	4.8E-05	2.7E-06	5.3E-04	2.6E-06	2.3E-06	6.1E-07
43	In-111	2.4E-03	3.8E-03	1.0E-03	9.7E-02	1.2E-03	1.0E-03	2.8E-04
	Sn-113 +	1.7E-03	2.6E-03	8.4E-04	7.5E-02	1.2E-03	1.1E-03	2.9E-04
	Sb-124	1.1E-02	1.5E-02	7.0E-03	5.8E-01	1.1E-02	9.5E-03	2.5E-03
	Sb-125 +	2.8E-03	4.1E-03	1.4E-03	1.2E-01	2.2E-03	1.9E-03	5.1E-04
	Te-123m	7.6E-04	1.3E-03	2.9E-04	3.0E-02	2.8E-04	2.5E-04	6.5E-05
	I-123	8.6E-04	1.5E-03	3.4E-04	3.5E-02	3.6E-04	3.2E-04	8.4E-05
	I-125 I-131	1.2E-05 2.6E-03	7.2E-05 3.8E-03	2.2E-09 1.2E-03	4.1E-04	2.0E-06 1.8E-03	1.7E-06 1.6E-03	4.7E-07 4.2E-04
	1-131 Cs-134	2.6E-03 1.0E-02	3.8E-03 1.5E-02	5.7E-03	1.1E-01 4.9E-01	9.0E-03	7.9E-03	4.2E-04 2.1E-03
	Cs-134 Cs-137 +	3.7E-03	5.3E-02	2.1E-03	4.9E-01 1.8E-01	3.2E-03	7.9E-03 2.8E-03	7.5E-04
	Ba-133	2.3E-03	3.6E-03	1.1E-03	9.9E-02	1.5E-03	1.3E-03	3.5E-04
	Ce-139	7.7E-04	1.3E-03	2.9E-04	3.0E-02	2.9E-04	2.6E-04	6.9E-05
	Ce-141	3.8E-04	6.9E-04	1.4E-04	1.5E-02	1.3E-04	1.1E-04	3.0E-05
	Pm-147	1.6E-08	3.6E-08	5.5E-09	6.8E-07	4.5E-09	4.0E-09	1.1E-09
	Eu-152	6.7E-03	9.9E-03	4.2E-03	3.5E-01	6.5E-03	5.7E-03	1.5E-03
58	Eu-154	7.3E-03	1.1E-02	4.6E-03	3.9E-01	7.2E-03	6.3E-03	1.7E-03
59	Gd-153	2.2E-04	6.8E-04	5.9E-05	9.7E-03	5.0E-05	4.4E-05	1.2E-05
	Tb-160	6.8E-03	9.9E-03	4.2E-03	3.5E-01	6.5E-03	5.7E-03	1.5E-03
	Yb-169	1.3E-03	2.7E-03	4.6E-04	5.3E-02	5.3E-04	4.7E-04	1.2E-04
	Ta-182	7.4E-03	1.1E-02	4.8E-03	4.0E-01	7.4E-03	6.5E-03	1.7E-03
	W-188 +	3.4E-04	5.4E-04	1.7E-04	1.5E-02	2.3E-04	2.0E-04	5.4E-05
	Re-186	6.9E-05	1.5E-04	2.4E-05	2.9E-03	2.2E-05	2.0E-05	5.2E-06
	Ir-192	5.5E-03	8.1E-03	2.6E-03	2.3E-01	3.8E-03	3.3E-03	8.9E-04
	Au-195	1.7E-04	6.2E-04	3.9E-05	8.2E-03	3.5E-05	3.1E-05	8.1E-06
	Au-198	2.7E-03	4.0E-03	1.3E-03	1.2E-01	2.0E-03	1.7E-03	4.6E-04
	Hg-203	1.6E-03	2.4E-03	6.8E-04	6.3E-02	9.1E-04	8.0E-04	2.1E-04
	TI-201	2.6E-04	7.4E-04	7.7E-05	1.2E-02	7.2E-05	6.4E-05	1.7E-05
	Tl-204	2.5E-06 3.0E-05	9.4E-06	5.6E-07 3.7E-06	1.2E-04 1.5E-03	4.9E-07 5.5E-06	4.4E-07	1.2E-07 1.3E-06
	Am-241 Cm-244	3.0E-05 2.2E-07	1.5E-04 8.9E-07	3.7E-06 6.6E-08	1.5E-03 9.1E-06	5.5E-06 1.2E-07	4.9E-06	1.3E-06 2.9E-08
12	CIIF244	4.4E-U/	0.9E-U/	0.0E-08	7.1E-00	1.2E-07	1.0E-07	2.9E-08

※1:核種名の後の"+"は、短半減期子孫核種の線量換算係数を含めている核種であることを示す。

※2:外部被ばく線量換算係数は、QAD-CGGP2R コードによる計算結果であり、「ウラン及び TRU 廃棄物のクリアランスレベル評価のための外部被ばく線量換算係数」(JAEA-Data/Code 2008-001 (2008)) と同一の手法で計算した。ICRP Publ. 74のAP 照射ジオメトリ実効線量、ICRP Publ.38 (1983) 及び JAERI-Data/Code 2001-004 (2001)のエネルギーを使用している。
 ※3:「壁材」の経路における子どもの外部被ばく線量換算係数は、表の数値を 1.3 倍する (NCRP Report No.129 (1999)など)。

表 4.15 核種依存パラメータ一覧 (3-2)

(再利用に係る評価経路の外部被ばく線量換算係数)

					<u> 波ばく線量換算</u> μSv/h per Bq/g			
No.	核種	溶融鋳造		(5)		
		作業	加工作業	トラック	オートバイ	船舶	机	NC旋盤
	H-3	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Be-7	8.9E-04	7.5E-04	5.5E-04	1.1E-03	2.9E-03	1.5E-03	2.8E-03
	C-14	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	F-18	1.8E-02	1.5E-02	1.1E-02	2.2E-02	5.8E-02	2.9E-02	5.5E-02
	Na-22	4.4E-02	3.7E-02	2.4E-02	4.4E-02	1.3E-01	6.0E-02	1.3E-01
	P-32 P-33	0.0E+00 0.0E+00	0.0E+00 0.0E+00	0.0E+00 0.0E+00	0.0E+00 0.0E+00	0.0E+00 0.0E+00	0.0E+00 0.0E+00	0.0E+00 0.0E+00
	S-35	0.0E+00 0.0E+00	0.0E+00	0.0E+00 0.0E+00	0.0E+00 0.0E+00	0.0E+00 0.0E+00	0.0E+00 0.0E+00	0.0E+00
	Cl-36	2.7E-06	2.3E-06	1.7E-06	3.3E-06	8.8E-06	4.5E-06	8.5E-06
	Ca-41	9.9E-18	1.2E-21	0.0E+00	1.6E-09	0.0E+00	2.1E-07	2.4E-17
	Ca-45	3.3E-15	2.6E-15	3.6E-15	2.5E-14	3.1E-15	1.4E-13	1.3E-14
	Sc-46	4.2E-02	3.5E-02	2.2E-02	4.0E-02	1.2E-01	5.4E-02	1.2E-01
13	Ti-44 +	4.2E-02	3.6E-02	2.5E-02	4.5E-02	1.3E-01	6.0E-02	1.2E-01
	V-49	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Cr-51	4.7E-04	3.9E-04	3.4E-04	7.0E-04	1.8E-03	9.5E-04	1.5E-03
	Mn-54	1.7E-02	1.4E-02	9.3E-03	1.7E-02	4.9E-02	2.3E-02	4.9E-02
- 1	Fe-55	5.1E-11	6.3E-12	1.5E-12	5.4E-09	6.2E-12	1.6E-07	1.4E-10
	Fe-59	2.5E-02	2.1E-02	1.3E-02	2.3E-02	6.8E-02	3.1E-02	7.0E-02
	Co-56 Co-57	7.5E-02 5.7E-04	6.3E-02 4.8E-04	3.7E-02 1.1E-03	6.5E-02 1.9E-03	2.0E-01 4.6E-03	8.8E-02 2.5E-03	2.0E-01 2.1E-03
	Co-57 Co-58	5.7E-04 1.9E-02	4.8E-04 1.6E-02	1.1E-03 1.1E-02	1.9E-03 2.0E-02	4.6E-03 5.7E-02	2.5E-03 2.7E-02	5.7E-03
- 1	Co-58 Co-60	5.4E-02	4.5E-02	2.7E-02	4.7E-02	3.7E-02 1.4E-01	6.4E-02	1.5E-01
	Ni-59	2.9E-07	2.4E-07	1.8E-07	3.6E-07	9.3E-07	7.3E-07	9.0E-07
	Ni-63	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Zn-65	1.2E-02	1.0E-02	6.3E-03	1.1E-02	3.3E-02	1.5E-02	3.4E-02
- 1	Ga-67	1.5E-03	1.3E-03	1.5E-03	2.9E-03	7.2E-03	3.8E-03	5.2E-03
27	Ge-68 +	1.7E-02	1.4E-02	1.0E-02	2.1E-02	5.5E-02	2.8E-02	5.3E-02
28	Se-75	4.3E-03	3.6E-03	3.9E-03	7.8E-03	1.9E-02	1.1E-02	1.4E-02
	Rb-81	1.0E-02	8.6E-03	6.8E-03	1.3E-02	3.5E-02	1.8E-02	3.2E-02
	Rb-86	1.9E-03	1.6E-03	1.0E-03	1.8E-03	5.4E-03	2.5E-03	5.5E-03
	Sr-85	8.9E-03	7.5E-03	5.4E-03	1.1E-02	2.9E-02	1.5E-02	2.8E-02
- 1	Sr-89	1.7E-06	1.5E-06	9.4E-07	1.7E-06	4.9E-06	2.3E-06	5.0E-06
	Sr-90 + Y-90	4.4E-11 4.4E-11	3.6E-11 3.6E-11	1.8E-10 1.8E-10	3.0E-10 3.0E-10	1.6E-10 1.6E-10	9.8E-10 9.8E-10	1.7E-10 1.7E-10
	Nb-93m	5.9E-08	4.9E-08	2.7E-07	4.1E-07	2.5E-07	1.2E-06	2.3E-07
	Nb-94	3.2E-02	2.6E-02	1.7E-02	3.3E-02	9.2E-02	4.4E-02	9.3E-02
	Mo-99 +	3.3E-03	2.8E-03	2.6E-03	5.0E-03	1.3E-02	6.6E-03	1.0E-02
	Tc-99	1.3E-09	1.1E-09	5.0E-09	6.2E-09	1.5E-08	7.6E-09	5.0E-09
39	Tc-99m	7.2E-04	6.1E-04	1.2E-03	2.2E-03	5.2E-03	2.9E-03	2.6E-03
40	Ag-108m+	3.0E-02	2.5E-02	1.8E-02	3.4E-02	9.4E-02	4.7E-02	9.2E-02
	Ag-110m+	5.5E-02	4.6E-02	3.0E-02	5.5E-02	1.6E-01	7.4E-02	1.6E-01
- 1	Cd-109	8.8E-06	7.4E-06	4.1E-05	4.5E-05	9.1E-05	6.3E-05	3.4E-05
	In-111	4.0E-03	3.4E-03	3.9E-03	8.0E-03	1.9E-02	1.1E-02	1.4E-02
	Sn-113 +	4.2E-03	3.5E-03	2.8E-03	5.7E-03	1.5E-02	7.7E-03	1.3E-02
- 1	Sb-124	3.7E-02	3.1E-02	1.9E-02	3.4E-02	1.0E-01	4.7E-02	1.0E-01
	Sb-125 +	7.4E-03	6.2E-03	4.6E-03	9.0E-03	2.4E-02	1.2E-02	2.3E-02 3.4E-03
	Te-123m I-123	9.5E-04 1.2E-03	7.9E-04 1.0E-03	1.3E-03 1.5E-03	2.5E-03 2.8E-03	6.0E-03 6.9E-03	3.3E-03 3.8E-03	4.2E-03
	I-123 I-125	6.8E-06	5.7E-06	5.6E-05	4.3E-05	6.9E-03 5.6E-05	6.1E-05	4.2E-03 2.6E-05
	I-123 I-131	6.1E-03	5.7E-00 5.2E-03	4.1E-03	8.3E-03	2.2E-02	1.1E-02	1.9E-02
	Cs-134	3.0E-02	2.6E-02	1.7E-02	3.3E-02	9.1E-02	4.4E-02	9.1E-02
	Cs-137 +	1.1E-02	9.1E-03	6.3E-03	1.2E-02	3.3E-02	1.6E-02	3.3E-02
	Ba-133	5.1E-03	4.3E-03	3.9E-03	7.7E-03	1.9E-02	1.0E-02	1.7E-02
	Ce-139	1.0E-03	8.4E-04	1.3E-03	2.6E-03	6.1E-03	3.4E-03	3.5E-03
- 1	Ce-141	4.3E-04	3.6E-04	6.8E-04	1.3E-03	3.0E-03	1.7E-03	1.6E-03
- 1	Pm-147	1.5E-08	1.3E-08	3.5E-08	5.6E-08	1.3E-07	7.2E-08	5.7E-08
	Eu-152	2.2E-02	1.8E-02	1.2E-02	2.2E-02	6.3E-02	2.9E-02	6.3E-02
	Eu-154	2.4E-02	2.0E-02	1.3E-02	2.4E-02	6.9E-02	3.2E-02	6.9E-02
	Gd-153	1.7E-04	1.4E-04	6.7E-04	7.7E-04	1.8E-03	9.5E-04	6.4E-04
	Tb-160	2.2E-02	1.9E-02	1.2E-02	2.2E-02	6.3E-02	3.0E-02	6.4E-02
	Yb-169	1.8E-03	1.5E-03	2.7E-03	4.2E-03	1.0E-02	5.5E-03	6.2E-03
	Ta-182 W-188 +	2.5E-02 7.8E-04	2.1E-02 6.6E-04	1.4E-02 6.0E-04	2.4E-02 1.1E-03	7.0E-02 2.9E-03	3.2E-02 1.5E-03	7.1E-02 2.4E-03
	W-188 + Re-186	7.8E-04 7.5E-05	6.6E-04 6.3E-05	6.0E-04 1.5E-04	2.3E-04	2.9E-03 5.5E-04	1.5E-03 3.0E-04	2.4E-03 2.7E-04
	Ir-192	1.3E-03	0.3E-03 1.1E-02	8.8E-03	2.3E-04 1.8E-02	5.5E-04 4.6E-02	3.0E-04 2.4E-02	4.1E-02
	Au-195	1.3E-02 1.2E-04	9.9E-05	6.3E-03	6.0E-04	1.4E-03	7.1E-04	4.1E-02 4.5E-04
	Au-198	6.7E-03	5.6E-03	4.4E-03	8.8E-03	2.3E-02	1.2E-02	2.1E-02
	Hg-203	3.1E-03	2.6E-03	2.5E-03	5.1E-03	1.3E-02	6.8E-03	1.0E-02
	Tl-201	2.5E-04	2.1E-04	7.6E-04	9.0E-04	2.1E-03	1.1E-03	9.0E-04
	Tl-204	1.7E-06	1.4E-06	9.7E-06	8.9E-06	2.1E-05	1.0E-05	6.4E-06
71	Am-241	1.9E-05	1.6E-05	1.5E-04	1.1E-04	2.3E-04	1.3E-04	7.4E-05
72	Cm-244	4.2E-07	3.5E-07	5.5E-07	7.9E-07	1.4E-06	1.6E-06	1.3E-06

※1:核種名の後の"+"は、短半減期子孫核種の線量換算係数を含めている核種であることを示す。

※2:外部被ばく線量換算係数は、QAD-CGGP2R コードによる計算結果であり、「ウラン及び TRU 廃棄物のクリアランスレベル評価のための外部被ばく線量換算係数」(JAEA-Data/Code 2008-001 (2008)) と同一の手法で計算した。ICRP Publ. 74のAP 照射ジオメトリ実効線量、ICRP Publ.38 (1983) 及び JAERI-Data/Code 2001-004 (2001)のエネルギーを使用している。

表 4.15 核種依存パラメータ一覧 (3-3)

(再利用に係る評価経路の外部被ばく線量換算係数)

			外部被ば<線 (μSv/h p	泉量換算係数 per Ba/g)	
No.	核種		(μον/11 μ	er bq/g)	
	1久1重	再使用品 (電源)	スラグ 駐車場	コンクリート 処理	コンクリート 駐車場
1	H-3	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	Be-7	2.5E-03	5.0E-03	1.9E-03	5.0E-03
3	C-14	0.0E+00	0.0E+00	0.0E+00	0.0E+00
4	F-18	4.5E-02	9.9E-02	3.6E-02	9.9E-02
5	Na-22	8.7E-02	2.1E-01	8.1E-02	2.1E-01
6	P-32	0.0E+00	0.0E+00	0.0E+00	0.0E+00
7	P-33	0.0E+00	0.0E+00	0.0E+00	0.0E+00
8	S-35	0.0E+00	0.0E+00	0.0E+00	0.0E+00
9	Cl-36	7.0E-06	1.5E-05	5.6E-06	1.5E-05
	Ca-41	1.1E-08	1.9E-09	7.0E-12	1.9E-09
11	Ca-45	3.1E-13	1.1E-13	4.4E-14	1.1E-13
	Sc-46	8.2E-02	1.9E-01	7.5E-02	1.9E-01
	Ti-44 + V-49	9.2E-02 1.8E-08	2.1E-01 0.0E+00	8.1E-02 0.0E+00	2.1E-01 0.0E+00
	V-49 Cr-51	1.4E-03	3.2E-03	1.1E-03	3.2E-03
	Mn-54	3.7E-02	8.0E-02	3.1E-02	8.0E-02
17	Fe-55	2.6E-08	6.1E-08	5.3E-09	6.1E-08
	Fe-59	5.0E-02	1.1E-01	4.4E-02	1.1E-01
19	Co-56	1.3E-01	3.2E-01	1.3E-01	3.2E-01
20	Co-57	2.7E-03	1.0E-02	3.2E-03	1.0E-02
21	Co-58	4.4E-02	9.5E-02	3.6E-02	9.5E-02
22	Co-60	1.0E-01	2.3E-01	9.3E-02	2.3E-01
	Ni-59	7.7E-07	1.7E-06	6.1E-07	1.7E-06
	Ni-63	0.0E+00	0.0E+00	0.0E+00	0.0E+00
25	Zn-65	2.4E-02	5.4E-02	2.2E-02	5.4E-02
	Ga-67	5.5E-03	1.4E-02	4.7E-03	1.4E-02
27	Ge-68 +	4.3E-02	9.4E-02	3.5E-02 1.3E-02	9.4E-02 3.7E-02
28 29	Se-75 Rb-81	1.5E-02 2.7E-02	3.7E-02 6.2E-02	1.3E-02 2.2E-02	6.2E-02
	Rb-86	3.9E-03	8.8E-03	3.5E-03	8.8E-03
31	Sr-85	2.2E-02	4.9E-02	1.8E-02	4.9E-02
32	Sr-89	3.4E-06	8.1E-06	3.1E-06	8.1E-06
33	Sr-90 +	3.5E-10	1.3E-09	5.6E-10	1.3E-09
34	Y-90	3.5E-10	1.3E-09	5.6E-10	1.3E-09
	Nb-93m	4.6E-07	1.8E-06	7.6E-07	1.8E-06
	Nb-94	6.6E-02	1.5E-01	5.8E-02	1.5E-01
	Mo-99 +	9.6E-03	2.4E-02	8.4E-03	2.4E-02
	Tc-99	8.3E-09	4.0E-08	1.1E-08	4.0E-08
39 40	Tc-99m Ag-108m+	4.0E-03 7.0E-02	1.1E-02 1.6E-01	3.5E-03 6.0E-02	1.1E-02 1.6E-01
41	Ag-100m+	1.1E-01	2.6E-01	1.0E-01	2.6E-01
42	Cd-109	5.8E-05	2.8E-04	8.5E-05	2.8E-04
43	In-111	1.6E-02	3.8E-02	1.3E-02	3.8E-02
44	Sn-113 +	1.2E-02	2.6E-02	9.3E-03	2.6E-02
45	Sb-124	7.6E-02	1.7E-01	6.7E-02	1.7E-01
	Sb-125 +	1.9E-02	4.1E-02	1.5E-02	4.1E-02
47	Te-123m	3.8E-03	1.3E-02	4.0E-03	1.3E-02
	I-123	4.5E-03	1.4E-02	4.6E-03	1.4E-02
	I-125	4.6E-05	2.6E-04	9.0E-05	2.6E-04
	I-131 Cs. 124	1.9E-02	3.8E-02	1.4E-02	3.8E-02
51 52	Cs-134 Cs-137 +	7.2E-02 2.5E-02	1.5E-01 5.5E-02	5.8E-02 2.1E-02	1.5E-01 5.5E-02
	Ba-133	2.3E-02 1.4E-02	3.5E-02 3.6E-02	1.3E-02	3.6E-02
	Ce-139	3.6E-03	1.3E-02	4.1E-03	1.3E-02
	Ce-141	2.2E-03	6.5E-03	2.0E-03	6.5E-03
	Pm-147	7.6E-08	3.1E-07	9.3E-08	3.1E-07
57	Eu-152	4.5E-02	1.1E-01	4.1E-02	1.1E-01
	Eu-154	4.6E-02	1.1E-01	4.5E-02	1.1E-01
	Gd-153	1.1E-03	4.9E-03	1.4E-03	4.9E-03
	Tb-160	4.4E-02	1.1E-01	4.1E-02	1.1E-01
61	Yb-169	7.7E-03	2.3E-02	7.1E-03	2.3E-02
	Ta-182 W-188 +	4.8E-02 2.1E-03	1.2E-01 5.4E-03	4.6E-02	1.2E-01 5.4E-03
	W-188 + Re-186	2.1E-03 4.2E-04	5.4E-03 1.3E-03	1.9E-03 3.9E-04	5.4E-03 1.3E-03
	Ir-192	3.8E-02	8.1E-02	2.9E-02	8.1E-02
	Au-195	7.5E-04	4.4E-03	1.2E-03	4.4E-03
	Au-198	1.8E-02	4.1E-02	1.5E-02	4.1E-02
	Hg-203	1.1E-02	2.3E-02	8.1E-03	2.3E-02
	Tl-201	1.5E-03	5.8E-03	1.6E-03	5.8E-03
70	Tl-204	1.2E-05	6.8E-05	1.8E-05	6.8E-05
71	Am-241	9.9E-05	8.8E-04	2.3E-04	8.8E-04
72	Cm-244	1.4E-06	3.8E-06	1.5E-06	3.8E-06

