The "How" of Exascale

Satoshi Matsuoka Tokyo Institute of Technology

June 28, 2011 MEXT Symposium Panel

DoE Exascale 性能指標

System attributes	"2010"		"2015"		"2018-20"	
System peak	2 PetaFlops		100-200 PetaFlops		1 ExaFlop	
Power	Jaguar 6 MW	TSUBAME	15 MW		20 MW	
System Memory	0.3PB	0.1PB	5 PB		32-64PB	
Node Perf	125GF	1.6TF	0.5TF	7TF	1TF	10TF
Node Mem BW	25GB/s	0.5TB/s	0.1TB/s	1TB/s	0.4TB/s	4TB/s
Node Concurrency	12	O(1000)	O(100)	O(1000)	O(1000)	O(10000)
#Nodes	18,700	1442	50,000	5,000	1 million	100,000
Total Node Interconnect BW	1.5GB/s	8GB/s	20GB/s		200GB/s	
MTTI	O(days)		O(1 day)		O(1 day)	

Important Strategy Towards Exascale

- Identify Key Application Areas (incl. Stakeholders)
 Disaster, Environment, Energy, Life/Medical, etc...
- Identify Technology Strength (of Japanese HPC)
 - Device, Archiecture, Software, Applications
- Identify the Impediments and do Research
 - Power, Resiliency, Programming, ...
- Learn from Existing Systems
 - ES2, T2K, Tsubame2.0, K Computer ...
- Set Performance and other Metric Timelines

2010 1PetaFlop (done), 2012 10PetaFlops
(to be done), 2015 100PetaFlops, 2018 ExaFlops, etc...

「エクサ10億並列へ」は勇ましいが。。。

- <u>電力・エネルギー (JST CREST ULPHPC + MEXT</u> <u>Green HPC)</u>
- (強)スケーリングの欠落 (Co-Design Center)
- <u>N² vs. N 問題により深まるメモリ階層</u>
 - ・<u>(ネットワークやI/O含む)</u>
 - ・ <u>(レーテンシとバンド幅) (Device & Architecture)</u>
- 極端に低まる信頼性と実行不能性 (科研基盤S)
- <u>プログラミングや実行モデル (JST CREST Post</u> <u>Petascale</u>)

JST-CREST ULP-HPCの成果適用による スパコンのウルトラグリーン化(H23[~]概算要求)

ULP-HPC 遂行計画・マイルストーン

Power Efficiency Compared							
Machine	Power (incl. cooling)	Linpack Perf (PF)	Linpack Mflops/W	Factor			
Tsubame1.0 (2006Q1)	1.8MW	0.038	21	2368			
ORNL Jaguar (2009Q4)	~9MW	1.76	196	256			
Tsubame2.0 (2010Q4)	1.8MW	1.2	667	75			
K Computer (2011Q2)	~16MW	10	625	80			
BlueGene/Q (2012Q1)	~12MW?	17	1417	35.3			
Tsubame3.0 (2015Q1)	1.8MW	20	11000	4.6			
EXA (2018Q4)?	20MW	1000	50000	1			

Next Generation Numerical Weather Prediction[SC10]

Collaboration: Japan Meteorological Agency

Meso-scale Atmosphere Model: Cloud Resolving Non-hydrostatic model [Shimokawabe et. al. SC10 BSP Finalist]

ex. WRF(Weather Research and Forecast)

hypipa*

Typhoon ~ 1000km

1~ 10km Tornado, Down burst, Heavy Rain

WSM5 (WRF Single Moment 5-tracer) Microphysics*

Represents condensation, precipitation and thermodynamic effects of latent heat release

1 % of lines of code, 25 % of elapsed time

 \Rightarrow 20 x boost in microphysics (1.2 - 1.3 x overall improvement)

ASUCA : full GPU Implementation

Block Division for Advection nv

for 1-D Helmholtz eq. μv

ASUCA: Next Gen Weather Simulation Code

■ASUCA Production Code

- A next-generation high resolution weather simulation code that is being developed by Japan Meteorological Agency (JMA)
- ASUCA succeeds the JMA-NHM as an operational nonhydrostatic regional model at JMA

Similar Structure as WRF

- HEVI (Horizontally explicit Vertical implicit) scheme
- ✓ Dynamical Core uses a numerical scheme with 3rd-order accuracy in time and space Flux-form non-hydrostatic compressible equation

Generalized coordinate

TSUBAME 2.0 ASUCA Weather SImulationPerformance

Memory Bandwidth Compared

Machine	Nodes	Stream BW/Nod e (GB/s)	GFLOPs /Node	Byte/F lop	Peak (PF)	Aggrega te BW (TB/s)
Jaguar (2009)	18700	26	125	0.2	2.33	486
Tsubame 2.0 (2010)	4000 (GPUs)	130	515	0.25	2.06	520
K (2011)	80000	46	128	0.35	10	3680
BG/Q (2012)					20	6-7000?
Tsubame 3.0 (2015)	???	???	???	???	>25	7000

Many Core Drives Memory Innovation

• Disruptive DRAM memory packaging and interfaces beyond DDR3: TSV and Micron Hybrid Memory Cube

- x20 bandwidth, low latency 1/10 power
- Useful for Smarphones, too!
- Non-volatile memory
 - New flash, Phase Change Memory...

Physis: A Domain Specific Framework for Large-Scale GPU Clusters

- Portable programming environment for stencil computing on structured grids
 - Implicitly parallel
 - Distributed shared memory
- Provides concise, declarative abstractions for stencil computing

A five-point stencil

• T : time

An example of a 7-point stencil

Complexity of implementation

- CPU,GPU,MPI
- Code for omputation is concise, code for parallelization isn't.
 - Problem decomposition
 - Boundary exchange
 - GPUs cannot communicate directly
 - GPU->CPU -> CPU->GPU
- Code for optimization brings more complicacy
- Most difficult parts are non-essential for stencil computation

Procedure of boundary exchange

Implementation on GPU clusters

Productivity

Lines of code

Weak Scalability

Strong scalability – Himeno bench

Important Strategy Towards Exascale

- Identify Key Application Areas
 - Disaster, Environment, Energy, Life/Medical, etc...
- Identify Technology Strength (of Japanese HPC)
 - Device, Archiecture, Software, Applications
- Identify the Impediments and do Research
 - Power, Resiliency, Programming, ...
- Learn from Existing Systems
 - K Computer, Tsubame2
- Set Performance and other Metric Timelines
 - 2010 1PetaFlop (done), 2012 10PetaFlops
 (to be done), 2015 100PetaFlops, 2018 ExaFlops, etc...