※1:核種名の後の"+"は、短半減期子孫核種の線量換算係数を含めている核種であることを示す。

※2:外部被ばく線量換算係数は、QAD-CGGP2R コードによる計算結果であり、「ウラン及び TRU 廃棄物のクリアランスレベル評価のための外部被ばく線量換算係数」(JAEA-Data/Code 2008-001 (2008)) と同一の手法で計算した。ICRP Publ. 74のAP 照射ジオメトリ実効線量、ICRP Publ.38 (1983) 及び JAERI-Data/Code 2001-004 (2001)のエネルギーを使用している。

表 4.15 核種依存パラメータ一覧 (4)

(焼却処理に係る評価経路の外部被ばく線量換算係数)

	1	1	.,,	出ている日						I
						重係数 (Sv/h p				
						は(Sv/h per B	- '			わかたおいころリー
No.	核種			7	プルームは(S	v/y per Bq/cn	n³)			換算係数に含めて 考慮した核種
		可燃物	焼却炉	焼却灰	焼却灰	溶融炉	溶融固化物	溶融固化物		予慮した核重
		積み下ろし 及び運搬	補修	積み下ろし	運搬	補修	積み下ろし	運搬	プルーム	
1	H-3	<u>久</u> い連版 0.0E+00	0.0E+00							
	C-14	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	5.9E-05	
	F-18	7.8E-08	1.5E-08	9.7E-08	6.5E-08	6.4E-08	4.1E-08	3.0E-08	1.4E+00	
4	Na-22	1.6E-07	3.3E-08	2.0E-07	1.3E-07	1.4E-07	8.8E-08	6.4E-08	3.1E+00	
	P-32	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.4E-02	
	P-33	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.9E-04	
	S-35	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	7.5E-05	
8		1.2E-11	2.3E-12	1.5E-11	9.9E-12	9.8E-12	6.3E-12	4.6E-12	3.9E-03	
10	Ca-45 V-49	2.4E-19 0.0E+00	1.1E-19 0.0E+00	7.6E-20 0.0E+00	3.9E-20 0.0E+00	3.8E-20 0.0E+00	1.5E-20 0.0E+00	1.0E-21 0.0E+00	4.0E-04 1.4E-05	
	V-49 Cr-51	2.7E-09	4.7E-10	3.3E-09	2.2E-09	2.1E-09	1.4E-09	1.0E-09	4.3E-03	
	Mn-54	6.2E-08	1.3E-08	7.8E-08	5.1E-08	5.2E-08	3.3E-08	2.4E-08	1.2E+00	
	Fe-55	1.5E-17	2.3E-18	1.7E-17	1.2E-17	8.2E-18	7.0E-18	5.2E-18	3.5E-05	
	Fe-59	8.4E-08	1.8E-08	1.1E-07	7.0E-08	7.2E-08	4.6E-08	3.3E-08	1.7E+00	
15	Co-57	1.1E-08	1.7E-09	1.3E-08	8.7E-09	6.1E-09	5.2E-09	3.8E-09	1.7E-01	
	Co-58	7.3E-08	1.5E-08	9.2E-08	6.1E-08	6.1E-08	3.9E-08	2.8E-08	1.4E+00	
	Co-60	1.8E-07	3.7E-08	2.2E-07	1.5E-07	1.5E-07	9.7E-08	7.0E-08	3.6E+00	
	Ni-63	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	
	Zn-65	4.1E-08	8.6E-09	5.2E-08	3.4E-08	3.5E-08	2.3E-08	1.6E-08	8.3E-01	
		1.3E-08	2.3E-09	1.6E-08	1.1E-08	8.8E-09	6.6E-09	4.8E-09	2.0E-01	0. (0.(1.0)
	Ge-68 + Se-75	7.5E-08 3.4E-08	1.4E-08 5.6E-09	9.2E-08 4.0E-08	6.2E-08 2.7E-08	6.1E-08 2.3E-08	3.9E-08 1.7E-08	2.9E-08 1.2E-08	1.3E+00 5.4E-01	Ga-68 (1.0)
	Rb-81	5.4E-08 5.1E-08	9.4E-09	6.2E-08	4.2E-08	4.0E-08	2.6E-08	1.2E-08 1.9E-08	8.4E-01	
	Rb-86	6.6E-09	1.4E-09	8.4E-09	5.5E-09	5.7E-09	3.6E-09	2.6E-09	1.5E-01	
	Sr-85	3.9E-08	7.5E-09	4.8E-08	3.2E-08	3.2E-08	2.0E-08	1.5E-08	7.0E-01	
	Sr-89	6.2E-12	1.3E-12	7.8E-12	5.1E-12	5.2E-12	3.3E-12	2.4E-12	1.2E-02	
	Sr-90 +	3.6E-15	1.5E-15	1.3E-15	8.8E-16	5.3E-16	4.2E-16	1.6E-16	2.3E-02	Y-90 (1.0)
	Y-90	3.6E-15	1.5E-15	1.3E-15	8.8E-16	5.3E-16	4.2E-16	1.6E-16	2.0E-02	
	Mo-99 +	2.2E-08	3.8E-09	2.6E-08	1.7E-08	1.5E-08	1.1E-08	8.0E-09	3.9E-01	Tc-99m (0.876)
	Tc-99	5.2E-14	8.6E-15	5.4E-14	3.8E-14	2.2E-14	2.2E-14	1.6E-14	5.4E-04	
	Tc-99m	1.2E-08	1.8E-09	1.3E-08	9.2E-09	6.8E-09	5.6E-09	4.1E-09	1.8E-01	
	Cd-109 In-111	4.7E-10	1.2E-10	3.7E-10	2.6E-10	1.5E-10 2.4E-08	1.5E-10 1.7E-08	1.1E-10	3.1E-03 5.5E-01	
	Sb-125 +	3.5E-08 3.3E-08	5.7E-09 6.4E-09	4.1E-08 4.1E-08	2.8E-08 2.7E-08	2.4E-08 2.7E-08	1.7E-08 1.7E-08	1.3E-08 1.3E-08	5.9E-01	Te-125m (0.228)
	I-123	1.4E-08	2.3E-09	1.6E-08	1.1E-08	8.6E-09	6.6E-09	4.9E-09	2.2E-01	16-125111(0.228)
	I-125	7.4E-10	2.6E-10	3.5E-10	2.5E-10	1.2E-10	1.3E-10	9.9E-11	1.5E-02	
	I-131	3.1E-08	5.7E-09	3.8E-08	2.6E-08	2.5E-08	1.6E-08	1.2E-08	5.3E-01	
	Cs-134	1.2E-07	2.4E-08	1.5E-07	9.7E-08	9.8E-08	6.3E-08	4.6E-08	2.2E+00	
	Cs-137 +	4.3E-08	8.6E-09	5.4E-08	3.6E-08	3.6E-08	2.3E-08	1.7E-08	8.0E-01	Ba-137m (0.946)
	Ba-133	3.1E-08	5.7E-09	3.7E-08	2.5E-08	2.3E-08	1.6E-08	1.1E-08	5.0E-01	
	Ce-141	6.6E-09	1.1E-09	7.6E-09	5.2E-09	3.9E-09	3.2E-09	2.3E-09	1.1E-01	
	Pm-147	3.6E-13	6.0E-14	3.8E-13	2.7E-13	1.8E-13	1.6E-13	1.2E-13	2.3E-04	
	Eu-152	8.3E-08	1.7E-08	1.0E-07	6.8E-08 4.6E-09	6.8E-08 2.6E-09	4.5E-08	3.2E-08 2.0E-09	1.6E+00	
	Gd-153 Yb-169	7.0E-09 2.6E-08	1.4E-09 4.6E-09	6.6E-09 2.7E-08	4.6E-09 1.8E-08	2.6E-09 1.3E-08	2.7E-09 1.1E-08	2.0E-09 8.2E-09	1.2E-01 3.9E-01	
	W-188 +	4.8E-09	8.6E-10	5.7E-09	3.9E-09	3.4E-09	2.4E-09	1.8E-09	1.0E-01	Re-188(1.0)
	Re-186	1.5E-09	2.4E-10	1.6E-09	1.1E-09	7.4E-10	6.5E-10	4.8E-10	3.4E-02	
	Ir-192	6.8E-08	1.2E-08	8.3E-08	5.5E-08	5.2E-08	3.5E-08	2.5E-08	1.1E+00	
	Au-198	3.3E-08	6.1E-09	4.0E-08	2.7E-08	2.6E-08	1.7E-08	1.2E-08	5.6E-01	
	Tl-201	7.4E-09	1.3E-09	7.5E-09	5.2E-09	3.1E-09	3.0E-09	2.3E-09	1.2E-01	
	TI-204	9.6E-11	1.7E-11	9.1E-11	6.5E-11	3.3E-11	3.7E-11	2.8E-11	5.7E-03	
	Am-241	1.5E-09	3.2E-10	1.3E-09	9.2E-10	4.2E-10	5.1E-10	3.8E-10	2.6E-02	
53	Cm-244	7.2E-12	2.5E-12	3.9E-12	2.7E-12	2.0E-12	1.5E-12	9.9E-13	1.2E-04	

※1:核種名の後の"+"は、短半減期子孫核種の線量換算係数を含めている核種であることを示す。

※2: プルームは、D. C. Kocher, Health Phys. Vol. 45 No.3 pp.665-686 (1983)より。他は、QAD-CGGP2R により計算

4. 2. 5 クリアランスレベルの暫定値の算出結果

(1) RI 汚染物

RI 汚染物に対する、一括クリアランス及び個別クリアランスを行った後の埋設処分、再利用、 焼却処理に係るクリアランスレベルの暫定値の算出結果を表 4.16 及び表 4.17 に示す。

一括クリアランスを行う場合のクリアランスレベルの暫定値の算出結果と個別クリアランスを行う場合のクリアランスレベルの暫定値の算出結果とを比較したところ、選定したすべての核種において、最も厳しい値となるのは、一括クリアランスに係る値の方であり、個別クリアランスに係る値に対して常に低い値であるため、一括クリアランスの値を採用すれば、どのように RI 汚染物がクリアランスされても常に保守側の結果が得られることを確認した。

(2) 放射化物

大規模及び小規模の放射線発生装置使用施設の解体等を行った場合に発生する放射化物の埋設処分、再利用・再使用に係るクリアランスレベルの暫定値の算出結果を表 4.18 及び表 4.19 に示す。ただし、小規模の放射線発生装置使用施設では、Ti-44、Nb-93m、Nb-94、Ag-108m 及び Au-195の核種を含んだ放射化物は発生しないことから、これらの核種については、算出結果を含めないこととした。

大規模施設に係るクリアランスレベルの暫定値と小規模施設に係るクリアランスレベルの暫定値との算出結果を比較したところ、選定したすべての核種において、最も厳しい値となるのは、大規模施設に係る値の方であり、小規模施設に係る値に対して常に低い値であるため、大規模施設に係る値を採用すれば、放射線発生装置使用施設の解体等において、どのように放射化物がクリアランスされても常に保守側の結果が得られることを確認した。

表 4.16 RI 汚染物に対する一括クリアランスを想定した場合のクリアランスレベルの算出結果

(女) 班/小咖		濃度 (Bo/g)	跡地(農作物)(子ども)			1.8E-01 可然物 (溶融固化物再利用壁材-外部) c.sp.の 正体地 (株却に回じ-女姿物) (ユジュ)	可然物(施加行用:2-多倍物) 可依物(権加行用:2-多倍物)	-		操業(積み下ろし)(直接経口) 口然物(可然物積み下ろし-直接経口)	4.0E+05 梅菜(積み下ろし)(直接経口) 可燃物(可燃物積み下ろし-直接経口)	1.9E+02 可然物(可然物運搬-外部)	1.1E+00 可燃物(溶融固化物再利用壁材-外部)	1.7E+04 操業(積み下ろし)(直接経口) 3 op. 00 戸幕程/戸幕程 遊費 2 位と)		2.8E+00 可然物(可然物運搬-外部)			可然物(可称物)	1.1B-00 回蒸物(淡褐田/地面/上部)		5.5E+04 可然物(可然物運搬-外部)		可然物		2.95+00 跡地(農作物)(子ども) 5.35+04 再利用(金属スゲップ周辺居住-農作物)(子ども)	3.1E+02 可燃物(可燃物運搬-外部)			1.4EH02 可然物 (焼到炉桶修-外部)	可燃物	6.6E+03 可燃物(可燃物運搬-外部) 1.cp.01 直線性(※型照旧日: ※對極、(4.53.)	_				6.7E+01 可然物 (可然物連撥-外部) 7.5E+03 回 機 (÷	١.			可燃物		2.1E+02 回燃物(可燃物運搬-外部) 2.0D.02 回爆物(回爆物運搬-外部)			1.4E+00 可燃物(焼却炉補修-吸入)
焼却処理	焼却灰	濃度 (Ba/g)	焼却灰(溶融炉周辺-畜産物)	$\overline{}$		1.8E+00	_	_		1.3日+05 焼却灰(焼却灰積み下ろし-直接経口)	4.0日+06 焼却灰(焼却灰積み下ろし-直接経口)	2.3E+03 焼却灰(焼却灰埋立-外部)	-	1.7E+05 焼却灰(焼却灰積み下ろし-直接経口) 4.2E-01 体担形(焼却防油サータか)	-	3.2B+01	\vdash	_	灭(溶融區	3.1Evo	-	6.5E+05 燒却灰(燒却灰埋立-外部)			_	1.6E+03 焼却灰(焼却灰積み下ろし-直接経口) 2.3E+06 焼却灰(焼却灰積み下ろし-直接経口)	3.7E+03 焼却灰(焼却灰埋立-外部)	_		2.7E+03	焼却灰(溶融固化)	8.5E+04	_			$\overline{}$	8.8E+02 焼却灰(焼却灰埋立-外部) 6.8E-04 佐却灰(株却灰緋2.下之) - 56.3.)	施場(焼却灰	焼却灰(焼却灰埋立-	焼却灰(焼却灰埋立-	焼却灰(焼却灰埋立-	_	2.4E+03 焼却灰(焼却灰埋立-外部) 1.2E,04 焼却灰(焼却防畑カー外部)	_	焼却灰(焼却灰積み下ろし-吸	1.2E+01 焼却灰(焼却灰積み下ろし・吸入)
辨	可燃物等	E 決定経路	可燃物(溶融炉周辺-畜産物)	_	_	01 口然物(溶離固化物再利用蟹材-外部)の 口線権(淋却に固定-対策権)(スプリント	+	可燃物(焼却炉周辺-畜産物)		-04 可燃物(可燃物積み下ろし-直接経口)	- 65 可燃物(可燃物積み下ろし-直接経口)	-02 可燃物(可燃物運搬-外部)	-	04 回燃物(直燃物積み下ろし-直接経口) cs 戸幕社(戸幕社)	+	-00 可然物(可然物運搬-外部)	H	_	可然物(三番物)	の 三條物(※韓田小物面到日韓対-A型)	Ť	÷		可燃物(可燃物運搬-外部)	-	-02 回燃物(回燃物積み下ろ)ー直接経口)-05 回燃物(可燃物積み下ろ)ー直接経口)			_	02 月然物(焼却炉補修-外部)02 日然物(可然物運搬-外部)	可燃物(溶融固化物	- 03 可燃物(可燃物運搬-外部) - 12 (2.15) - 12 (2.15) - 13 (2.1	+	可燃物(可燃物運搬-外部)	-	-	-OI 可然物(可然物運搬-外部) OB 可然物(株却后雑終-DA 3)	山然物(発展) 山然物(溶融固化物)	可燃物(可燃物運搬-外部)	H	-	可燃物	- 1	-02 回然物(回然物運搬-外部) 	+		-00 可燃物(焼却炉補修-吸入)
		濃度 (Ba/g)	6.2E+02	6.3E+01	2.1E+07	1.8E-01	5.2E±03	1.2E+03	5.0E-01	1.3E+04	4.0E+05	1.9E+02	1.1E+00	1.7E+04	7.7E+00	2.8E+00	1.3E01	3.3E+04	2.1E+00	1 1E-00	4.0E+00	5.5E+04	1.2E+02	5.7E+00	9.8E+03	1.6E+02 2.3E+05	3.1E+02	4.2E+03	7.8E+04	1.4E+02	1.0E+00	6.6E+03	1.2E+01	5.5E01	1.1E+00	9.6E-01	6.7E+01	2.6E01	1.3E+01	1.8E+01	4.4E+01	3.1E+03	2.9E+00	2.1E+02	7.9E+02 6.4E+02	8.6E01	1.4E+00
再利用·再使用	イーリクンロ	濃度 (Ba/g)	再利用(コンクリート再処理)	4.3E+04 再利用(コンクリート再処理)(直接経口)	車利	2.1B+00 再利用(職材-外部)(子ども)	古和田 (コンパートスクラップ 周辺 居住 - 農佐物)	11371 1271 1272 1272 1272 1273		6.05+04 再利用(コンパ)-トスクラップ周辺居住-農作物)(子どむ)	2.0E+06 再利用(コンクリート再処理)(直接経口)	4.2E+03 再利用(コンクリート再処理-外部)	再利用	8.6E+04 再利用(コンクリート再処理)(直接経口)	再利用	再利	再利用	再利用	再利用(壁材-外部)(一	1.05-701 再約1円(3-7-2)-1.7中が組つ75-85	中利用(コンクリート)	1.1B+06 再利用(コンクリート再処理-外部)	再利	再利用	再利	8.2E+02 再利用(コンクリート再処理)(直接経口) 1.1E+05 再利用(コンツートスクラップ周辺居住-農作物)(子ども)	7.0E+03 再利用(コンクリート再処理-外部)	田田	2.3E+06 再利用(コングリート再処理-外部)	4.2E+03 再利用(壁材-外部)(子ども) 4.5E+03 再利用(コンクリート再処理-外部)	再利用(壁材-外部	1.8E+05 再利用(コンクリート再処理-外部) con:02 面和田(コンタリート再処理-外部)		再利	再利	Mr. 1	2.0E+03 再利用(コンクリート再処理-外部) 4.0E+04 再到用(コンクリート再処理-外部)	再利用(壁材-外部)(再利用	再利用	再利	再利用(コング)・	再利用	4.1B+03 再利用(コングリート再処理-外部) 3.2D, M 五利田(コングリート 正加畑-外部)	再利用		1.2B+01 再利用(コンクリート再処理-吸入)
· · · · · · · · · · · · · · · · · · ·	金属	決定経路				再利用(スラグ駐車場-外部) 三利用(各属26m,7回) 四位-単佐物)(ユビ+)	_			再利用(金属スケラップ周辺居住-農作物)(子ども)	再利用(積み下ろし)(直接経口)	再利用(溶融-外部)	_	再利用(積み下ろし)(直接経口) (重接経口) (重要 (※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※	-		_	_	再和		- 104	再和	再利用(金属スクラップ周辺居住-農作物)(子どむ)		再利用(金属スクラッフ/周辺居住-農作物)(子ども)	_			_	再利用(金属スクフッフ/周辺居任-農作物)(ナども) 再利用(溶融-外部)	-	再利用(金属スケラプ周辺居住-農作物)(子どむ) = 141円(本屋・441-7円12円円円・単作権、/ フジュ)	_	1.7		_	・ 再利用(金属スクウッフ周辺居任-農作物)(子どむ) 面利田(縁3下21-中震)	+ 14	-	_	再利用(金属スクラップ周辺居住-農作物)(子ども)	_			再和用(金属ペククシノ周辺居住-展作物)(十とも) 再利用(金属スクランア周辺居住-農作物)(子ども)		再利用(スラグ処理-吸入)
		濃度 (Bq/g)	1.9E+04	3.5E+03	4.1E+09	1.3E+01	6.0F±03	1.5E+03	3.4E+02	1.5E+04	4.0E+06	5.0E+04	1.7E+02	1.7E+05	2.1E+03	4.8E+02	2.1E+01	3.3E+05	3.3E+02	1.75.00	7.0E+02	1.2E+07	6.0E+02	1.1E+03	4.8E+03	6.1E+02 5.3E+04	8.9E+04	4.4E+02	4.5E+07	7.0E+02 7.1E+04	1.5E+02	3.2E+05	1.1E+02	1.1E+01	1.9E+01	3.1E+01	3.8E+04	1.0E+01	5.6E+03	1.1E+04	3.2E+03	3.5E+03	6.9E+02	7.3E+03	8.4E+03 5.2E+03	9.7E+00	1.6E+01
埋散処分	金属,コンクリート,可然物等	濃度 (Ba/g)				4.4E-01 職業(埋立-外部) 1.5E-02 転上ナ(業職※ナ芸権)(ユワ3)		1.7E+04 地下水(飼料畜産物)(子ども)		1.3E+04 操業(積み下ろし)(直接経口)	4.0E+05 操業(積み下ろし)(直接経口)	2.3E+02 操業(埋立-外部)		1.7E+04 操業(積み下ろし)(直接経口) 4.5E,00		3.2E+00 操業(埋立-外部)			_	3.1Ev2 3条(単立一/作即) 13Ev0 高線(由ウー外型)					_	2.9E+00 跡地(農作物)(子どむ) 2.3E+05 操業(積み下ろし)(直接経口)	3.7E+02 操業(埋立-外部)			3.2E+02		8.5E+03 操業(埋立-外部)					8.8E+01 操業(埋立-外部) 1.1E+04 結業(稀シ下ス)(内庸)	操業(埋立-外部)		_				2.4B+02 機業(組立-外部) 1.2D-03 臨業(由立-夕部)	1.2E+03	1.5E+00 操業(積み下ろし-吸入内部)	
	核種		H	+	+	Na-22	t	╁		Ca-45	V-49	Cr-51	Н	Fe-55	+	+	Н	\dashv	$^{+}$	Go-68	+	┢	\vdash	\dashv	+	Sr-90 Y-90	06-0M	-	+	Cd-109 In-111	١	I-123	+	Н		+	Ce-141 Pm-147	+	┿	Н		+	+	Au-198	+		-
	No.		-	2	ж	4 v	9	7	∞	6	10	Ξ	Н	13	4	16	Н	_	19	+	22	+	24	25	56	28	59	-+	_	33		35	_	38	_	_	4 6	+	-	Н	-	-+	-	6 8	_		

※直接経口とは、放射性核種の沈着した土壌や破片などを経口摂取することを示す。 ※埋設処分シナリオの直接経口の経路においては、積み下ろし作業者と埋立作業者に対する値は同じ値となる。

※再利用シナリオの直接経口の経路においては、金属スクラップの前処理作業者と溶融・鋳造作業者に対する値は同じとなる。

表 4.17 RI 汚染物に対する個別クリアランスを想定した場合のクリアランスレベルの算出結果

	メ +:1 /				<u> </u>		
		埋設処分		再利用・再使用	焼	焼却処理	最小值 (A)
So.	核種	金属、コンクリート、可然物等	金属	イービクンロ	可然物等	焼却灰	-
	職 (Ba/g)	度 決定経路 (/0)	激度 (Ba/g)	(Ba/g)決定経路			職康 (Ba/g)
-	H	4.05-04 跡地(農作物)(子ども)	1.2B+07 再利用(積み下ろし)(直接経口)	- 1.5E+09 再利用(コンクリート再処理)(直接経口)	(-15) 5.6E+05 可燃物(溶融炉周辺-畜産物)(子ども)	(-7.8) (特却灰(溶融炉周辺-畜産物)(子ども)	4.0E+04 跡地(農作物)(子ども)
			3.6E+05 再利用(積み下ろし-皮膚)	再利用(コ	-		6.3E+03 地下水(養殖淡水産物)(子ども)
3		_	$\overline{}$		_	2.4B+09 焼却灰(焼却灰埋立-外部)	
-	Ħ			再利用	_		操業(埋立-外部)
_	P-32 3.9E	_		- >	-	_	
+	+			再利用(3	_	_	-
_	\dashv	2.0E+05 操業(積み下ろし)(直接経口)			_		
+	+	2.2E+02 跡地(畜産物)(子ども)	再利用(積み下ろし	再利用(コン刈ートスケップ)周辺居住-農作物)	可燃物(溶融炉周辺-畜産	焼却灰(溶融炉周辺-	_
4	Ca-45 1.3E	1.35+05 操業(積み下ろし)(直接経口)		1.5E+08 再利用(コンクリートスクラップ周辺居住-農作物)(子ども)		_	_
+	7	4.0E+06 操業(積み下ろし)(直接経口)	再利用(積み下ろ)	再利用(コンクリ)	可燃物(可燃物積み下ろし-	焼却灰(焼却灰積み-	操業(積
-	\dashv			1.0E+07 再利用(コンクリート再処理-外部)			
+	+			再利用(雪	_		
+	+			2.15408 再利用(コングリート再処理)(直接経口)	可然物(可然物積み下ろしー 一端が(一端がは)	_	_
+	+	_	再利用(積み下の 下台E(箕 デジ	再利用(5	ロ終診(ロ終診権を下のD- レ薬性/レ薬性質・レジ	然却灰(焼却灰埋立- 注却下(注却下順十	聚業(埋以
+	+		_	4.1.E+05 冉利用(壁材-外部)(子ども)	_		-
+	+	_	-	再利用(:	可燃物(可燃物積み下ろし-	焼却灰(焼却灰埋立-	操業(埋
+	+			3.65+03 再利用(壁材-外部)(子ども)	_		
+	+	8.2E+04 跡地(農作物)(子ども)		再利用(=	可燃物(可燃物積み下ろし-	_	_
_	-			再利用(雪	可燃物(可燃物積み下ろし-		
20	+	5.1E+03 操業(埋立-外部)	2.1E+06 再利用(積み下ろし-外部)	2.5日・07 再利用(コンクリート再処理-外部)	可燃物(可燃物積み下ろし-	_	
_	-	3+01 操業(埋立-外部)		再利用(長	可燃物(可燃物積み下ろし-		
23	7	5.0E+01 操業(埋立-外部)	1.9E+04 再利用(積み下ろし-外部)	2.4E+05 再利用(コンクリート再処理-外部)	可燃物(可燃物積み下ろし-	焼却灰(焼却灰埋立-	
-	-	6.5E+05 操業(埋立-外部)		再利用(=	可燃物(可燃物積み下ろし-	焼却灰(焼却灰埋立-	
75	Rb-86 1.3E			5.1B+06 再利用(コンクリート再処理-外部)	_		
_	-			再利用(コンクリート再処理-外部)	_	_	操業(埋立-外部)
79	Sr-89 9.8E		62Eh05 再利用(積み下ろし-皮膚)		_		
-	+	跡地(農作物)(子	再利用(積み下ろし	再利用(コンク)	可燃物(可燃物積み下ろし-	焼却灰(焼却灰積み下ろし-直	跡地(農作物)(子ども
88	+			2.TE+08 再利用(コンクリートスクラップ周辺居住-農作物)(子ども)	_		
_	+	3.7E+03 操業(埋立-外部)	_	再利用(:	可燃物(可燃物積み下ろし		_
-	+	7.8E+02 跡地(農作物)(子ども)		4.4E+07 再利用(コン刈ートスケップ)周辺居住-農作物)(子ども)			_
-+	+		_	再利用(=	可燃物(可燃物積み下ろし-	焼却灰(焼却灰埋立-	操業(埋
-	_		_		_	_	-
+	+	_	_	再利用(=	可燃物(可燃物積み下ろし-	焼却灰 (焼却灰埋立-	操業(埋
+	+	2.2E+01	_	2.9년44 再利用(壁材-外部)(十とも)	回然物(回然物類やトク) 1111/1111/1111	_	-
+	+	8.5E+04		中利用(コ	-	_	-
+	1	1.3E+04 換業(埋立-外部)			可燃物(溶融炉周辺-畜産		-
+	+	7.2E+02	1.9E+05 再利用(積み下ろし-外部)	3.1.15-06 再利用(コンクリート再処理-外部)	_	_	_
+	+	6.3E+00 蘇業(埋立-外期) 1.EE-01 苗非/組寸 仏故)		84年03 中利用(開和一外間)(十分も)	ロ 数数 (ロ 数数 種 な ト の)-	_	-
કે ક	CS-137 1.3E-	1.3.5.4.01	3.2E+03 事利五(衝撃下の0-外部) cop.co 圧型田(構造下2 を封)	5	2.3.b.02 - 日然参(日然参慎を下の) 外部) - 2.5.5 - 日報参(日報を損失・トン)をお)	1.5E+02	1.35+01 未来(用以-外部)
+	+	3-01 (7.0DFU4 中利用(壁名=外部)(寸○も)	□ 版物(□ 版物庫 中 し ロー に 対象 (戸 神権	施科灰(施科灰組以一株村店(株村店	T
5 5	Par. 147 1.1E	5.5E-7.5	20E-05 中半5/日(東タージン / 円)	1.25.08 再到田(コンカ) 1.15.08 1.25	ロ祭物(日祭物(東マージ) 日桑物(日桑物(帯2)下2)-	_	-
_	+	森米(個や「のじ」 福業(由た-外担)		世代用(F 再利用(F	□系参(国際参加やFの) □素を(日素を描り下る)。	第4次(第4次をよって 権力に 無力に 権力に 権力に 権力に はから	新米(歯やこの) 福報(面や一気料)
_	+			中利用(5 面利用(6	可然物(可然物値を下の) に発物(に発物値が下る)	_	_
_	+	2.5557.0 18米(用リ/トロ) 2.555.0 超教(由け_女性)		1.4E-06 再到田(二/2/1]—1.用的 描_处据)	+		
+	+	Z-0Z-F-0Z 探来(用立-7/m) 5-4E-02 抽巻(由立-女哲)	_	1.4.D.1.08 古利田(コンクリー)中がユーバー即)	ロ然多(D 然多値 や F の	_	_
+	┿	3.4E+02 探来(建立-7/即) 43E+04 掲 数(抽立-外数)	-	Z.DF100 中村/H (コンク) 下中/近年/下町) 2.5E+108 再利田 (コンク) 一下市が	ロSSS(ロSSSを倒み下の) 旧祭を(旧祭を借り下と)	_	_
+	+	4.3E+04 探来(堆址-外部) 3.5E+01 描卷(抽穴-外部)	_	再利用(-	可然物(可然物種を下の) に存物(に存物物が下で)	_	
+	+	3.3.5.101 探来(年立-7年即) 2.4E+03 極業(相立-外部)	_	1.3.5.4.2 中心1.1.(コンシート中心用-74部) 1.0.6.4.7 両利用(コンツ) 一下用処 組-外部)			
+-	+	_	再利用(種み下ろ)	再利用(二	に然め(に然め値が上が) 口敷物(口敷物種な下ろ)	施却灰(焼却灰埋立- 体却灰(倖却灰埋立-	
+-	+		_	再利用(量	_		_
_	+		-	再利用(=	÷	焼却灰(焼却灰積み	_
53 C	'm-244 2.5E	3-01 操業(積み下ろし-吸入内部)	2.55-02 再利用(積み下ろし-吸入)	111			
※直持	5経口とは	放射性核種の沈着した十	※直接経口とは、放射性核種の沈着した土壌や破片などを経口模取することを示す。		-		

※直接経口とは、放射性核種の沈着した土壌や破片などを経口摂取することを示す。 ※埋設処分シナリオの直接経口の経路においては、積み下ろし作業者と埋立作業者に対する値は同じ値となる。 ※再利用シナリオの直接経口の経路においては、金属スクラップの前処理作業者と溶融・鋳造作業者に対する値は同じとなる。

表4.18 大規模施設において発生する放射化物に関するクリアランスレベルの算出結果

最小值(A)		決定経路	跡地(農作物)(子ども)	操業(埋立-外部)		再利用(壁材-外部)(子ども)	地下水(飼料畜産物)(子ども)	: 地下水(農作物)(子ども)	: 再利用(金属スクラップ周辺居住-農作物)(子ども)	操業(埋立-外部)	再利用(壁材-外部)(子ども)		操業(積み下ろし)(直接経口) 再利用(コンクリート再処理)(直接経口)	操業(埋立-外部)	操業(埋立-外部)	操業(埋立-外部)	操業(埋立-外部)	再利用(壁材-外部)(子ども)	地下水(農作物)(子ども)	: 跡地(農作物)(子ども)	操業(埋立-外部)	跡地(居住-子ども)(直接経口)	再利用(壁材-外部)(子ども)	再利用(壁材-外部)(子ども)	操業(埋立-外部)	操業(埋立-外部)	操業(埋立-外部)	操業(埋立-外部)	操業(埋立-外部)	操業(埋立-外部)	再利用(壁材-外部)(子ども)	再利用(壁材-外部)(子ども)	操業(埋立-外部)	再利用(壁材-外部)(子ども)	再利用(壁材-外部)(子ども)	操業(埋立-外部)	操業(埋立-外部)	操業(埋立-外部)	操業(埋立-外部)
		濃度 (Bq/g)	6.7E+01	2.0E+01	5.3E+00	1.0E-01	3.4E-01	1.0E+02	6.0E+02	3.4E-01	7.3E-02	3.7E-01	4.3E+03	1.0E+00	2.1E-01	2.6E+00	8.0E-01	7.3E-02	3.6E+01	1.4E+02	6.0E-01	4.9E+03	9.9E-02	9.9E-02	1.2E-01	1.9E+00	5.1E-01	5.6E-01	3.5E+00	1.6E-01	2.9E-01	5.5E-01	3.2E+00	1.5E-01	1.4E-01	6.9E-01	4.2E-01	6.9E+00	4.6E+00
	コンクリート	決定経路	再利用(コンクリート再処理)(直接経口)	再利用(コングリート再処理-外部)	再利用(コングリート再処理)(直接経口)	再利用(壁材-外部)(子ども)	再利用(コンクリートスクラップ周辺居住ー農作物) (子ども)	再利用(コンクリート再処理) (直接経口)	再利用(コンクリートスクテップ周辺居住-農作物)(子ども)	再利用(コングリート再処理-外部)	再利用(壁材-外部)(子ども)	再利用(壁材-外部)(子どむ)	再利用(コンクリート再処理) (直接経口)	再利用(コンクリート再処理-外部)	再利用(コンクリート再処理-外部)	再利用(壁材-外部)(子ども)	再利用(コンクリート再処理-外部)	再利用(壁材-外部)(子ども)	再利用(壁材-外部)(子ども)	再利用(コンクリート再処理)(直接経口)	再利用(壁材-外部)(子ども)	再利用(コンクリート再処理)(直接経口)	再利用(壁材-外部)(子ども)	再利用(壁材-外部)(子ども)	再利用(壁材-外部)(子ども)	再利用(コンクリート再処理-外部)	再利用(コンクリート再処理-外部)	再利用(壁材-外部)(子ども)	再利用(コンクリート再処理-外部)	再利用(壁材-外部)(子ども)	再利用(壁材-外部)(子ども)	再利用(壁材-外部)(子ども)	再利用(コンクリート再処理-外部)	再利用(壁材-外部)(子ども)	再利用(壁材-外部)(子ども)	再利用(コンクリート再処理-外部)		再利用(コンクリート再処理-外部)	再利用(コンクリート再処理-外部)
再利用·再使用		濃度 (Bq/g)	3.1E+04	6.6E+01	2.2E+03	1.0E-01	6.7E+02	4.3E+03	3.0E+03	1.1E+00	7.3E-02	6.1E-01	4.3E+03	3.3E+00	6.5E-01	8.3E+00	2.6E+00	7.3E-02	9.6E+03	8.4E+03	1.2E+00	1.1E+04	9.9E-02	9.9E-02	2.5E-01	6.7E+00	1.6E+00	5.7E-01	1.5E+01	1.7E-01	2.9E-01	5.5E-01	1.3E+01	1.5E-01	1.4E-01	2.2E+00	1.4E+00	4.0E+01	1.7E+01
再利用	金属	決定経路	再利用(金属スケップ周辺居住-農作物)(子ども)	再利用(再使用品-外部)	再利用(金属スクラップ周辺居住-農作物)(子ども)	再利用(スラグ駐車場-外部)	再利用(金属スクウップ周辺居住-農作物)(子ども)	再利用(金属スクラップ周辺居住-農作物)(子ども)	再利用(金属スクラップ周辺居住-農作物)(子ども)	再利用(再使用品-外部)	再利用(スラグ駐車場-外部)	再利用(再使用品-外部)	再利用(積み下ろし)(直接経口)	再利用(再使用品-外部)	再利用(再使用品-外部)	再利用(再使用品-外部)	再利用(再使用品-外部)	再利用(再使用品-外部)	再利用(積み下ろし)(直接経口)	再利用(積み下ろし)(直接経口)	再利用(再使用品-外部)	再利用(積み下ろし)(直接経口)	再利用(再使用品-外部)	再利用(スラグ駐車場-外部)	再利用(スラグ駐車場-外部)	再利用(再使用品-外部)	再利用(再使用品-外部)	再利用(再使用品-外部)	再利用(再使用品-外部)	再利用(スラグ駐車場-外部)	再利用(スラグ駐車場-外部)	再利用(スラグ駐車場-外部)	再利用(再使用品-外部)	再利用(スラグ駐車場-外部)	再利用(スラグ駐車場-外部)	再利用(再使用品-外部)	再利用(再使用品-外部)	再利用(スラグ駐車場-外部)	再利用(再使用品-外部)
		濃度 (Bq/g)	7.8E+02	9.8E+01	1.4E+02	5.2E-01	1.3E+01	4.7E+03	6.0E+02	2.0E+00	1.9E-01	2.0E+00	6.2E+03	5.8E+00	1.3E+00	2.8E+01	4.2E+00	5.3E-01	2.9E+04	1.2E+04	3.4E+00	1.5E+04	7.6E-01	2.5E-01	6.7E-01	1.0E+01	2.9E+00	3.0E+00	3.2E+01	4.3E-01	7.5E-01	1.2E+00	3.0E+01	4.1E-01	3.9E-01	4.2E+00	2.6E+00	6.7E+01	2.4E+01
埋散処分	金属/コンクリート	決定経路	跡地(農作物)(子ども)	操業(埋立-外部)	地下水(養殖淡水産物)(子ども)	操業(埋立-外部)	地下水(飼料畜産物)(子ども)	地下水(農作物)(子ども)	操業(積み下ろし)(直接経口)	操業(埋立-外部)	操業(埋立-外部)	操業(埋立-外部)	操業(積み下ろし)(直接経口)	操業(埋立-外部)	操業(埋立-外部)	操業(埋立-外部)	操業(埋立-外部)	操業(埋立-外部)	地下水(農作物)(子ども)	跡地(農作物)(子ども)	操業(埋立-外部)	跡地(居住-子ども)(直接経口)	操業(埋立-外部)	操業(埋立-外部)	操業(埋立-外部)	操業(埋立-外部)	操業(埋立-外部)	操業(埋立-外部)	操業(埋立-外部)	操業(埋立-外部)	操業(埋立-外部)	操業(埋立-外部)	操業(埋立-外部)	操業(埋立-外部)	操業(埋立-外部)	操業(埋立-外部)	操業(埋立-外部)	操業(埋立-外部)	操業(埋立-外部)
		濃度 (Bq/g)	6.7E+01	2.0E+01	5.3E+00	1.1E-01	3.4E-01	1.0E+02		3.4E-01	9.4E-02	3.7E-01	4.3E+03	1.0E+00	2.1E-01	2.6E+00	8.0E-01	9.1E-02	3.6E+01		6.0E-01	4.9E+03	1.3E-01	1.3E-01	1.2E-01	1.9E+00	5.1E-01	5.6E-01	3.5E+00	1.6E-01	3.7E-01	5.7E-01	3.2E+00	1.9E-01	1.8E-01	6.9E-01	4.2E-01	6.9E+00	4.6E+00
	核種		Н-3	Be-7	C-14	Na-22	Cl-36	Ca-4I	Ca-45	Sc-46	Ti-44	Mn-54	Fe-55	Fe-59	Co-56	Co-57	Co-58	09-o2	Ni-59	Ni-63	Zn-65	Nb-93m	Nb-94	Ag-108m	Ag-110m	Sn-113	Sb-124	Sb-125	Te-123m	Cs-134	Cs-137	Ba-133	Ce-139	Eu-152	Eu-154	09I-qL	Ta-182	Au-195	Hg-203
	No.		1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	61	20	21	22	23	24	25	26	27	28	56	30	31	32	33	34	35	36	37

※埋設処分シナリオの直接経口の経路においては、積み下ろし作業者と埋立作業者に対する値は同じ値となる。※再利用シナリオの直接経口の経路においては、金属スクラップの前処理作業者と溶融・鋳造作業者に対する値は同じとなる。 ※直接経口とは、放射性核種の沈着した土壌や破片などを経口摂取することを示す。

表4.19 小規模施設において発生する放射化物に関するクリアランスレベルの算出結果

			埋設処分		再利月	再利用·再使用			最小值 (A)
No.	核種		金属/コンクリート		金属		オーリカンニート		
		濃度 (Bq/g)	決定経路	濃度 (Bq/g)	決定経路	濃度 (Bq/g)	決定経路	濃度 (Bq/g)	決定経路
1	Н-3	1.3E+03	跡地(農作物)(子ども)	3.9E+05	再利用(金属スクラップ周辺居住-農作物)(子ども)	4.1E+05	再利用(コンクリート再処理) (直接経口)	1.3E+03	跡地(農作物)(子ども)
2	Be-7	3.9E+02	操業(埋立-外部)	9.8E+01	再利用(再使用品-外部)	8.7E+02	再利用(コンクリート再処理-外部)	9.8E+01	再利用(再使用品-外部)
3	C-14	2.1E+02	地下水(養殖淡水産物)(子ども)	7.0E+04	再利用(金属スクラップ周辺居住-農作物)(子ども)	2.9E+04	再利用(コンクリート再処理) (直接経口)	2.1E+02	地下水(養殖淡水産物)(子ども)
4	Na-22	2.2E+00	操業(埋立-外部)	6.5E-01	再利用(再使用品-外部)	1.4E+00	再利用(壁材-外部)(子ども)	6.5E-01	再利用(再使用品-外部)
5	Cl-36	7.2E+00	跡地(畜産物)(子ども)	6.7E+03	再利用(金属スクラップ周辺居住-農作物)(子ども)	9.0E+03	再利用(コンクリートスクラップ周辺居住ー農作物) (子ども)	7.2E+00	跡地(畜産物)(子ども)
9	Ca-4I	2.8E+03	跡地(農作物)(子ども)	1.7E+06	再利用(積み下ろし)(直接経口)	5.7E+04	再利用(コンクリート再処理) (直接経口)	2.8E+03	跡地(農作物)(子ども)
7	Ca-45	6.5E+04	操業(積み下ろし)(直接経口)	3.0E+05	再利用(金属スクラップ周辺居住-農作物)(子ども)	4.0E+04	再利用(コンクリートスクラップ周辺居住ー農作物) (子ども)	4.0E+04	再利用(コンクリートスクテップ周辺居住-農作物)(子ども)
8	Sc-46	6.8E+00	操業(埋立-外部)	2.0E+00	再利用(再使用品-外部)	1.4E+01	再利用(コンクリート再処理-外部)	2.0E+00	再利用(再使用品-外部)
6	Ti-44								
10	Mn-54	7.4E+00	操業(埋立-外部)	2.0E+00	再利用(再使用品-外部)	8.2E+00	再利用(壁材-外部)(子ども)	2.0E+00	再利用(再使用品-外部)
11	Fe-55	8.6E+04	操業(積み下ろし)(直接経口)	1.7E+06	再利用(積み下ろし)(直接経口)	5.7E+04	再利用(コンクリート再処理) (直接経口)	5.7E+04	再利用(コンクリート再処理) (直接経口)
12	Fe-59	2.1E+01	操業(埋立-外部)	5.8E+00	再利用(再使用品-外部)	4.4E+01	再利用(コンクリート再処理-外部)	5.8E+00	再利用(再使用品-外部)
13	Co-56	4.1E+00	操業(埋立-外部)	1.3E+00	再利用(再使用品-外部)	8.7E+00	再利用(コンクリート再処理-外部)	1.3E+00	再利用(再使用品-外部)
14	Co-57	5.2E+01	操業(埋立-外部)	2.8E+01	再利用(再使用品-外部)	1.1E+02	再利用(壁材-外部)(子ども)	2.8E+01	再利用(再使用品-外部)
15	Co-58	1.6E+01	操業(埋立-外部)	4.2E+00	再利用(再使用品-外部)	3.4E+01	再利用(コンクリート再処理-外部)	4.2E+00	再利用(再使用品-外部)
16	Co-60	1.8E+00	操業(埋立-外部)	5.3E-01	再利用(再使用品-外部)	9.7E-01	再利用(壁材-外部)(子ども)	5.3E-01	再利用(再使用品-外部)
17	65-iN	1.8E+03	地下水(農作物)(子ども)	6.5E+04	再利用(再使用品-外部)	1.3E+05	再利用(壁材-外部)(子ども)	1.8E+03	地下水(農作物)(子ども)
18	Ni-63	2.7E+03	跡地(農作物)(子ども)	3.3E+06	再利用(積み下ろし)(直接経口)	1.1E+05	再利用(コンクリート再処理) (直接経口)	2.7E+03	跡地(農作物)(子ども)
19	Zn-65	1.2E+01	操業(埋立-外部)	3.4E+00	再利用(再使用品-外部)	1.6E+01	再利用(壁材-外部)(子ども)	3.4E+00	再利用(再使用品-外部)
20	Nb-93m								
21	Nb-94							\	
22	Ag-108m							\setminus	
23	Ag-II0m	2.5E+00	操業(埋立-外部)	7.1E-01	再利用(再使用品-外部)	3.3E+00	再利用(壁材-外部)(子ども)	7.1E-01	再利用(再使用品-外部)
24	Sn-113	3.9E+01	操業(埋立-外部)	1.0E+01	再利用(再使用品-外部)	8.9E+01	再利用(コンクリート再処理-外部)	1.0E+01	再利用(再使用品-外部)
25	Sb-124	1.0E+01	操業(埋立-外部)	2.9E+00	再利用(再使用品-外部)	2.2E+01	再利用(コンクリート再処理-外部)	2.9E+00	再利用(再使用品-外部)
26	Sb-125	1.1E+01	操業(埋立-外部)	3.0E+00	再利用(再使用品-外部)	7.7E+00	再利用(壁材-外部)(子ども)	3.0E+00	再利用(再使用品-外部)
27	Te-123m	7.0E+01	操業(埋立-外部)	3.2E+01	再利用(再使用品-外部)	2.0E+02	再利用(コンクリート再処理-外部)	3.2E+01	再利用(再使用品-外部)
28	Cs- $I34$		操業(埋立-外部)	8.2E-01	再利用(再使用品-外部)	2.2E+00	再利用(壁材-外部)(子ども)	8.2E-01	再利用(再使用品-外部)
29	Cs-137	7.5E+00	操業(埋立-外部)	2.0E+00	再利用(再使用品-外部)	3.9E+00	再利用(壁材-外部)(子ども)	2.0E+00	再利用(再使用品-外部)
30	Ba-133	1.1E+01	操業(埋立-外部)	3.7E+00	再利用(再使用品-外部)	7.3E+00	再利用(壁材-外部)(子ども)	3.7E+00	再利用(再使用品-外部)
31	Ce-139	6.3E+01	操業(埋立-外部)	3.0E+01	再利用(再使用品-外部)	1.8E+02	再利用(コンクリート再処理-外部)	3.0E+01	再利用(再使用品-外部)
32	Eu-152	3.9E+00	操業(埋立-外部)	1.1E+00	再利用(再使用品-外部)	2.0E+00	再利用(壁材-外部)(子ども)	1.1E+00	再利用(再使用品-外部)
33	Eu-154	3.6E+00	操業(埋立-外部)	1.1E+00	再利用(再使用品-外部)	1.9E+00	再利用(壁材-外部)(子ども)	1.1E+00	再利用(再使用品-外部)
34	Tb-160	1.4E+01	操業(埋立-外部)	4.2E+00	再利用(再使用品-外部)	3.0E+01	再利用(コンクリート再処理-外部)	4.2E+00	再利用(再使用品-外部)
35	Ta-182	8.4E+00	操業(埋立-外部)	2.6E+00	再利用(再使用品-外部)	1.8E+01	再利用(コンクリート再処理-外部)	2.6E+00	再利用(再使用品-外部)
36	Au-195			\setminus				\setminus	
37	H_{g-203}	9.2E+01	操業(埋立-外部)	2.4E+01	再利用(再使用品-外部)	2.3E+02	再利用(コンクリート再処理-外部)	2.4E+01	再利用(再使用品-外部)

※再利用シナリオの直接経口の経路においては、金属スクラップの前処理作業者と溶融・鋳造作業者に対する値は同じとなる。 ※埋設処分シナリオの直接経口の経路においては、積み下ろし作業者と埋立作業者に対する値は同じ値となる。 ※直接経口とは、放射性核種の沈着した土壌や破片などを経口摂取することを示す。

5. クリアランスレベルの暫定値の算出に用いたシナリオ等の妥当性評価について (確率論的解析)

原子力安全委員会がクリアランスレベルに係る報告書を取りまとめる際には、放射能濃度の算出に用いたパラメータ、シナリオ**14等の妥当性について評価を行っている^{(2),(9),(10)}。

このことを参考に、放射線障害防止法の告示に規定すべきクリアランスレベルの設定に向けて、 「放射線障害防止法に規定するクリアランスレベルの設定に係る基本方針」に示した手順に従っ た決定論的な方法によるクリアランスレベルの暫定値の算出に用いたシナリオ等について、その 妥当性の評価として、次のような確率論的解析による評価を行った。

5. 1 シナリオ等の妥当性評価の目的及び方法

(1) 評価パラメータのばらつき評価

この評価は、評価パラメータのばらつきが、決定論的な方法によるクリアランスレベルの暫定値の算出結果に与える影響を評価・確認するものであり、その方法として、評価パラメータの確率論的解析を行う。ここで、確率論的解析については、原子力安全委員会が取りまとめた原子炉クリアランス報告書や核燃施設クリアランス報告書に示された方法に基づいて行う。

○ 評価の目的

決定論的な方法によるクリアランスレベルの暫定値の算出に用いるために選定した評価 パラメータが適切で、かつ、現実的な範囲で保守的な選定となっていることを確認する。

○ 評価の方法

図 5.1 に示すように、確率論的解析から求めた放射能濃度の累積分布関数を用いて、決定論的な方法により算出した 10μ Sv/年に相当する放射能濃度が累積確率の中央値(P=0.5)から 97.5%片側信頼区間下限値 *15 (以下、「97.5%下限値」という。)(P=0.025)の間の範囲にあるかどうかを確認する。

(2) シナリオの妥当性評価

○ 評価の目的

決定論的な方法によるクリアランスレベルの暫定値の算出に用いた評価パラメータには本来、ばらつきが考えられることから、この評価では、評価経路及び評価パラメータを組み合わせて設定したシナリオが適切、かつ、保守的に選定されていることを確認する。

○ 評価の方法

上述の 97.5%下限値に相当する評価パラメータの組み合わせを、図 5.2 に示すように「発生頻度が小さいと考えられるシナリオ」として扱い、その数値 (97.5%下限値) が $10\,\mu$ Sv/年を著しく超えないことを確認する。

具体的には、原子力安全委員会により行われたクリアランスレベル評価では、 $[10 \mu \text{ Sv}/\text{F}]$

^{※14}:原子炉クリアランス報告書では、「評価経路及び評価パラメータを組み合わせたものを「シナリオ」と呼ぶ。」としている。

^{※15:}統計上の信頼区間としては、一般的に90%、95%、99%信頼区間が用いられている。原子力安全委員会における原子炉施設等を対象としたクリアランスレベルの検討では大気汚染等を測定観測する環境影響評価で用いられている95%信頼区間を参考に、検討対象となる片側信頼区間97.5%下限値(P=0.025)を用いており、クリアランス報告書においても、同様の考え方が採用されている。

を著しく超えないめやす線量」として「 $100\,\mu$ Sv/年」が用いられていることから、今回の評価では、97.5%下限値の最小値の濃度を 10 倍した $100\,\mu$ Sv/年相当濃度と決定論的な方法により求めたクリアランスレベルの暫定値($10\,\mu$ Sv/年相当濃度)とを比較し、クリアランスレベルの暫定値($10\,\mu$ Sv/年相当濃度)の方が $100\,\mu$ Sv/年相当濃度(97.5%下限値の最小値の 10 倍)よりも常に低くなっていることを確認する。

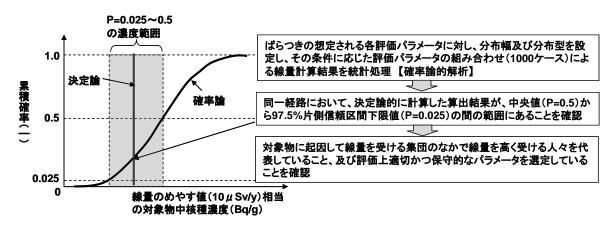


図 5.1 評価パラメータのばらつき評価の方法

※原子力安全委員会放射性廃棄物・廃止措置専門部会ウラン廃棄物埋設検討小委員会(第6回)会合配付 資料ウ検第6-1号の図1を参照

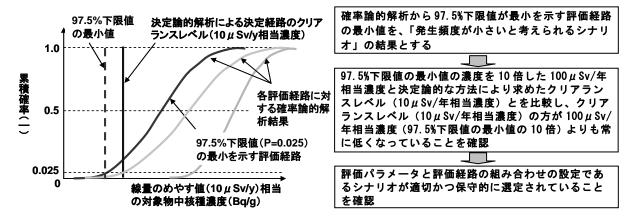


図 5.2 シナリオ (評価パラメータ及び評価経路) の妥当性評価の方法 ※原子力安全委員会放射性廃棄物・廃止措置専門部会ウラン廃棄物埋設検討小委員会 (第6回) 会合配付 資料ウ検第6-1号の図1を参照

5. 2 クリアランスレベルの暫定値の算出に用いたシナリオ等の妥当性評価

5. 2. 1 確率論的解析を行う対象核種の選定

まず、確率論的解析を行う RI 汚染物に係る対象核種を表 5.1 に示す。RI 汚染物に係る対象核種の選定は、RI 協会が平成 16 年から平成 20 年までの 5 年間に供給した非密封の放射性同位元素供給 33 核種及び放射性医薬品供給 14 核種のうち、それぞれ供給量が最大値となる核種の放射能を 1 として他の核種を規格化した場合に 1 桁の範囲に入る核種は、H-3、C-14、P-32、I-125、Tc-99m及び Mo-99 の 6 核種であり、RI 汚染物として今後も継続的に発生することを考慮して、これらの 6 核種を対象核種として選定した。なお、確率論的解析を行う対象核種の選定にあたっては、RI 協会及び原子力機構が既に保管している RI 汚染物の状況についても確認を行った。

次に、確率論的解析を行う放射化物に係る対象核種を表 5.2 に示す。放射化物に係る対象核種の選定については、RI 汚染物における対象核種の選定の考え方を踏まえ、[(D/C)/(D/C)max] の値が小数点以下 1 桁目に含まれる 7 核種を放射化物に係る確率論的解析の対象核種として選定した。

5. 2. 2 確率論的解析の対象経路の抽出

確率論的解析の対象として選定したそれぞれの核種に対して、決定論的な方法により算出した $10\,\mu$ Sv/年の被ばく線量に相当する各評価経路の放射能濃度結果を基に、それらの放射能濃度の中で最も小さい放射能濃度となる決定経路を含め、小さい方より 3 つの評価経路を確率論的解析の 対象経路として抽出する。また、確率論的解析の対象として選定したいずれかの核種に対して抽出した評価経路は、他の核種の評価経路として加えることとする。

なお、原子力安全委員会によるクリアランスレベルに係る検討においては、確率論的解析を行う対象経路が以下のように抽出されている。

○ 原子炉クリアランス報告書

確率論的解析を行う対象経路として、埋設処分シナリオの全 41 経路のうち 11 経路が抽出され、再利用シナリオの全 32 経路のうち 14 経路が抽出されている。(表 5.3 を参照)

○ 核燃施設クリアランス報告書

確率論的解析を行う対象経路として、埋設処分シナリオの全 41 経路のうち 12 経路が抽出され、再利用シナリオの全 31 経路のうち 14 経路が抽出されている。(表 5.3 を参照)

以上の考え方を踏まえた RI 汚染物及び放射化物に係る確率論的解析を行う対象経路の抽出結果を表 5.4 及び表 5.5 に示す。対象経路の選定については、上述の対象経路の抽出の考え方に基づき、RI 汚染物については、確率論的解析の対象核種を表 5.1 に示す 6 核種に対して対象経路は13 経路、放射化物については、対象核種を表 5.2 に示す 7 核種に対して対象経路は4 経路となった。

表 5.1 RI 汚染物に係る確率論的解析の対象核種 (RI 協会による供給核種)

No.	核種
1	H-3
2	C-14
3	P-32
4	Mo-99
5	Tc-99m
6	I-125

表 5.2 放射化物に係る確率論的解析の対象核種

No.	核種
1	Na-22
2	Mn-54
3	Co-60
4	Sb-125
5	Cs-134
6	Eu-152
7	Eu-154

表 5.3 原子炉施設及び核燃料使用施設のクリアランスレベル評価における 確率論的解析の対象経路

シナリオ	選択数	経路	経路名
	1	No.3	操業(運搬作業者・外部)※
	2	No.5	操業 (埋立作業者・外部)
	3	No.6	操業(埋立作業者・吸入)
	4	No.11	跡地利用 (居住者・外部)
	5	No.12	跡地利用(居住者・吸入)
埋設処分	6	No.13	跡地利用 (農作物摂取)
生政处力	7	No.14	跡地利用 (畜産物摂取)
	8	No.19	地下水利用(飲料水摂取)
	9	No.24	地下水利用 (灌漑水農作物摂取)
	10	No.25	地下水利用 (灌漑水畜産物摂取)
	11	No.26	地下水利用 (飼育水畜産物摂取)
	12	No.27	地下水利用 (養殖水淡水産物摂取)
	1	No.2	金属再利用用途 (ベッド・外部)
	2	No.5	金属再利用処理(スクラップ作業場周辺居住者・吸入)
	3	No.6	金属再利用処理
	3	10.0	(スクラップ作業場周辺居住者・農作物摂取)
	4	No.7	コンクリート再利用用途(壁材等・外部)
	5	No.10	金属再利用処理(積み下ろし・外部)
	6	No.11	金属再利用処理(積み下ろし・吸入)
再利用	7	No.15	金属再利用処理(溶融・鋳造作業・外部)
1.1/0.1/11	8	No.16	金属再利用処理(スラグ処理作業・吸入)
	9	No.24	金属再利用処理(NC 旋盤・外部)
	10	No.25	再使用・外部
	11	No.26	再使用・吸入
	12	No.27	再使用・直接経口
	13	No.28	金属再利用用途 (スラグ駐車場・外部)
	14	No.30	コンクリート再利用処理 (コンクリート処理作業者・吸入)

[※]核燃施設クリアランス報告書における評価で追加された確率論的解析の対象経路

表 5.4 確率論的解析を行う RI 汚染物に係る対象経路

No.	評価経路名	評価経路記号
1	操業(埋立-外部)	d05
2	跡地利用(農作物,成人)	d17
3	跡地利用(農作物, 子ども)	d17c
4	地下水(養殖淡水産物,成人)	d27
5	地下水 (養殖淡水産物, 子ども)	d27c
6	再利用(金属スクラップ周辺居住-農作物,成人)	r06
7	再利用(金属スクラップ周辺居住-農作物, 子ども)	r06c
8	可燃物(可燃物運搬-外部)	b04
9	可燃物(焼却炉補修-外部)	b05
10	可燃物 (焼却炉周辺-畜産物, 子ども)	b12c
11	可燃物 (溶融炉周辺-農作物, 子ども)	b26c
12	可燃物(溶融炉周辺-畜産物,成人)	b27
13	可燃物 (溶融炉周辺-畜産物, 子ども)	b27c

[※]評価経路記号のうち、「d」が埋設処分に係る評価経路、「r」が再利用・再使用に係る評価経路、「b」が焼却処理に係る評価経路を示している。数字は決定論的解析における評価経路番号を示す。

表 5.5 確率論的解析を行う放射化物に係る対象経路

No.	評価経路名	評価経路記号
1	操業(運搬-外部)	d03
2	操業(埋立-外部)	d05
3	再利用(壁材等-外部,成人)	r07
4	再利用 (壁材等-外部, 子ども)	r07c

[※]評価経路記号のうち、「d」が埋設処分に係る評価経路、「r」が再利用・再使用に係る評価経路を示している。数字は決定論的解析における評価経路番号を示す。

5. 2. 3 確率論的解析によりばらつきの影響を確認すべき評価パラメータについて

「5.2.2項」で抽出した評価経路に係るクリアランスレベルの暫定値の算出に用いた評価パラメータの分布型・分布幅を決定する。基本的なパラメータについては、原子力安全委員会が取りまとめたクリアランスレベルに係る報告書に示された評価パラメータの分布型や分布幅を参考にする。

ただし、以下に示す評価パラメータについては、原子力安全委員会の報告書に示された選定根拠や手順を参考に、今回の検討で新たに設定する。

- ・RI 汚染物に係るクリアランス対象物の物量に依存するパラメータ
- ・原子力安全委員会におけるクリアランスレベルの算出において評価されていない核種や元素 に係る核種依存及び元素依存の評価パラメータ
- ・焼却処理の評価経路で新たに使用した評価パラメータ

クリアランスレベルの暫定値の算出に用いた評価経路の中で、RI 汚染物に係る確率論的解析を行う対象経路として抽出した評価経路に関連するクリアランスレベルの暫定値の算出で用いた計算モデルは、4章の式(2)、式(5)~(11)、式(18)~(21)、式(25)~(27)、式(30)~(34)、式(37)~(41)、式(43)~(45)であり、放射化物に係る確率論的解析を行う対象経路として抽出した評価経路に関連するクリアランスレベルの暫定値の算出で用いた計算モデルは、4章の式(1)、式(2)、式(12)、式(13)である。

5. 2. 4 確率論的解析に用いる評価パラメータの分布幅及び分布型の設定について

RI 汚染物に係る確率論的解析を行ううえで、評価パラメータの分布幅及び分布型についての設定を表 5.6 から表 5.23 に示し、放射化物に係る確率論的解析を行ううえで、評価パラメータの分布幅及び分布型についての設定を表 5.24 から表 5.27 に示す。分布幅及び分布型の選定の考え方を付録 3 (第 18 回クリアランス技術検討ワーキンググループ資料第 18-2 号参照) に示す。この考え方は、原子炉クリアランス等の評価で用いられている考え方と同じであり、本検討においても、この考え方を踏まえて分布幅及び分布型の選定を行っており、「主な原子炉施設におけるクリアランスレベルについて」※16 で既に検討されている評価パラメータについては、同一の分布幅及び分布型を選定した。

一方、以下に示す評価パラメータは、今回のクリアランスレベルの暫定値の算出において新たに選定したものであることから、付録3に示す分布幅及び分布型の選定の考え方に従い、文献及び実態調査等の結果を踏まえて選定を行った。

- クリアランス対象物の発生量に依存するパラメータ(混合率、廃棄物の総量、再利用される 金属中のクリアランス対象物割合、再利用されるコンクリート中のクリアランス対象物割合 など)
- 焼却処理シナリオの評価で使用するパラメータ (焼却炉壁の表面積、焼却炉壁に付着する割合、核種が排気に移行する割合、焼却炉でのほかの廃棄物との混合割合、焼却処理能力、溶融処理能力など)
- 核種・元素に依存するパラメータのうち、既往の評価で確率論的解析の対象となっていない 核種・元素のパラメータ

※16:「主な原子炉施設におけるクリアランスレベルについて」(平成11年3月、原子力安全委員会)

表 5.6 パラメータの分布に関する設定 (RI 汚染物) (1/11)

使用経路	d05, d17, d17c, d27, d27c	405	d0.5	d05	d17, d17c, d27, d27c
分布幅選定根拠	混合は想定できないため、分布幅等は選定しない。	No.5 「廃棄物の総量」の分布幅から、決定論 の選定値根拠と同じ式で設定した。 年間作業時間 (hy)= (廃棄物の総量) (tony) \div 100(ton/d) \times 8(h/d) \times 0.5 分布型はNo.5 「廃棄物の総量」の分布型に 従うため一様分布となる。	埋立作業場での作業者に対し、建設機械 (小型ブルドーザ~大型ブルドーザ)の重 量、形状を考慮した遮へい計算を基に選定 した。分布型は一様分布とした。	原子炉クリアランスの評価に倣い、分布幅等 は選定しない。	最小値は、RI協会と原子力機構で保管されている汚染物がすべてなくなったと想定して、RI協会の対象となる汚染物の集荷量3974(4年)と原土力機構の運転に伴い発生する廃棄物量(運転廃棄物量)16.2(4年)の合計値とた。 最大値は、選定値の1,500(4年)とする。選定値はRI協会と原子力機構の調査結果から現実的かつ想定される最大量として選定されているこれを下方に丸めて410 (4年)とれをこれを下方に丸めて410 (4年)とれを上方に丸めて410 (4年)とれを出たれた丸を上方に丸めて450 (4年)とれを出たすると方に丸がとした。
最大値		100	0.45		1,500
最小値		17	0.25		410
分布型	*	一樣分布	一樣分布	*	-
決定論選定値根拠	施設の特性上、廃棄時の「放射性廃棄物でない廃棄物」との混合は想定できないため、 1に設定した。	国土交通省土木工事積算基準に示された標準作業量を800 ton、1 B 8時間労働、うち半分の作調を 3 0 アスされた廃棄物の側で作業する 5 0 と、 スタ象か量に応じて以下の通り計算し、その結果を丸めて選定した。 1,500(ton/ 3) \div 100(ton/ 3) \div 100(ton/ 3) \times 8(h/ 3) \times 0.5 = 60 \Longrightarrow 100(h/ 3)	IAEA-TECDOC-401 (Co-60)	無限平板を模擬した半径200m、高さ2mの円柱体系から求めた。	該当施設の対象物量調査結果から日本アイントープ協会と日本原子力研究開発機構の合算値。
単位	1	h/y	1	μ Sv/h per Bq/g	ton
選定値	1	100	0.4	核 依 存	1,500
決定論	無	 柏	用	半剰	布布
パラメータ	混合率	埋立年間作業時間	埋立作業時の遮へい係数	外部被试<線量換算係数(操業一 埋立作業)	廃棄物の総量
No.	1	7	ε	4	N

表 5.6 パラメータの分布に関する設定 (RI 汚染物) (2/11)

_								
使用経路	d17, d17c, d27, d27c	d17, d17c, d27, d27c	d17, d17c, d27, d27c	d17, d17c, d27, d27c	d17, d17c	d17, d17c	d17, d17c, r06, r06c, b26c	b12c, b27, b27c
分布幅選定根拠	「廃棄物処理事業・施設年報平成8年版」に 記載された10万m³以上の一般廃棄物処分 場のデータを参考に統計処理して範囲を選 だした。 なお、一般廃棄物処分場の平均面積は 21,357m²(「廃棄物処分場の平均面積は 21,357m²(「廃棄物処分場の平均面積は 8年版」に記載されたデータより第出)、産業 廃棄物処分場の平均面積は21,747m²(「総 論・埋立処分の現状と課題」(田中勝、月刊 廃棄物Vol.9 No.104、1983年)に記載された データより算出)となっている。 分布型は、統計的に対数正規分布が想定さ れる。	「廃棄物処理事業・施設年報平成8年版」に 記載された10万m ³ 以上の一般廃棄物処分 場のデータを参考に統計処理して範囲を選 定した。分布型は、統計的に対数正規分布 が想定される。	「廃棄物処理事業・施設年報平成8年版」に 記載された10万m³以上の一般廃棄物処分 場のデータを参考に統計処理して範囲を選 定した。分布型は、統計的に対数正規分布 が想定される。	最小値は、水の密度である1g/cm³と選定する。また、最大値は、コングリートが密に埋設されている状態である2.3g/cm³と選定した。分布型は一様分布とした。	「植物栄養 土壌 肥料大辞典」によると、里芋の場合50cm以深の根の割合は、40cm耕で1.5%程度(0.02)である。最小値は、里芋より根が浅い水稲を考慮してこの値を1/10とた。また、最大値については、根の深い果樹等を考慮し0.5とした。分布型は分布幅が広いことから対数一様分布とした。	IAEA-TECDOC-401では範囲を0~50年と想定していることを基に選定した。分布型は一様分布を想定した。	米については表5.9、米以外については表5.109を参照。分布型は既存の研究結果により対数正規分布とする。	表5.11を参照 分布型は既存の研究結果により対数正規分 布を想定した。
最大値	700	700	09	2.3	0.5	90	元 核 存	大 本 本
最小値	70	70	2	1	0.002	0	元 存 本	元 存 存
分布型	对 数 正规 分 布 分 布	対数正規 分布	対 数正規 分布	一様分布		一様分布	対数正規 分布	対数正規 分布
決定論選定値根拠	「環境省 HP 廃棄物処理技術情報 各都道 府県別整備状況 平成18年度調査結果」に 記載されている各都道府県の一般廃棄物最 終処分場のデータの内、全体容量が4万5千 m³以上、5万5千m³未満(我が国の産業廃棄 物処分場の平均的な容量が5万m³である)の 最終処分場の平均理立地面積である10,000 m²と、平均深さ約5mより選定(長さ及び幅は 正方形を仮定)。			IAEA-TECDOC-401	農作物の根が 30cm 以深の廃棄物層に達する可能性を考慮して保守的にと選定した。		米については表5.9、米以外については表5.10を参照	表5.11を参照
単位	E	ш	ш	g/cm³		y	Bq/g-wet per Bq/g	Bq/g-dry per Bq/g
選定値	100	100	5	2	0.1	10	元素依存	元素依存
	用	半	州	并通	用	并通	無	剰米
パラメータ	处分場幅	処分場長さ	処分場深さ	処分場嵩密度	根からの核種の吸収割合	処分場閉鎖後から評価時点までの期間	士嬢から作物(米、葉菜、非葉菜、 果実)への移行係数	土壌から作物(飼料)〜の移行係数
No.	9	7	8	6	10	11	12	13

表 5.6 パラメータの分布に関する設定 (RI 汚染物) (3/11)

Ž	以一ヶ瓜。	计小学	海宁信	が、	计分数器定储超量	世本公	具小储	一十一世	() 不信题分析型	如然田丰
170.	単作物の年	三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三	域化順	## 	八人開场八百次沙「订完8年第四日光光日4年	ン作出	型、「浴	取入區 140	カ中電気に収返しでは8年時国日光巻の田井に下げなりをデ	区川祖四
- - - -		< #	1/	Kg/y	十以o + 以回以不使o / 况人 / / 学生自 不降 序婚后傳 青苗油学業理野修 第一出胎	日祝わ出	0	149	- 十爻0十爻国 乙木食り 光水 デンスター アイタクボー 強 宇宙 かけ 中値 プラーザー 出	/ID
15		米	12	kg/y	○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	止规分布	0	36	ンであるで、あん同で下人同COCLH系令在か者だ! +300~ C 雑国か唱 六佰	d17, r06
16		非難菜	45	kg/y		正規分布	0	139	クイルタ泌イトーン゙ーーラ。ダダシールロ型の投イドルロ゙ 最大値ケ「、ドートドド最大値は4の値レセンタ	d17
17		果	22	kg/y		正規分布	0	81	次へ同している。これの表と、同じなど、同じさらた多のとした。	d17
18	農作物の年間摂取量(子ども)	*	25	kg/y	「平成9年版国民栄養の現状」(厚生省保健	正規分布	0	52	各農作物に対する成人の摂取量(選定値)	d17c
19		業業	5	kg/y	医療局健康增進栄養課監修、第一出版(株)1997年)	正規分布	0	15	に対する子どもの摂取量(選定値)の比(子どれがし)を、けいないのでは、	d17c,
20	T	非葉菜	23	kg/v		正規分布	0	71	ログダンと、ダンドに、アンド・アンドーでは、アンドーのできまった。	d17c
21		半	22	kg/y		正規分布	0	81		d17c
22	内部被试(線量係数(経口摂取)		数数 存	μ Sv/Bq	ICRP Publ.72	*			原子炉グリアランスの評価に倣い、分布幅等は選定しない。	d17, d17c, d27, d27c, r06, r06c, b12c, b26c, b27,
23	農作物の市場係数	用	1	1	自給自足を考慮して、最も保守的に選定した。 た。	一樣分布	0	1	対象とする農作物を全く摂取しなv場合から 自給自足の場合までを考慮して範囲を選定 した。分布型は一様分布を想定した。	d17, d17c, r06, r06c, b26c
24	農作物の輸送時間	州	0	p	保守的に、生産された農作物を直ちに消費する人を評価対象とした。	*			計算するまでもなく、評価結果に与える影響が他のペラメータに比べ明らかに小さいと判断したため変動を考慮していない。	d17, d17c, r06, r06c, b26c
25	地下水流速(ダルシー流速)	囲	I	p/m	「新版地下水調查法」(山本 荘毅、(株)古院書院、1983年)	対数正規 分 合 分 分	0.01	100	「日本の地下水」(農業用地下水研究グループ「日本の地下水」(農業用地下水研究グループ「日本の地下水」編集委員会編、(株)地球社、1986年)によると、帯水層中を流れる地下水の流速に、1日に数 cm がらせいぜい数百m程度と記述されており、 c 0.0 c 100 c 1	d27, d27c
26	放出係数	州	元素依存	ı	表5.7を参照	対数正規 分布	元素依存	元素依存	表5.7を参照 分布型は対数正規分布とする。	d27, d27c
27	帯水層空隙率	州	0.3	1	「水理公式集」(土木学会水理公式集改訂委員会、土木学会、1971年)	正規分布	0.15	0.3	「水理公式集」に示された土壌の有効空隙率のうち、粘土層を除いた範囲として0.15~0.3と選定した。帯水層空隙率は自然現象であるため、分布型は正規分布とする。	d27, d27c
28	带水層土壌密度	囲 半	2.6	g/cm³	「土質工学ハンドブック」(土質工学会編、1982年)	正規分布	2.6	2.76	「土質工学ハンドブック」に示された砂の粒子密度の幅をもとに選定した。帯水層土壌密度は自然現象であるため、分布型は正規分布とする。	d27, d27c
29			元素 依存	mL/g	表5.8を参照	対数正規 分布	元素 依存	元素 依存	表5.8を参照 分布型は対数正規分布とする。	d27, d27c
30	地下水流方向の分散長	州	0	m	保守的に選定した。	*			原子炉クリアランスの評価に倣い、分布幅等 は選定しない。	d27, d27c
\ \ \ \	** * 公本 国	かが								

※分布型の「*」は分布を考えないことを示す。

表 5.6 パラメータの分布に関する設定 (RI 汚染物) (4/11)

Ž	パニューカ	并完計	强 完值	無	好 法	今在型	量八個	是大储		佑田怒敗
31	地下水流方向の分散係数		0	m ² /y	保守的に選定した。	H = *		1	原子炉クリアランスの評価に倣い、分布幅等は罹害しない。	d27, d27c
32	浸透水量	用	4.0	m/y	「地下水ハンドブック」(地下水ハンドブック編集委員会編、(株)建設産業調査会、1979年)	对数正规 分布 布	0.0	-	「日本の地下水」(農業用地下水研究グループ「日本の地下水」(編集委員会編、(株) 地球社、1986年)によると、地下水流出量(浸透水量に相当) は河川の渇水流量にほぼ等しいと考えられており、渇水流量は 0.5m/y)にわたっていることから、0.1~1m/と選定した。 ほが現象であるため、分布型は対数正規分布とする。	d27, d27c
33	帯水層厚い	用	3	ш	IAEA-TECDOC-401	対数一様 分布	-	100	帯水層が薄いと利用が困難なため最小値を 1m、また、最大値を100mとした。 分布型は対数一様分布とした。	d27, d27c
34	処分場下流端から井戸までの距 離	州	0	ш	保守的に選定した。	一様分布	0	100	直近の0mから処分場の大きさのオーダーである100mと選定した。 分布型は一様分布とした。	d27, d27c
35	井戸水の混合割合) 并	0.33	1	「地下水ハンドブック」(地下水ハンドブック編集委員会編、(株)建設産業調査会、1979年)	対数一様 分布	0.1	1	最小値は選定値の13倍、最大値は選定値の3倍とした。なお、最大値は処分場真下の帯水層のみによる井戸水として保守的に1とした。分布型は対数一様分布とした。	d27, d27c
36	養殖淡水産物の地下水利用率	并	0.25	1	「日本の水資源(平成19年版)」(国土庁長官官房水資源部編、大蔵省印刷局、2008年)より算出した。	対数一様 分布	0.1	1	最小値は、淡水産物養殖者が水源としての地下水利用の割合が0.1であるとした。最大値はすべて地下水を利用するとした。 分布型は対数一様分布とした。	d27, d27c
37	養殖淡水産物への濃縮係数	半運		L/kg	表5.17を参照	対数正規 分布	元 校 素存	元 校 存	表5.17を参照 分布型は対数正規分布とした。	d27, d27c
38	養殖淡水産物(魚類)の年間摂取 量(成人)	押	0.7	kg/y	「日本の統計1997年版」に記載されている 平成6年の内水面養殖業の生産量の内、魚 類の生産量の合計値76.579トンを人口1億2 千万人で除して算出した。	正規分布	0	1.9	「平成8年版国民栄養の現状」に示されたデータを参考に、選定値を中央値とした正規 ータを参考に、選定値を中央値とした正規 分布を想定し、±3.09 の範囲を最小値、 最大値とした。ただし最小値は負の値となる ため0とした。	d27
39	養殖淡水産物(魚類)の年間摂取 量(子ども)	用	0.33	kg/y	全年齢の魚介類合計摂取量の平均値 (96.9g/日)と1-6 歳の平均値(45.7g/日)の比 (0.47)を成人の年間摂取量0.7kg/年に乗じた0.33kg/年を算出した。	正規分布	0	6:0	成人の摂取量(選定値)に対する子どもの摂取量(選定値)の比(子ども/成人)を、成人に対する分布幅に乗じた設定とした。	d27c
40	養殖淡水産物の市場係数	并通	1	1	自給自足を考慮して、最も保守的に選定した。	一樣分布	0	1	処分場を通過した地下水によって養殖された淡水産物を全く摂取しない場合から自給 自足の場合までを考慮して範囲を選定した。 た。 分布型は一様分布とした。	d27, d27c
41	養殖淡水産物の輸送時間	無	0	p	保守的に、養殖された淡水産物を直ちに消費する人を評価対象とした。	*			計算するまでもなく、評価結果に与える影響 が他のパラメータに比べ明らかに小さいと判 断したため変動を考慮していない。	d27, d27c
次※	※分布型の「*」は分布を考えないことを示す。	を示す。	ì			ì	ì		1	

※分布型の「*」は分布を考えないことを示す。

表 5.6 パラメータの分布に関する設定 (RI 汚染物) (5/11)

使用経路	106, 106c	r06, r06c	106, r06c	106, 106c	106, 106c, b12c, b26c, b27, b27c	î r06, r06c z
分布幅選定根拠	最小値は、クリアランス対象施設から発生するクリアランス対象金属量26.2(V年)を、転炉における1基当たりの生産量125万(V年) (2008年度) (転炉における粗鋼生産量8,000万を基数64で割っておかた)で割った26.2(V年) = 2.096E-5 を下方に丸めた値とした。最大値はフリアランス対象施設から発生するカリアランス対象金属量173.1(V年)を、鋳物の1事業所当たりの生産量4,300(V年) (3008年度) (鋳物の年間生産量4,300(V年) (2008年度) (鋳物の年間生産量4,2007ほ事業所数974で割って求めた)で割った値173.1(V年) ÷4,300(V年) で割って求めた)で割った値173.1(V年) さん布型は対数一様分布とした。	表5.18を参照 分布型は一様分布とした。	機出された金属スクラップが、流通過程においてその他のスクラップにより100倍に混合される場合から、全く混合されない場合までを考慮して範囲を選定した。スラグについても、スクラップ利用に伴う副次製品であるために、金属スクラップと同じ市場係数を用いた。分布型は対数一様分布とした。	下記文献をもとに選定した。 European Commission, "Technical seminar on melting and recycling of metallic waste materials from decommissioning of nuclear installations",1993 Session : 2 Experience with the Melting of Beta-Gamma Radioactive Metals at SIEMPELKAMP Foundry Session : 3 Melting of Cs-contaminated Perritic Steel from G2/G3 Reactors, Marcoule 分布型は一様分布とした。	最小値は選定値の1/2倍、最大値は選定値 の2倍とした。 分布型は対数一様分布とした。	「浮遊粒子状物質 汚染の解析・予測」(環境 庁大気保全局大気規制課監修、(財)日本 環境衛生センター、昭和62年)で示された、 昭和59年度における浮游粒子状物質の年平
最大値	4.0E-02	元素 依存	-	500	6.30E+05	1.0E-04
最小値	2.0E-05	元素 依存	0.01	50	1.58E+05	1.0E-05
分布型	な 数一 数 年 発	一樣分布		一様分布	対数一様 分布	対数正規 分布
決定論選定值根拠	日本鉄リサイクル工業会によれば、スクラップの標準的な処理量として3,750ton/月が記されている。従って、1つの処理施設での年間の取扱量は、45,000 tonとなる。対象廃棄物は、スクラップ処理場から再利用製品に加工されるまでの間に放射性核種を含まないと属スクラップと混合される可能性があり、その割合を、対象施設から発生した金属の発生量に応じて以下の通り計算して選定した。	表5.18を参照	保守的に、市場で他の多量のスクラップと混合することを考慮せず、1と選定した。	IAEA S.S.No.111-P-1.1	「発電用軽水型原子炉施設の安全審査における一般公衆の線量当量評価について」 (原子力安全委員会、平成元年3月27日) において示された値(1cm/s)を基に選定した。	環境基本法第16条の規定に基づき定められた「大気環境基準」において、浮遊粒子状物質の濃度は0.1mg/m³以下(1時間値の11平均値)と規定されており、これに基づ
単位	•	1	1	•	m/y	g/m³
選定値	4E-03	元 依 存	-	200	3.15E+05	1.00E-04
決定點		半剰	用	州		并
Ľ		3 溶融過程で粉塵中に移行する割 合		5 溶融に件う粉磨への濃縮比		7 作業場周辺空気中粉塵濃度
No.	4	43	44	45	46	47

表 5.6 パラメータの分布に関する設定 (RI 汚染物) (6/11)

使用経路	r06, r06c, b12c, b26c, b27, b27c	r06, r06c	r06, r06c	r06, r06c, b12c, b26c, b27, b27c	r06, r06c, b12c, b26c, b27, b27c	r06, r06c, b12c, b26c, b27, b27c	r06, r06c, b12c, b26c, b27, b27c	r06, r06c, b12c, b26c, b27, b27c
分布幅選定根拠	粉塵が地表面へ全く沈着しない場合から、す べての粉塵が地表面へ沈着する場合までを 考慮して範囲を選定した。 分布型は一様分布とした。	沈着した放射性核種が土壌へ全く残留しない場合から、すべての放射性核種が土壌へ 砂場合から、すべての放射性核種が土壌へ 残留する場合を考慮して範囲を選定した。 分布型は一様分布とした。	最小値はカリアランスされた金属が1年で処理されると想定した。最大値は、放射線発生装置使用施設の大規模施設の解体撤去作業期間(約3~4年)に基づき保守的に5年と選定した。 分布型は一様分布とした。	土壌 嵩密度を1.6g/cm³とし、実効土壌深さが 5~25cmと変動すると想定して最小値 80kg/m²(=1.6g/cm³×5cm)、最大値 400kg/m²(=1.6g/cm³×25cm)と選定した。 分布型は一様分布とした。	放射性核種が農作物表面に全く沈着しない場合から、すべて沈着する場合までを考慮して範囲を選定した。 分布型は一様分布とした。	「発電用軽水型原子炉施設周辺の線量目標値に対する評価指針」に示された4種類の農作物の栽培密度より範囲(1.5~4.0kg/m²)を選定した。 分布型は一様分布とした。	下記文献をもとに選定した。 Smith G M, Fearn H S, Smith K R, DavisJ P and Klos R (1988): Assessment of the radiological impact of disposal radioactive waste at Drigg, National Radiological Protection Board, NRPB-M148, Chilton UK. 分布型は対数正規分布とした。	選定値を中心に±30日の変動を選定した。 分布型は一様分布とした。
最大値	1	1	S	400	1	4	08	06
最小値	0	0	1	08	0	1.5	6	30
分布型	一様分布	一樣分布	一様分布	一樣分布	一様分布	一様分布	対数 正規 分 布	一樣分布
決定論選定値根拠	保守的に全て沈着すると設定した。	「発電用軽水型原子炉施設の安全審査に おける一般公衆の線量当量評価について」 (原子力安全委員会、平成元年3月27日)	原子炉クリアランス評価では、原子炉解体 の標準工程によると、解体撤去作業期間は 約3~4年とされていることから、保守的に、 廃止措置に伴って発生したスケラップの処 理作業に5年を要するものとした。 放射線発 生装置使用施設の大規模施設について は、施設規模が原子炉と同等と見做せるこ とから5年とした。 それ以外の施設について も保守的に5年とした。	U.S.NRC ; Regulatory Guide 1.109	保守的に全ての放射性核種が、農作物表 面へ沈着するとした。	「発電用軽水型原子炉施設周辺の線量目標値に対する評価指針」に示された値を使用した。	「発電用軽水型原子炉施設の安全審査に おける一般公衆の線量当量評価について」 に基づき、weathering half-lifeを14日として 計算した。	「発電用軽水型原子炉施設の安全審査に おける一般公衆の線量当量評価について」 に示された薬薬に関する栽培期間の値を 使用した。
単位	-	-	٨	kg/m²	_	kg/m^2	1/y	p
選定値	1	0.5	S	240	1	2.3	18.08	09
決定論	并通	并通	増	并	并通	無	無	并
パラメータ	粉塵の地表面への沈着割合	沈着した放射性核種のうち残存する割合(焼却処理以外)	核種の放出期間(再利用・再使用)	土壙実効表面密度	放射性核種の農作物表面への沈着割合	農作物の栽培密度	weathering効果による植物表面沈着放射性核種の除去係数	農作物の生育期間
No.	48	49	50	51	52	53	54	55

表 5.6 パラメータの分布に関する設定 (RI 汚染物) (7/11)

作用怒略	r06, r06c, b12c, b26c, b27, b27c	r06, r06c, b26c	b04, b12c, b26c, b27, b27c	P04	904	b04	902
公布區 建定根机	農作物が全く栽培される場合から、年間にわたって栽培される場合までを考慮して範囲を選定した。 分布型は一様分布とした。	農作物に付着した粒子状物質が、調理前洗浄によってすべて除去される場合から、全く除去されない場合までを考慮して範囲を選定した。分布型は一様分布とした。	混合は想定できないため、分布幅等は選定しない。	最小値は鉄板5mmによる遮へいを想定した場合のCo-60の遮へい係数を基に設定した。最大値は遮へいが全くないことを想定した。分布型は一様分布とした。	「1年間に焼却処理されるクリアランス対象廃棄物の重量」の分布幅から抽出されたクリアランス対象物量から、決定論の選定値根拠と同じ根拠に基づき以下の式で求めた。 相間作業時間(h/y)=(1年間の可燃物等の発生)を開作業時間(h/y)=(1年間の可燃物等の発生)を10m/day)×1(h/day)表験廃棄物の重量330(h/y)に対して求めた値を設定した。 最大値は、1年間に焼却処理されるクリアランス対象廃棄物の重量1,000(ty)に対して求めた値を設定した。 と設定した。 「1年間に焼却処理されるクリアランス対象廃棄りの重量」と同様に一様分布とした。	表5.21、表5.22参照 分布型は一様分布とした。	最小値は、RI協会と原子力機構で保管されている汚染物がすべてなくなったと想定して、RI 協会の対象となる汚染物の集荷量329.83(V年) 上原子力機構の運転廃棄物量5.6(V年)の合計 値とした。 最大値は、選定値の1,000(V年)とする。選定値 はRI協会と原子力機構の調査結果から現実的 かつ観定される最大量として選定されていることによる。 最小値:329.83+5.6 =335.43(V年) これを丸めて330 (V年)とした。 最大値:329.83+657+14.7 = 1,001.53(V年) これを丸めて1,000 (V年)とした。 分布型は一様分布とした。
最大値		1		1	200	核種 依存	1.00E+06
最小循	0	0		0.8	09	核 依 本	3.30E+05
今在型	一樣分布	一樣分布	*	一樣分布	一樣分布	一樣分布	一 様分布
(// TI) 	「発電用軽水型原子が施設団辺の線量目標値に対する評価指針」に示された値を採用した。	「発電用軽水型原子炉施設の安全審査に おける一般公衆の線量当量評価について」 に示された値を採用した。	施設の特性上、廃棄時の「放射性廃棄物でない廃棄物」との混合は想定できないため、 1に設定した。	鉄板3mmによる遮へいを想定した場合の Co-60の遮へい係数を基に設定した。 (NUREG/CR-0134)	[発生量依存] ・23区部の清掃車車種別積載基準値によれば、8m3、4トン車の可燃ごみの積載基準値によれて14~2.7トンとなっている。今後は、運搬効率を改善する観点から車がラルで、有載基準値を基に保守的に5トンに設定した。「平成2年版運輸送距離は10.28kmとなっており、これに余裕を見た20kmと収集車の運搬速度20km/から、一回あたりの輸送時間(は時間となる、可燃物等の年間発生量(一括)約1,000 ton・可燃物等の年間発生量(一括)約1,000 ton・目間作業時間(一括):	表5.21、表5.22参照	・一括及び個別の対象廃棄物の年間発生量より選定した。 年間発生量:一括;1,000ton
1.7米、20/	1	ı		ı	h/y	μ Sv/h per Bq/g	kg
は、温か値	0.5	1	1	6.0	200	林 存 车	1.00E+06
予ける場合	無無	州	州	無	<u> </u>	半	枯
9.0 、 . / / / / / / / / / / / / / / / / / /	農作物栽培期間年間比	調理前洗浄等による粒子状物質の残留比	廃棄物中に占められるクリアラ ソス対象物の割合	外部被ばくに対する 数 数	年間作業時間(可燃物運搬)	外部被ば<線量換算係数(焼却 一可燃物運搬)	62 1年間に焼却処理されるグリアラ 一括ンス対象廃棄物の重量
Ä	56	57	58	59	09	61	62

※分布型の「*」は分布を考えないことを示す。

表 5.6 パラメータの分布に関する設定 (RI 汚染物) (8/11)

使用経路	b05, b12c, b26c, b27, b27c	b05	b05	P05	P05	909
分布幅選定根拠	表5.19を参照 分布型は一様分布とした。	焼却処理施設に対する現地調査結果をもとに 設定した。最小値は、付着のほとんど見られな い流動床式およびストーカ式棒却炉の付着割 6が0.03~0.093%から、この範囲の下限である 0.03を下方に丸めた0.01%を最小値とした。最 大値は、この範囲の上限である0.093%を上方 に丸めた値とした。	人格子の単位面積、単位時間当た9の焼却量の関係式(人格子負荷= 処理可能容量の目安÷ 人格子面積)に基づき、焼却炉壁表面積 (三火格子面積) を基づき、焼却炉壁表面積 (三火格子面積)を設定した。最小値は、処理可能容量の目安 3[v(d・炉)]、人格子負荷 10[kg(m²·h)]から求められる12[m²]とした。最大値(m²·h)]から求められる12[m²]とした。表子負荷30[kg(m²·h)]から求められる208[m²]を上方に丸めた210[m²]とした。分布型は対数一様分布とした。	決定論の選定値根拠に「遊へい効果が無い」と あるので分布幅を考えない。	表5.21、表5.23を参照 分布型は一様分布とした。	「廃棄物処理施設整備費国庫補助金交付要綱の取扱いについて」(平成十五年十二月十五日 環路対発第〇三一二一五〇〇二号各都道府県廃棄物行政主管部(同)長かて環境者大臣百房廃棄物・リイクル対策部廃棄物対策課長通知)によると、ごみ焼却施設の年間停止日数の上限は38日とされている。85日の内訳は、整備補修期間30日+(補修点検15日×2回)+全停止期間7日+(起動に要する日数3日×3回)となっている。これより、最小値は整備補修期間30日を、最大値は上限の85日を丸めた90日を補修作業に充てるとし、1日当た900作業時間を5(h/日)として水めた。したがって、最小値は150(h/y)、最大値は450(h/y)と設定される。分布型は一様分布とした。
最大値	元素依存	1.E-03	210		核種	450
最小値	元素依存	1E-04	12		核種 依存	150
分布型	一様分布	対数一様 分布 分布	対数 →横 分布 余	*	一樣分布	一樣分布
決定論選定値根拠	表5.19を参照	焼却処理施設を対象に現地調査を実施したとろ、焼却炉壁への焼却灰の付着量はほとんどない設備から最大で小か設備まであり、調査した焼却炉の壁面に付着する割合は年間の焼却灰生成量に対して0%~0093%であった。この結果に基づいて、焼却炉壁に付着する割合は、裕度を持たせてり1%であることから、選定値を0.001とした。	「ごみ焼却施設台帳[全連続燃焼方式編]平成 10 年度版 1 によれば、全連続燃焼方式の焼却炉の能力の全国平均値は約 115 ト 2 /日であるので、焼却炉の処理能力を 100 ト 2 /日とし、燃焼工学 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	進へい効果が無いとして設定した。	表5.21、表5.23を参照	
単位	-	1	m ²		μ Sv/h per Bq/g	h/y
選定値	元素依存	0.001	40	1	核 依存	300
決定點	并通	州	囲	半剰	東	増
パラメータ	核種が排気に移行する割合(焼 却処理)	焼却炉壁に付着する割合	焼劫炉壁の表面積	外部被ばくに対する遮へい将数(焼却炉補修作業者)	外部被试<線量換算係数(焼却 一焼却炉補修作業)	年間作業時間(焼켚炉補修)
No.	63	64	99	99	<i>L</i> 9	89

※分布型の「*」は分布を考えないことを示す。

表 5.6 パラメータの分布に関する設定 (RI 汚染物) (9/11)

使用経路	b12c, b26c, b27, b27c	b12c, b26c, b27, b27c	b12c
分布幅選定根拠	放出高さ60mと、気象官署別の地上風速の平均値の最小値及び最大値(それぞれ1.4 ms及び5.7ms、日本統計年鑑(2010)1)から推定した60m高さの平均風速の幅である2.2~8.9 msに対して、気象指針の式によって得られた単位放出率あたりの地表空気中濃度の風下距離に対する最大値の幅である1.6×10°~2.3×10° sm³と、評価点に風が吹ぐ割合の範囲である1 8 ~100%から、以下の通り計算して選定した。 $\frac{1}{8}$ ~100%から、以下の通り計算して選定した。 $\frac{1}{8}$ ~4100%から、以下の通り計算して選定した。 $\frac{1}{8}$ ~4100%から、以下の通り計算して選定した。 $\frac{1}{8}$ ~4100%から、以下の通り計算して選定した。 $\frac{1}{8}$ ~5~2× $\frac{1}{8}$ ~5~4~5~40~4)を称型は、分布幅が1桁以上に分布していることと、対象とするペラメータが自然現象を示すものであり中央値付近の発生確率が多いと考えられることから、対数正規分布とした。	焼却処理能力(分布幅:3~300vd・炉)から求 められる年間処理量は、施設の稼働率を90%と すると以下のようになる。 最小値:3×365×0.9–985.5(V年) 最小値:3×365×0.9–98.55(V年) 最小値:30×365×0.9–98.55(V年) 1年間に焼却処理されるクリアランス対象物割 6の重量(分布幅:330~1,000V件)と上記の年 間処理量とから、混合割合が最も幅が広い分 布となるよう、上記の2つの最小値と最大値を組 み合わせて以下の通り求めた。 最小値:330÷98.550-3.54×10³ 最大値:1,000÷98.55-1.015 なお、最小値は有効数字1桁となるよう下方に なお、最小値は有効数字1桁となるよう下方に なお、最小値は有効数字1桁となるよう下方に なお、最小値は有効数字1桁となるよう下方に なお、最小値は有効数字1桁となるよう下方に なる、3×10³、最大値は1を超えるため1と設 定した。 分布型は分布幅の桁が大きいことから対数一 様分布とした。	以下に示す焼却処理能力を稼働時間24h/日から求め、最大値は上方へ、最小値は下方へ丸めた値とした。 最小値:焼却炉壁の表面積(No.65)の分布幅設に根拠である処理可能容量の最小値3(t/d・炉が)ら設定した。 最大値:1日当たりの処理能力が50t以上の産業廃棄物焼却施設から全国を平均的に抽出した。 に入めたるの最大値253(v基/日)を上方た調査結果からの最大値253(v基/日)を上方に加いた。
最大値	2.3E-05	1	3500
最小値	1.6E-08	3E-3	34
分布型	女数 分 分 分 分	女 数一 数 年	A数正规 分布 分布
決定論選定値根拠	EUR-16198に示された煙突高さ60m及び風速5m/sにおける拡散係数を使用。	焼却能力を100トン/日、厚生省の通知を参考に焼却施設の稼働日数を330日と想定すると、年間の処理量は約33,000 tonとなる。これと年間の焼却対象クリアランス廃棄物の物量を基に設定した。 一括:1,000(ton/y) ÷ 33,000(ton/y) = 0.030	「ごみ焼却施設台帳[全連続燃焼方式編]平成10年度版」によれば、全連続燃焼方式の焼却炉の能力の全国平均値は約115トン/日であるので、焼却処理施設の処理能力を100トン/日とし、1日の稼働時間を24時間として設定した。
単位	s/m³	ı	s s s s
選定値	5.00E-06	0.03	1.20E+03
決定論	烘	<u>,</u> 柏	# 用
No. パラメータ	69 大気中での分散係数	70 焼却炉でのほかの廃棄物との混合割合 混合割合 (1994) (19	71 焼却処理能力

表 5.6 パラメータの分布に関する設定 (RI 汚染物) (10/11)

N CN	くしょう イン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		护	· · 女子 · · · · · · · · · · · · · · · · ·	(***) 注:// 決定論選定値根拠	分布型	最小値	最大値	分布幅選定根拠	使用経路
72	沈着した核種のうち残存する割合(焼却処理)	州		1	全て残存すると設定した。	一様分布	0	1	沈着した放射性核種が土壌へ全く残留しない場合から、すべての放射性核種が土壌へ残留する場合を考慮して範囲を選定した。 分布型は一様分布とした。	b12c, b26c, b27, b27c
73	核種の放出期間(焼却処理)	新	25	y	焼却処理場の榛業期間を50年と想定し、そのうちの半分の期間、排気が放出されるものとした。	一樣分布	1	50	最小値はクリアランスされた廃棄物の焼却処理が1年だけ行われると想定した。最大値は選定値根拠における想定操業期間の全期間とした。 かっ型は一様分布とした。	b12c, b26c, b27, b27c
74	飼料から音産物への核種の移 行係数	半	元 校 素存	d/kg または d/L	牛乳:表5.12、牛肉:表5.13、豚肉:表5.14、 鶏肉:表5.15、鶏卵:表5.16 を参照	対数正規 分布	式 茶 存		牛乳:表5.12、牛肉:表5.13、豚肉:表5.14、鶏肉:表5.15、鶏卵:表5.16 を参照 分布型は対数正規分布とした。	b12c, b27, b27c
75	放射性核種を含む飼料の混合割合	州	1	1	汚染した飼料のみで飼育されるとした。	一樣分布	0	1	対象とする牧草を飼料として全く用いない場合と、放射性核種を含む飼料で飼育する場合を考慮に変して範囲を選定した。 分布型は一様分布とした。	b12c, b27, b27c
92	家畜の飼料摂取量	為牛	7.2	kg-dry/d	IAEA-TRS-No.364	正規分布	5	10	IAEA TRS No.364の範囲を用いた。 分布型は正規分布とした。	b12c, b27, b27c
77		新	16.1	kg-dry/d	IAEA-TRS-No.364	正規分布	10	25	IAEA TRS No.364の範囲を用いた。 分布型は正規分布とした。	b12c, b27, b27c
78		座	2.4	kg-dry/d	IAEA-TRS-No.364	正規分布	2	3	IAEA TRS No.364の範囲を用いた。 分布型は正規分布とした。	b12c, b27, b27c
79		緩	0.07	kg-dry/d	IAEA-TRS-No.364	正規分布	0.05	0.15	IAEA TRS No.364の範囲を用いた。 分布型は正規分布とした。	b12c, b27, b27c
80	畜産物の市場係数	州	1	ı	自給自足を考慮して、最も保守的に選定した。 た。	一樣分布	0	П	対象とする畜産物を全く摂取しない場合から自 給自足の場合までを考慮して範囲を選定した。 分布型は一様分布とした。	b12c, b27, b27c
81	畜産物の輸送時間	米 運	0	р	保守的に、生産された畜産物を直ちに消費 する人を評価対象とした。	*			評価結果に与える影響が他のパラメータに比べて明らかに小さいと判断したため変動を考慮していない。	b12c, b27, b27c
82	畜産物の年間摂取量(成人)	牛肉	8	kg/y	「平成8年版国民栄養の現状」(厚生省保健 医療局健康増進栄養課監修、第一出版	正規分布	0	21	「平成8年版国民栄養の現状」に示されたデータを参考に、選定値を中央値とした正規分布を	b27
83		豚肉	6	kg/y	(株)、1996年)	正規分布	0	24	想定し、±3.09。の範囲を最小値、最大値とした。 ただし最小値は負の値となるため0とした。	b27
84		鶏肉	7	kg/y		正規分布	0	18		b27
85		緩	16	kg/y		正規分布	0	41		b27
98		升	44	L/y		正規分布	0	149		b27
		, 1		1		<u> </u>		*		7

※分布型の「*」は分布を考えないことを示す。

表 5.6 パラメータの分布に関する設定 (RI 汚染物) (11/11)

No.	パラメータ	決定論	選定値	単位	決定論選定値根拠	分布型	最小値	最大値	分布幅選定根拠	使用経路
87	畜産物の年間摂取量(子ども)	4	8	kg/y	「平成9年版国民栄養の現状」(厚生省保健 医療局健康増進栄養課監修、第一出版	正規分布	0	8	各畜産物に対する成人の摂取量(選定値)に 対する子どもの摂取量(選定値)の比(子ども/	b12c, b27c
88			4	kg/y	(株)、1997年)	正規分布	0	11	成人)を、成人に対する分布幅に乗じた設定とした。	b12c, b27c
68		緩夕	5	kg/y		正規分布	0	13		b12c, b27c
06		鶏卵	10	kg/y		正規分布	0	26		b12c, b27c
91		牛貂	29	L/y		正規分布	0	86		b12c, b27c
92	核種が排気に移行する割合(溶 融処理)	用	元 女 本	1	表5.20を参照	一樣分布	元 教 存	据 体	表5.20を参照 分布型は一様分布とした。	b26c, b27, b27c
93	焼却処理に伴う廃棄物の減重比	州	10	•	環境省の統計データ「産業廃棄物の排出及び処理状況(平成14年度~平成18年度)」より、当該5年間について、各年の産業廃棄物の中間処理量と処理残渣量から減重比を求め、5年間の平均を計算すると2.35となった。また、環境省の統計データ「日本の廃棄物処理 平成18年度の5年間について、各年のごみの直接焼却量と焼却残渣量から減重比を求め、5年間の平均を計算すると8.11となった。減重比については、ばちつきが大きいが、焼却炉内の濃縮が大きい値8.11を採用し、さらに、絵声きよって10と、た	一樣分布	4	99	最小値、最大値共に、「絵とき廃棄物の焼却技術」(志垣政信編者、オーム社)表1-10(p.22)にある産業廃棄物の分析値例の灰分(%)からなめた、種類毎の灰分の割合は約1%~23%となっている。 最小値は、ちみがらの灰分22.7%から得られる減重比(144を下方に丸めて4とした。 減重比44を下方に丸めて4とした。 最大値は、バガス(砂糖きびかす)の灰分 1.66%から得られる減重比60.2を下方に丸めて60とした。	b26c, b27,
94	溶融処理能力	用	350	% S	溶離処理施設に関する現地調査の結果、 施設における1日の溶融炉の処理容量は、 12ton/日から31ton/日の範囲であったため、 処理容量を30ton/日、1日の連続運転を24 時間とした。 3×107(g/d)÷(24(h/d)×3,600(s/h))= 347.2(g/s)に裕度を持たせて350(g/s)に設定 した。	一樣分布	120	350	溶融処理施設の現地調査の結果、11日の溶融 炉の処理容量は12 V日から31V日の範囲であ った。これより、最小を10V日、最大を30V日(選 定値根拠に同じ)、11日の連続運転を24時間と して求めた値を丸めて設定。 分布型は一様分布とした。	b26c, b27, b27c
95	溶融炉での他の焼却灰との混 合割合	半	1	1	焼却処理施設で発生した焼却灰が他の焼 却灰と混合しないでそのまま溶融炉に送られるとして設定した。	*			他の焼却灰との混合は想定できないため、分 布幅等は選定しない。	b26c, b27, b27c

※分布型の「*」は分布を考えないことを示す。

表 5.7 元素依存パラメータ (放出係数)

			(-)			
元素	選定値	選定根拠	分布型	最小値	最大値	範囲選定根拠
Н	1.15E+00	NUREG-0782	対数正規	1.0E-02	1.0E+01	IAEA-TECDOC-401
C	1.0E-01	IAEA-TECDOC-401	対数正規	6.0E-03	2.0E+00	IAEA-TECDOC-401
P	3.0E-02	IAEA-TECDOC-401	対数正規	2.0E-03	5.0E-01	IAEA-TECDOC-401
Mo	3.0E-02	化学的性質の類似性からMnと同一に選定	対数正規	2.0E-03	5.0E-01	化学的性質の類似性からMnと同一に選定
Tc	1.0E-01	化学的性質の類似性からIと同一に選定	対数正規	6.0E-03	2.0E+00	化学的性質の類似性からIと同一に選定
I	1.0E-01	IAEA-TECDOC-401	対数正規	6.0E-03	2.0E+00	IAEA-TECDOC-401

元素名太字斜体:既往の評価で対象となっていなかった元素 上記表中にない核種の既往のクリアランス評価で使用された選定値:Mn=3.0E-02、分布幅:最小値2.0E-03、最大値5.0E-01

原子炉クリアランス報告書 調査文献

原士炉クッケットンへがロロ 核燃施設クリアランス報告書 重水炉等クリアランス報告書

IAEA-TECDOC-401 NRPB-R161

表 5.8 元素依存パラメータ (帯水層土壌の分配係数)

	24 are 2001/16-10 2 2 2 (14/4/2) = 24/4/2010								
	(mL/g)								
元素	選定値	選定根拠	分布型	最小値	最大値	範囲選定根拠			
Н	0.0E+00	IAEA-TECDOC-401	-	-	-	分布を考慮しない			
C	2.0E+00	IAEA-TECDOC-401	対数正規	4.0E-02	1.0E+02	文献值※1			
P	9.0E+00	IAEA TRS No.364(砂)	対数正規	1.0E+00	1.0E+02	IAEA-TECDOC-401			
Mo	7.4E+00	IAEA TRS No.364(砂)	対数正規	8.2E-01	6.7E+01	IAEA TRS No.364(砂)			
Tc	1.4E-01	IAEA TRS No.364(砂)	対数正規	3.7E-03	5.0E+00	IAEA TRS No.364(砂)			
I	1.0E+00	IAEA TRS No.364(砂)	対数正規	1.3E-02	8.5E+01	IAEA TRS No.364(砂)			

元素名太字斜体:既往の評価で対象となっていなかった元素

原子炉クリアランス報告書 調査文献

核燃施設クリアランス報告書 重水炉等クリアランス報告書

加藤他、原子力学会誌Vol.28 No.4

IAEA TRS No.364 (砂)

ORNL-5786

JAERI-M93-113(原研事業許可申請書から変更)

※1: IAEA-TECDOC-401、JAERI-M93-113(原研事業許可申請書から変更) に示された値より最大値を設定した。最小 値は、(選定値)²÷最大値とした。(左記の文献より最小値は0であるが、対数正規分布に0を設定することが できないため。)

表 5.9 元素依存パラメータ (米への移行係数)

	(Bq/g-wet per $Bq/g)$								
元素	選定値	選定根拠	分布型	最小値	最大値	範囲選定根拠			
Н	5.0E+00	IAEA-TECDOC-401	対数正規	5.0E-01	5.0E+01	選定値の1/10倍、10倍			
C	5.5E-01	NUREG/CR-3585	対数正規	1.0E-03	5.5E+00	文献值※1			
P	1.0E+00	IAEA S.S. No.57	対数正規	1.0E-01	1.0E+01	選定値の1/10倍、10倍			
Mo	2.0E-01	IAEA-TECDOC-1000	対数正規	2.0E-02	2.0E+00	選定値の1/10倍、10倍			
Tc	6.3E-01	IAEA TRS No.364(シリアル)	対数正規	5.2E-02	7.5E+00	IAEA TRS No.364			
I	2.0E-02	IAEA S.S. No.57	対数正規	2.0E-03	2.0E-01	選定値の1/10倍、10倍			

元素名太字斜体:既往の評価で対象となっていなかった元素

原子炉クリアランス報告書 核燃施設クリアランス報告書 調査文献

重水炉等クリアランス報告書

IAEA TRS No.364 IAEA S.S. No.57 IAEA-TECDOC-401 IAEA-TECDOC-1000 NUREG/CR-3585 ORNL-5786 NCRP-123

※1: IAEA TRS No.364、IAEA S.S. No.57、IAEA-TECDOC-401、IAEA-TECDOC-1000、NUREG/CR-3585及びORNL-5786に示さ れた値の最小値若しくは最大値。

表 5.10 元素依存パラメータ (米以外 (葉菜、非葉菜、果実) への移行係数)

	(Bq/g-wet per $Bq/g)$								
元素	選定値	選定根拠	分布型	最小値	最大値	範囲選定根拠			
Н	5.0E+00	IAEA-TECDOC-401	対数正規	5.0E-01	5.0E+01	選定値の1/10倍、10倍			
С	5.5E-01	NUREG/CR-3585	対数正規	1.0E-03	5.5E+00	文献值※1			
P	1.0E+00	IAEA Safety Reports Series No.44	対数正規	1.0E-01	1.0E+01	選定値の1/10倍、10倍			
Mo	2.0E-01	IAEA Safety Reports Series No.44	対数正規	2.0E-02	2.0E+00	選定値の1/10倍、10倍			
Tc	5.0E+00	IAEA Safety Reports Series No.44	対数正規	1.4E-03	2.5E+03	IAEA TRS No.364			
I	2.0E-02	IAEA S.S. No.57	対数正規	2.0E-03	2.0E-01	選定値の1/10倍、10倍			

元素名太字斜体: 既往の評価で対象となっていなかった元素

調査文献 原子炉クリアランス報告書

NCRP-123

核燃施設クリアランス報告書 重水炉等クリアランス報告書 IAEA Safety Reports Series No.44

IAEA TRS No.364 IAEA S.S. No.57 IAEA-TECDOC-401 IAEA-TECDOC-1000 NUREG/CR-3585 ORNL-5786

※1: IAEA Safety Reports Series No.44、IAEA TRS No.364、IAEA S.S. No.57、IAEA-TECDOC-401、IAEA-TECDOC-1000、NUREG/CR-3585及びORNL-5786に示された値の最小値若しくは最大値。

表 5.11 元素依存パラメータ (飼料への移行係数)

	(Bq/g-dry per Bq/g)								
元素	選定値	選定根拠	分布型	最小値	最大値	範囲選定根拠			
Н	5.0E+00	IAEA-TECDOC-401	対数正規	5.0E-01	5.0E+01	選定値の1/10倍、10倍			
С	2.8E+00	農作物wetの5倍	対数正規	5.0E-03	2.8E+01	農作物wetの5倍※1			
P	3.0E+00	IAEA S.S. No.57	対数正規	3.0E-01	3.0E+01	選定値の1/10倍、10倍			
Mo	1.2E-01	NUREG/CR-3585	対数正規	1.2E-02	1.2E+00	選定値の1/10倍、10倍			
Tc	7.6E+01	IAEA TRS No.364(牧草)	対数正規	2.3E-01	2.7E+03	IAEA TRS No.364			
I	3.4E-03	IAEA TRS No.364(牧草)	対数正規	9.7E-05	1.2E-01	IAEA TRS No.364			

元素名太字斜体: 既往の評価で対象となっていなかった元素

調査文献 原子炉クリアランス報告書

核燃施設クリアランス報告書 重水炉等クリアランス報告書

IAEA TRS No.364 IAEA S.S. No.57 IAEA-TECDOC-401 IAEA-TECDOC-1000 NUREG/CR-3585 ORNL-5786

※1: 農作物(葉菜、非葉菜、果実)の最小値、最大値を水分含有率を80%として計算。

表 5.12 元素依存パラメータ (牛乳への移行係数)

	(d/L)								
元素	選定値	選定根拠	分布型	最小値	最大値	範囲選定根拠			
Н	1.5E-02	IAEA TRS No.364	対数正規	1.5E-03	1.5E-01	選定値の1/10倍、10倍			
С	5.0E-03	IAEA-TECDOC-401	対数正規	5.0E-04	5.0E-02	選定値の1/10倍、10倍			
P	2.0E-02	IAEA S.S. No.57	対数正規	2.0E-03	2.0E-01	選定値の1/10倍、10倍			
Mo	1.4E-03	NUREG/CR-3585	対数正規	1.4E-04	1.4E-02	選定値の1/10倍、10倍			
Tc	1.4E-04	IAEA TRS No.364	対数正規	2.3E-05	1.1E-03	IAEA TRS No.364			
I	1.0E-02	IAEA TRS No.364	対数正規	1.0E-03	3.5E-02	IAEA TRS No.364			

元素名太字斜体:既往の評価で対象となっていなかった元素

調査文献 原子炉クリアランス報告書

核燃施設クリアランス報告書 重水炉等クリアランス報告書

IAEA S.S. No.57 IAEA-TECDOC-401 NUREG/CR-3585 PNL-3209 IAEA TRS No.364

IAEA-TECDOC-1000 ORNL-5786

表 5.13 元素依存パラメータ (牛肉への移行係数)

	(d/kg)								
元素	選定値	選定根拠	分布型	最小値	最大値	範囲選定根拠			
Н	1.0E-02	IAEA-TECDOC-401	対数正規	1.0E-03	1.0E-01	選定値の1/10倍、10倍			
C	2.0E-02	IAEA-TECDOC-401	対数正規	2.0E-03	2.0E-01	選定値の1/10倍、10倍			
P	8.0E-02	IAEA S.S. No.57	対数正規	8.0E-03	8.0E-01	選定値の1/10倍、10倍			
Mo	6.8E-03	NUREG/CR-3585	対数正規	6.8E-04	6.8E-02	選定値の1/10倍、10倍			
Tc	1.0E-04	IAEA TRS No.364	対数正規	1.0E-05	1.0E-02	選定値の1/10倍、文献値※1			
I	4.0E-02	IAEA TRS No.364	対数正規	7.0E-03	5.0E-02	IAEA TRS No.364			

調査文献 原子炉クリアランス報告書

核燃施設クリアランス報告書 重水炉等クリアランス報告書

IAEA S.S. No.57 IAEA-TECDOC-401 NUREG/CR-3585 NUREG/CR-2976 PNL-3209 IAEA TRS No.364

IAEA TRS No.364 IAEA-TECDOC-1000

ORNL-5786

※1: IAEA S.S. No.57、IAEA-TECDOC-401、NUREG/CR-3585、PNL-3209及びIAEA TRS No.364に示された値の最小値若しくは最大値。

表 5.14 元素依存パラメータ (豚肉への移行係数)

	(d/kg)								
元素	選定値	選定根拠	分布型	最小値	最大値	範囲選定根拠			
Н	8.0E-02	PNL-3209	対数正規	8.0E-03	8.0E-01	選定値の1/10倍、10倍			
C	1.7E-01	PNL-3209	対数正規	1.7E-02	1.7E+00	選定値の1/10倍、10倍			
P	5.4E-01	PNL-3209	対数正規	5.4E-02	5.4E+00	選定値の1/10倍、10倍			
Mo	2.0E-02	PNL-3209	対数正規	2.0E-03	2.0E-01	選定値の1/10倍、10倍			
Tc	1.5E-04	IAEA TRS No.364	対数正規	1.0E-04	2.0E-04	IAEA TRS No.364			
I	3.3E-03	IAEA TRS No.364	対数正規	1.8E-04	3.3E-03	IAEA TRS No.364			

元素名太字斜体:既往の評価で対象となっていなかった元素

調査文献 原子炉クリアランス報告書

核燃施設クリアランス報告書 重水炉等クリアランス報告書

NUREG/CR-2976 PNL-3209 IAEA TRS No.364

表 5.15 元素依存パラメータ (鶏肉への移行係数)

	(d/kg)								
元素	選定値	選定根拠	分布型	最小値	最大値	範囲選定根拠			
Н	2.5E+00	PNL-3209	対数正規	2.5E-01	2.5E+01	選定値の1/10倍、10倍			
C	3.7E+00	PNL-3209	対数正規	3.7E-01	3.7E+01	選定値の1/10倍、10倍			
P	1.9E-01	PNL-3209	対数正規	1.9E-02	1.9E+00	選定値の1/10倍、10倍			
Mo	5.0E-02	NUREG/CR-2976	対数正規	2.0E-03	2.0E+00	文献值※1			
Tc	3.0E-02	IAEA TRS No.364	対数正規	3.0E-02	2.0E-01	IAEA TRS No.364			
I	1.0E-02	IAEA TRS No.364	対数正規	1.0E-03	1.0E-01	選定値の1/10倍、10倍			

元素名太字斜体: 既往の評価で対象となっていなかった元素

調査文献 原子炉クリアランス報告書

核燃施設クリアランス報告書 重水炉等クリアランス報告書

NUREG/CR-2976 PNL-3209 IAEA TRS No.364

※1: NUREG/CR-2976、PNL-3209及びIAEA TRS No.364に示された値の最小値若しくは最大値。

表 5.16 元素依存パラメータ (鶏卵への移行係数)

	(d/kg)								
元素	選定値	選定根拠	分布型	最小値	最大値	範囲選定根拠			
Н	2.7E+00	PNL-3209	対数正規	2.7E-01	2.7E+01	選定値の1/10倍、10倍			
С	2.8E+00	PNL-3209	対数正規	2.8E-01	2.8E+01	選定値の1/10倍、10倍			
P	1.0E+01	PNL-3209	対数正規	1.0E+00	1.0E+02	選定値の1/10倍、10倍			
Mo	5.0E-01	NUREG/CR-2976	対数正規	5.0E-02	5.0E+00	選定値の1/10倍、10倍			
Tc	3.0E+00	IAEA TRS No.364	対数正規	9.9E-04	3.0E+01	文献値※1、選定値の10倍			
I	3.0E+00	IAEA TRS No.364	対数正規	2.0E+00	4.0E+00	IAEA TRS No.364			

元素名太字斜体: 既往の評価で対象となっていなかった元素

調査文献 原子炉クリアランス報告書

核燃施設クリアランス報告書 重水炉等クリアランス報告書

NUREG/CR-2976 PNL-3209 IAEA-SM-237/54 IAEA TRS No.364

※1: NUREG/CR-2976、PNL-3209、及びIAEA TRS No.364に示された値の最小値若しくは最大値。

表 5.17 元素依存パラメータ (魚類への濃縮係数)

	(L/kg)								
元素	選定値	選定根拠	分布型	最小値	最大値	範囲選定根拠			
Н	1.0E+00	IAEA TRS No.364	対数正規	6.0E-01	1.0E+00	IAEA TRS No.364			
С	5.0E+04	IAEA TRS No.364	対数正規	5.0E+03	5.0E+04	IAEA TRS No.364			
P	1.0E+05	IAEA S.S. No.57	対数正規	3.0E+03	1.0E+05	IAEA TRS No.364			
Мо	1.0E+01	NUREG/CR-3585	対数正規	1.0E+00	1.0E+02	選定値の1/10倍、10倍			
Тс	2.0E+01	IAEA TRS No.364	対数正規	2.0E+00	8.0E+01	IAEA TRS No.364			
I	4.0E+01	IAEA TRS No.364	対数正規	2.0E+01	6.0E+02	IAEA TRS No.364			

元素名太字斜体:既往の評価で対象となっていなかった元素

調査文献 原子炉クリアランス報告書

核燃施設クリアランス報告書 重水炉等クリアランス報告書

IAEA S.S. No.57 IAEA-TECDOC-401

NUREG/CR-3585 UCRL-50564 Rev.1

IAEA TRS No.364

IAEA-TECDOC-1000

表 5.18 元素依存パラメータ (溶融過程での粉塵への移行係数)

	(-)								
元素	選定値	選定根拠	分布型	最小値	最大値	範囲選定根拠			
Н	1.0E+00	Chapuisの文献	一様分布	9.0E-01	1.0E+00	% 1			
С	1.0E+00	保守的に選定	一様分布	9.0E-01	1.0E+00	% 1			
P	9.7E-01	NUREG-1640	一様分布	4.9E-01	1.5E+00	※ 2			
Mo	2.0E-02	NUREG-1640	一様分布	1.0E-02	3.0E-02	※ 2			
Tc	1.0E+00	IAEA S.S. No.111-P-1.1	一様分布	9.0E-01	1.0E+00	% 1			
I	1.0E+00	化学的性質の類似性からHと同一に選定	一様分布	9.0E-01	1.0E+00	化学的性質の類似性からHと同一に選定			

元素名太字斜体: 既往の評価で対象となっていなかった元素

調査文献 原子炉クリアランス報告書

核燃施設クリアランス報告書 重水炉等クリアランス報告書

IAEA S.S. No.111-P-1.1 NUREG-1640

Radiation protection 117

Chapuisの文献

※1: 選定値が1.0E+00の場合、最小値を9.0E-01、最大値を1.0E+00と選定した。

※2: 最小値を選定値の-50%、最大値を選定値の+50%と選定した。

表 5.19 元素依存パラメータ (焼却処理において核種が排気へ移行する割合)

	(-)								
元素	選定値	選定根拠	分布型	最小値	最大値	範囲選定根拠			
Н	5.0E-01	IAEA-TECDOC-401	一様分布	1.0E-01	1.0E+00	IAEA-TECDOC-401			
С	5.0E-01	IAEA-TECDOC-401	一様分布	1.0E-01	1.0E+00	IAEA-TECDOC-401			
P	1.0E-01	IAEA-TECDOC-401	一様分布	1.0E-03	1.0E+00	IAEA-TECDOC-401			
Mo	1.0E-03	EUR-16198	一様分布	5.0E-04	1.5E-03	※ 1			
Tc	1.0E-03	EUR-16198	一様分布	5.0E-04	1.5E-03	※ 1			
I	1.0E-01	IAEA-TECDOC-401	一様分布	1.0E-03	1.0E+00	IAEA-TECDOC-401			

調查文献 IAEA-TECDOC-401

EUR-16198

※1: 最小値を選定値の-50%、最大値を選定値の+50%と選定した。

表 5.20 元素依存パラメータ (溶融処理において核種が排気へ移行する割合)

	(-)						
元素	選定値	選定根拠	分布型	最小値	最大値	範囲選定根拠	
Н	1.0E+00	09廃輸報-0003※1から設定	一様分布	9.0E-01	1.0E+00	% 2	
С	1.0E+00	09廃輸報-0003※1から設定	一様分布	9.0E-01	1.0E+00	% 2	
P	0.0E+00	NUREG1640からSTEELの値	-	-	-	* 3	
Mo	0.0E+00	NUREG1640からSTEELの値	-	-	-	* 3	
Tc	0.0E+00	09廃輸報-0003※1から設定	-	-	-	* 3	
I	1.0E+00	09廃輸報-0003※1から設定	一様分布	9.0E-01	1.0E+00	※ 2	

調査文献 09 廃輸報-0003

NUREG-1640

EUR-16198

※1: 独立行政法人 原子力安全基盤機構「平成20年度 放射性廃棄物処分に関する調査 (浅地中処分に関する調査) 報告書」、09 廃輸報-0003 (平成21年8月)

※2: 選定値が1.0E+00の場合、最小値を9.0E-01、最大値を1.0E+00と選定した。

※3: 選定値が0.0E+00の場合は、分布幅を考慮しない。

表 5.21 外部被ばく線量換算係数 (RI 汚染物、確率論)

経路名/単位	核種	選定値	分布型	最小値	最大値
	H-3	0.0		ı	_
	C-14	0.0		-	_
焼却処理 (可燃物運搬-外部)	P-32	0.0	\+	ı	_
(μSv/h per Bq/g)	Mo-99	2.2E-02	一様	1.4E-02	3.5E-02
	Tc-99m	1.2E-02		7.9E-03	1.9E-02
	I-125	7.4E-04		5.5E-04	1.1E-03
	H-3	0.0		ı	_
	C-14	0.0		ı	_
焼却処理 (焼却炉補修-外部)	P-32	0.0	\+	ı	_
(μSv/h per Bq/cm ²)	Mo-99	3.8E-03	一様	3.2E-03	4.4E-03
	Tc-99m	1.8E-03		1.5E-03	2.1E-03
	I-125	2.6E-04		2.2E-04	3.7E-04

[※]Mo-99 は短半減期の子孫核種である Tc-99m の換算係数を含めている。

表 5.22 可燃物焼却処理-可燃物運搬(RI 汚染物)

シナリオ	可燃物等の運搬作業	経路名	No.1 可燃物等の積み下ろし作業 No.4 可燃物等の運搬作業
パラメータ名	線量率	単位	(μSv/h) per (Bq/g)
選定値	核種依存	分布型	一様分布
最小値	核種依存	最大値	核種依存

選定値根拠:

以下の条件で QAD-CGGP2R により算出している。

可燃物等の材質:プラスティック類とプラスティック類以外による混合廃棄物を想定

 $(H:3.57\times10^{-2}, C:2.36\times10^{-1}, N:2.86\times10^{-3}, O:4.19\times10^{-2}, S:6.46\times10^{-4},$

Cl:9.84×10⁻³, Ca:2.34×10⁻²; 重量割合)

可燃物等の密度: 0.35 (g/cm³)

可燃物等の重量:5(ton)

可燃物等の寸法:長さ5m×幅2m×高さ1.5m

評価点は 5m×1.5m の面の表面から 1m とした。

分布幅選定根拠:

選定値 ケース 1 ケース2 長さ 5m×幅 2m 可燃物等の寸法 長さ 3m×幅 1.5m 長さ 8.5m×幅 2m ×高さ 1.5m ×高さ 1.2m ×高さ 2.5m 5m×1.5m の面の 評価点 8.5m×2.5m の面の 3m×1.2m の面の 表面から 1m 表面から 1m 表面から 1m 可燃物等密度(g/cm³) 0.35 0.35 0.35 可燃物等重量(ton) 15 ※ケース 1 は小型トラック(2 ton 車)、ケース 2 は大型トラック(15 ton 車)を想定した。

[※]選定値が 0.0 の核種については分布幅を考えない。

表 5.23 可燃物焼却処理-焼却炉補修作業(RI 汚染物)

シナリオ	焼却処理施設の運転作業	経路名	No. 5 焼却炉の補修作業
パラメータ名	線量率	単位	(μSv/h) per (Bq/g)
選定値	核種依存	分布型	一様分布
最小値	核種依存		核種依存

選定値根拠:

線源サイズを以下により選定した。

- ・「燃焼工学ハンドブック」のロータリーキルン炉の容積 26 m³ から設定。
- ・直径 2m、長さ 7.5m の円筒内面に厚さ 2cm の焼却灰が付着しているとし、評価点は円筒の中心に設定した。

分布幅選定根拠:

選定値 ケース1 ケース2

円筒の寸法 直径 2m、長さ 7.5m 直径 5.8m、長さ 11.5m 直径 1m、長さ 3.7m

焼却灰の付着厚 2 cm 2 cm 2 cm

評価点 円筒の中心 円筒の中心 円筒の中心

焼却灰密度(g/cm³) 0.65 0.65 0.65

%ケース 1 はロータリーキルン炉の容積 150m^3 (焼却炉壁面積 208m^2 相当) から、ケース 2 はロータリーキルン炉の容積 3m^3 (焼却炉壁面積 12m^2 相当) から設定した。

表 5.24 パラメータの分布に関する設定(放射化物)(1/2)

使用経路	d03, d05	403	d03	d03	405	d05
分布幅選定根拠	最大値は、選定値と同様に、第2次中間報告書の表3.4に示した物量を基に、混合率の最大値(0.33)を上方に丸めた値である0.4とした。最小値は、最大値(選定値)の1/10である0.04とした。なお、第2次年間報告書に記載した「国内の代表的な医療機関、研究機関等の放射線発生装置使用施設から発生する廃棄的等の物量に関するアンケート調査(高工を研が大学等放射線施設協議会等の協力を得で行った調査)では、混合率の最力を得で行った調査が得られていたことから、0.04はアンケート調査の結果に保守性を考慮した値となっている。分布型は一様分布とする。	最小値は鉄板5mmによる遮へいを想定した場合のCo-60の遮へい係数を基に設定した。 最大値は遮へいが全くないことを想定した。 分布型は一様分布とした。	最小値は放射線発生装置使用施設の小規模施設に対する作業時間の選定値とした。最大値は年間労働時間のすべてを廃棄物の側で作業するものとした。分布型は一様分布とする。	値は表5.25を、算出方法は表5.26を参照。 分布型は一様分布とする。	最小値は放射線発生装置使用施設の小規模施設に対する作業時間の選定値とした。 最大値は年間労働時間のすべてを廃棄物 の側で作業するものとした。分布型は一様分 布とする。	埋立作業場での作業者に対し、建設機械 (小型ブルドーザ~大型ブルドーザ)の重 量、形状を考慮した遮へい計算を基に選定 した。分布型は一様分布とする。
最大値	0.4	1	2,000	核種 依存	2,000	0.45
最小値	0.04	0.8	20	核種 依存	20	0.25
分布型	一 榛分布	一樣分布	一樣分布	一様分布	一 榛分布	一樣分布
決定論選定値根拠	カリアランス対象物量と「放射性廃棄物でない廃棄物」の量の推定値から0.4と設定した。	NUREG/CR-0134 (Co-60)	放射線発生装置使用施設の大規模施設については、作業量から計算される作業時間は年間の労働時間を超えるため、年間労働時間の半分の時間を廃棄物の側で作業するものとした。	表5.25を参照	放射線発生装置使用施設の大規模施設に ついては、作業量から計算される作業時間は 年間の労働時間を超えるため、年間労働時 間の半分の時間を廃棄物の側で作業するも のとした。 8(h/d)×5(d/w)×50(w/y)×0.5=1,000(h/y)	IAEA-TECDOC-401 (Co-60)
単位		ı	h/y	μ Sv/h per Bq/g	h/y	1
選定値	0.4	6.0	1,000	核種依存	1,000	0.4
決定論	大 加		大規模 施設 施設		大規模施設	
ハラメータ	混合率	運搬作業時の遮へい係数	運搬年間作業時間	外部被ば<線量換算係数(操業一運搬)	埋立年間作業時間	埋立作業時の遮へい係数
No.	1	2	8	4	N	9

表 5.24 パラメータの分布に関する設定(放射化物)(2/2)

使用経路	核種依存	107, r07c	r07, r07c	r07, r07c	r07, r07c	r07, r07c	r07, r07c	r07, r07c	r07, r07c
分布幅選定根拠	原子炉クリアランスの評価に做い、分布幅等 は選定しない。	クリアランスレベル以下のコンクリートから再生された粗骨材が、流通過程においてその他の粗骨材により100倍に混合される場合から、全く混合されない場合までを考慮して範囲を選定した。分布型は、分布幅が広いので対数一様分布とする。	最大値は、放射線発生装置使用施設の大規模施設の解体撤去作業期間(約3~4年)及び再利用されるまでの期間を考慮して5年とした。分布型は一様分布とする。	最大値は、第2次中間報告書 表3.4から推定される混合率の最大値(0.33)を上方に丸めた値とした。最小値は同表から得られる最小値(0.01)に保守性を考慮して選定値の1/10の値とした。分布型は一様分布とする。	最小値は、再生粗骨材が全く用いられない場合を想定した。最大値は「再生粗骨材を用いるコンクリートの基準(案)」をもとに選定した。分布型は一様分布とする。	「コンクリート工学ハンドブック」によると・租骨材の容積割合は $0.41\sim0.62$ (骨材最大寸法が $10\sim20$ mmの場合)・租骨材 (砕石) の密度 $(1.53\sim1.68$ g/cm³・となっており、最小値は 0.63 g/cm³ (-0.41×1.53 g/cm³)、最大値は 1.0 g/cm³ (-0.62×1.68 g/cm³)、最大値は 1.0 g/cm³ (-0.62×1.68 g/cm³)と選定した。相骨材密度は自然現象的であると想定されるため分布型は正規分布とする。	「コンクリート工学ハンドブック」に記載されている、普通コンクリートの密度の範囲(2.2~2.4 g/cm³)から選定した。 分布型は、建築材密度は中央値付近の値となる確率が高いと想定されるので正規分布とする。	最小値は、睡眠時間(8h/d×365d/y=2,920hy)をもとに選定した。最大値は1年間屋内にいるとした。 たいるとした。 分布型は、中央値付近の値となる確率が高いと想定されるため正規分布とする。	値は表5.25を、算出方法は表5.27を参照。 分布型は一様分布とする。
最大値		1	5	0.4	0.3		2.4	8,760	核種依存
最小値		0.01	1	0.04	0	0.63	2.2	3,000	核種 依存
分布型	*	★ ★ ★ ★ ★ ★ ★ ★ ★	一樣分布	一樣分布	一樣分布	正規分布	正規分布	正規分布	一樣分布
決定論選定值根拠	無限平板を模擬した半径500m、高さ2mの円 柱体系	保守的に、市場で他の多量のスクラップと混合することを考慮せず、1と選定した。	幾度かの処理工程を経て製品化されるため、 クリアランスされた後から再利用されるまでに かなりの期間を要すると考えら得るが、保守 的に1年に選定した。	発生するコングリートについては、1施設あたりの処理量を超える対象施設もあることから、非放射性廃棄物との混合のみを考慮して対象施設の最大値から求められる0.33から0.4と選定した。	「再生粗骨材を用いるコングリートの基準 (案)」(建設省建築研究所 1986年11月)を 基に選定した。	「コンクリート工学ハンドブック」(岡田清等編、(株)朝倉書店、1981年)より選定した。	「コンクリート工学ハンドブック」(岡田清等編、(株)朝倉書店、1981年)より選定した。	IAEA S.S. No.111-P-1.1	表5.25を参照
単位	μ Sv/h per Bq/g	1	y	ī	1	g/cm³	g/cm³	h/y	μ Sv/h per Bq/g
選定値	核種依存	1	П	0.4	0.15	-	2.3	6,000	核種依存
決定點				大規模施設					
パラメータ	外部被试<線量換算係数(操業一埋立作業)	市場係数(再生粗骨材)	クリアランスされた後から再利用されるまでの期間 れるまでの期間	再利用されるコンクリート中のクリ アランス対象物割合	再生粗骨材使用割合	粗骨材使用量	建築材密度	年間居住時間	外部被ば<線量換算係数(再利用 -壁材等)
No.	7	8	6	10	11	12	13	14	15

※分布型の「*」は分布を考えないことを示す。

表 5.25 外部被ばく線量換算係数(確率論)

経路名	核種	選定値	分布型	最小値	最大値
	Na-22	1.7E-01		1.2E-01	3.2E-01
	Mn-54	6.4E-02		4.6E-02	1.2E-01
 操業(運搬-外部)	Co-60	1.9E-01		1.3E-01	3.5E-01
(表 5.26 に示す条件から算出)	Sb-125	3.3E-02	一様	2.4E-02	6.2E-02
(衣 3.20 にかり木件が9昇山)	Cs-134	1.2E-01		8.7E-02	2.3E-01
	Eu-152	8.6E-02		6.1E-02	1.6E-01
	Eu-154	9.3E-02		6.6E-02	1.7E-01
	Na-22	7.0E-01		4.6E-01	7.5E-01
	Mn-54	2.6E-01		1.8E-01	2.8E-01
 再利用(壁材等-外部、成人)	Co-60	8.2E-01		5.2E-01	9.0E-01
(表 5.27 に示す条件から算出)	Sb-125	1.2E-01	一様	8.8E-02	1.3E-01
(女 3.27 (C///) 未 [// * 5 异山/	Cs-134	4.9E-01		3.3E-01	5.1E-01
	Eu-152	3.5E-01		2.3E-01	3.8E-01
	Eu-154	3.9E-01		2.5E-01	4.2E-01
	Na-22	9.1E-01		6.0E-01	9.8E-01
	Mn-54	3.4E-01		2.3E-01	3.6E-01
 再利用(壁材等-外部、子ども)	Co-60	1.1E+00		6.8E-01	1.2E+00
(成人の値の 1.3 倍)	Sb-125	1.6E-01	一様	1.1E-01	1.7E-01
\p\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Cs-134	6.4E-01		4.3E-01	6.6E-01
	Eu-152	4.6E-01		3.0E-01	4.9E-01
	Eu-154	5.1E-01		3.3E-01	5.5E-01

※単位:μSv/h per Bq/g

表 5.26 操業一運搬(放射化物)

シナリオ	操業	経路名	No.1 積み下ろし、No.3 運搬作業
パラメータ名	線量率	単位	(μSv/h) per (Bq/g)
選定値	核種依存	分布型	一様分布
最小値	核種依存	最大値	核種依存

選定値根拠:

線源は、JAERI-Data/Code 2008-001 に示された埋設処分シナリオの積み込み・運搬経路に対する密度 $2.0 g/cm^3$ の均質に汚染したコンクリートで、形状は $1 m \times 5 m \times 1 m$ の直方体を設定した。線源と評価点との距離は 1 mとした。

分布幅選定根拠:

	選定値	ケース 1	ケース 2			
放射化物等の寸法	長さ 5m×幅 1m	長さ 2m×幅 0.5m	長さ 4m×幅 2.5m			
	×高さ1m	×高さ1m	×高さ1m			
評価点	5m×1m の面の	2m×1m の面の	4m×1m の面の			
	表面から1m	表面から1m	表面から 1m			
放射化物等密度(g/cm³)	2.0	2.0	2.0			
放射化物等重量(ton)	10	2	20			
※ケース1、ケース2は重水炉・高速炉等のクリアランスの時の設定値である。						

表 5.27 コンクリート再利用 - 壁材等 (放射化物)

シナリオ	コンクリート再利用(日常時)	経路名	No.7 壁材等
パラメータ名	線量率	単位	(μSv/h) per (Bq/g)
選定値	核種依存	分布型	一様分布
最小値	核種依存	最大値	核種依存

選定値根拠:

建物の寸法については、『「優良な住宅」の指針の運用に係る方針(共同住宅)』(建設省住生第 21 号、平成 4 年 3 月)の以下の記載に基づき選定した。

- ・1 住戸当たりの床面積を概ね 80m²以上(共有部分を除く)とする。
- ・居住室の床面から天井面までの高さは、原則として 2.4m以上とする。

評価に当たっては、壁の面数は窓を考慮して3面とし、床及び天井の影響を考慮する。

壁厚さは、『「優良な住宅」の指針の運用に係る方針(共同住宅)』(建設省住生第21号、平成4年3月)の 以下の記載に基づき選定した。

- ・遮音性の観点から、戸境床の厚さは、普通コンクリートで 20cm 以上とする。
- ・遮音性の観点から、戸境壁の厚さは、普通コンクリートで15cm以上とする。

評価点は、床上1mで部屋の中心と選定した。

粗骨材使用量については、「コンクリート工学ハンドブック」(1981)に示された下記の標準配合に基づき選定した。

- ・粗骨材(砕石)の最大寸法は20mm、この場合の粗骨材の容積割合は62%
- ・粗骨材(砕石)の密度は、1.53~1.68 (g/cm³)

したがって、コンクリートの単位体積当たりの粗骨材重量は以下のようになる。

 $0.62 \times 1.6 (g/cm^3) = 1 (g/cm^3)$

分布幅選定根拠:

6畳間相当の部屋(約10m²)と比較的広い建物(約120m²)を想定し、各々のケースについての線量率計算結果から選定した。

	選定値	ケース 1	ケース 2
建物の寸法	$9\text{m}\times9\text{m}\times2.4\text{mH}$	$3m\times3m\times2mH$	$11m\times11m\times3mH$
	(約80m²)	(約 10m²)	(約 120m²)
床、天井の厚さ	20cm	10cm	30cm
壁の厚さ	15cm	10cm	30cm
壁の面数	3 面	3 面	3 面
評価点	床上1m,	床上1m,	床上1m,
	部屋の中心	部屋の中心	部屋の中心
コンクリート密度(g/cm³)	2.3	2.3	2.3
粗骨材使用量	1 g/cm^3	1 g/cm ³	1 g/cm^3

※ケース1、ケース2のサイズは原子炉クリアランスのときの設定値である。

5. 2. 5 RI 汚染物を対象とした核種の確率論的解析の結果

5. 2. 5. 1 評価パラメータのばらつき評価結果

決定論的な方法によるクリアランスレベルの暫定値の算出に用いた評価パラメータが適切で、かつ、現実的な範囲で保守的な選定となっていることを確認するために整理した H-3、C-14、P-32、Mo-99、Tc-99m 及び I-125 の目安線量相当濃度と累積確率の関係をそれぞれ図 5.3 から図 5.8 に示す。

RI 汚染物に関する確率論的解析の対象核種として「5.2.1項」に示すように 6 核種を選定 したことを踏まえ、対象経路としては、「5.2.2項」に示す考え方に基づいて 13 経路を抽出 している。H-3 の累積分布関数を示す図 5.3 では、13 経路のうち、上段、中断及び下段のグラフ に、それぞれ4経路、2経路及び4経路の累積分布関数を示しており、残りの外部被ばくに関す る3経路は、H-3がガンマ線を放出しない核種であることから、図中には描かれないこととなる。 図中の凡例に○を付加した対象経路(H-3 の場合は上段のグラフで示した跡地利用(農作物摂取、 子ども)の経路)が、めやす線量 10 µ Sv/年に基づいて埋設処分や再利用の各評価経路に対して 算出した結果のうち、放射能濃度が最も小さくなった決定経路である。グラフの曲線(実線、点 線、一点鎖線等)は累積分布関数であり、各対象経路に関する計算モデルで用いた評価パラメー タのうち、ばらつきを考慮する必要がある評価パラメータに対して、文献等から分布幅・分布型 を選定したうえで、各評価パラメータが独立に変動するとしてモンテカルロ法により算出した放 射能濃度を小さい方から順に並べ直し、各放射能濃度に対する累積確率を求めて**17プロットした ものである。その結果、各経路で累積確率 0.5 に相当する濃度が、それぞれの経路の中央値を示 すこととなる。また、図中の各種垂線(縦軸と平行に描いた実線、点線、一点鎖線等)は、それ ぞれの対象経路に対して決定論的な方法で設定した評価パラメータを用いて算出した 10 μ Sv/年 に相当する放射能濃度の値を示している。

ここでは、対象経路毎に上述の累積分布関数(曲線)と決定論的な方法に基づいて算出した放射能濃度の値(垂線)の関係を評価して、累積確率の中央値(P=0.5 に対する濃度)から 97.5% 片側信頼区間下限値(図 5.3 から図 5.8 で累積分布関数が P=0.025 の破線と交わる点の濃度(以下、「97.5%下限値」という。))の範囲内に放射能濃度の値があるかどうかを確認した。具体的には、中央値を下回ることを確認することにより、決定論的解析の評価パラメータが保守的であることを確認している。

図 5.3 から図 5.8 に示すように、放射能濃度の累積分布関数を用いた評価の結果、対象としたすべての核種 (H-3、C-14、P-32、Mo-99、Tc-99m、I-125) で、決定論的解析の結果は、確率論的解析の結果による累積確率の中央値より十分に低く、97.5%下限値の近傍に位置している。このことは、評価パラメータが適切かつ保守的に選定されていることを示している。

^{※17}: 累積確率は、原子力安全委員会におけるクリアランスレベルに係る確率論的解析の検討で採用されたものに準拠した Hazen 公式に基づいた次式で求める。

 $p_i = (i - 0.5)/n$

ここで、 p_i : 累積確率、i: 小さい順に並べた場合の各標本の番号、n: 標本の数(今回の計算では「1000」とした。)である。

5. 2. 5. 2 シナリオの妥当性評価結果

決定論的な方法によるクリアランスレベルの暫定値の算出で設定したシナリオ(評価経路及び評価パラメータの組み合わせ)が適切、かつ、保守的に選定されていることを確認するために整理した H-3、C-14、P-32、Mo-99、Tc-99m 及び I-125 の目安線量相当濃度と累積確率の関係を、それぞれ図 5.9 から図 5.14 に示す。

H-3 の累積分布関数を示す図 5.9 において、グラフの横軸及び縦軸は、図 5.3 と同様にそれぞれ目安線量相当濃度及び累積確率を示している。また、図中の点線の曲線は、確率論的解析の対象経路として抽出した 13 経路の中で、上述の 97.5%下限値が最小となる経路の累積分布関数を示す。さらに、図中の長い垂線は、H-3 に関して決定論的な方法で設定した評価パラメータを用いて算出した $10\,\mu\,\mathrm{Sv}$ /年に相当する放射能濃度の値のうち、決定経路の放射能濃度の値を示している。一方、実線の曲線は、点線の曲線の目安線量相当濃度を $10\,\mathrm{G}$ に関して求めた累積分布関数に相当する。また、この累積分布関数の 97.5%下限値に相当する目安線量相当濃度を短い垂線で示している。この濃度を、発生頻度が小さいと考えられるシナリオに対する目安線量相当濃度として取扱う。

ここでは、決定論的な方法に基づいて算出した決定経路に対する放射能濃度の値(長い垂線)と発生頻度が小さいと考えられるシナリオに対する 97.5%下限値に相当する目安線量相当濃度 (短い垂線)の関係を評価して、長い垂線が短い垂線に比べて小さくなっていることを確認する。 すなわち、決定論的な方法に基づいて算出したクリアランスレベルの暫定値が、 $10\,\mu$ Sv/年を著しく超えないめやす線量である $100\,\mu$ Sv/年*¹⁸相当濃度 (前述の 97.5%下限値の最小値の 10 倍の値) よりも常に低くなっていることを確認することとなる。この条件を満足する時、決定論的な方法に基づいて算出した放射能濃度の値に基づくクリアランスレベルの暫定値を適用した場合に、発生頻度が小さいと考えられるシナリオの線量が $100\,\mu$ Sv/年を超えないことを示している。

表 5.28 は、各対象核種について、「決定論的解析結果が最小となる決定経路とその経路に対する放射能濃度」及び「97.5%下限値の最小を示す経路とその経路の 97.5%下限値の放射能濃度」の比較を示している。97.5%下限値の最小値の 10 倍の濃度である $100\,\mu$ Sv/年相当濃度は、すべての核種で決定経路に対する放射能濃度を下回ることがないことを確認した。

これらの図 5.9 から図 5.14 及び表 5.28 に示すとおり、RI 汚染物に係る確率論的解析の対象とした 6 核種すべてについて決定論的解析で求めたクリアランスレベルの暫定値が $100\,\mu$ Sv/年相当 濃度よりも常に低くなっていることを確認した。

5. 2. 6 放射化物を対象とした核種の確率論的解析の結果

5. 2. 6. 1 評価パラメータのばらつき評価結果

RI 汚染物に関する評価パラメータのばらつき評価と同様の評価を放射化物に対しても行うため、放射化物に係る確率論的解析の対象核種として選定した Na-22、Mn-54、Co-60、Sb-125、Cs-134、Eu-152 及び Eu-154 の目安線量相当濃度の累積確率の関係をそれぞれ図 5.15 から図 5.21 に示す。 放射能濃度の累積分布関数を用いた評価の結果、対象としたすべての核種で、決定論的解析の

^{※18}: このめやす線量は、原子力安全委員会により行われたクリアランスレベル評価で用いられている。

結果は、確率論的解析結果による累積確率の中央値より十分に低く、97.5%下限値の近傍に位置 している。このことは、評価パラメータが適切かつ保守的に選定されていることを示している。

5. 2. 6. 2 シナリオの妥当性評価結果

RI 汚染物の場合と同様にシナリオの妥当性評価を行った結果、図 5.22 から図 5.28 に示すとおり、決定論的な方法に基づいて算出した決定経路に対する放射能濃度の値(長い垂線)と発生頻度が小さいと考えられるシナリオに対する 97.5%下限値に相当する目安線量相当濃度(短い垂線)の関係を評価して、長い垂線が短い垂線に比べて小さくなっていることを確認した。

また、各対象核種に関する「決定論的解析結果が最小となる決定経路とその経路に対する放射能濃度」及び「97.5%下限値の最小を示す経路とその経路の 97.5%下限値の放射能濃度」の比較を表 5.29 のように整理した結果、97.5%下限値の最小値の 10 倍の濃度である $100\,\mu$ Sv/年相当濃度は、すべての核種で決定経路に対する放射能濃度を下回ることがないことを確認した。

以上のことから、放射化物に係る確率論的解析の対象とした 7 核種すべてについて決定論的解析で求めたクリアランスレベルの暫定値が $100\,\mu$ Sv/年相当濃度よりも常に低くなっていることを確認した。