Engaging students with science: Australian and Victorian perspectives

19th OECD/Japan Seminar 1 July 2017

> Maria James Victorian Curriculum and Assessment Authority Australia

Ruby, aged nearly 4: "This is a drawing of Elsa, from '*Frozen*' – but I can only draw her with straight hair!"

Victorian Early Years Learning and Development Framework (0-8 years of age): Ruby uses drawing to express ideas and make meaning

© Victorian Curriculum and Assessment Authority 2015

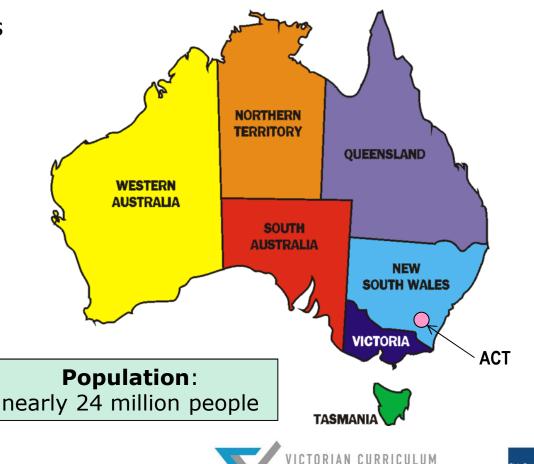
- Third parties may own copyright in some content included in this presentation, as indicated.
- The term VCE and associated logos are registered trademarks of the VCAA.
- VCAA content may be used in accordance with the VCAA's Intellectual Property and Copyright Policy:
 http://www.vcaa.vic.edu.au/Pages/aboutus/poli cies/policy-copyright.aspx

Seminar aims

- □ Outline the basis for national curriculum design
- **Explain the structure of the Australian Curriculum**
- Discuss how the Victorian Curriculum embodies the Australian Curriculum
- Summarise national assessment
- Provide examples of how proactive, interactive, deep learning is enabled in:

- secondary schools in Victoria, by examining the flexibility and autonomy in curriculum delivery

- primary schools in Victoria, by looking at a case study


CONTEXT FOR DEVELOPMENT **OFAN** AUSTRALIAN CURRICULUM

A collaborative approach

- Education is the responsibility of the six states and two territories of Australia
- Following the 'Melbourne Declaration' in 2008, states and territories agreed to work together to develop a national curriculum
- National curriculum frameworks were developed for early learning, primary, secondary and pretertiary levels of education

ESSMENT AUTHORITY

The basis for an Australian curriculum

Melbourne Declaration on Educational Goals for Young Australians

http://www.curriculum.edu.au/verve/_reso urces/National_Declaration_on_the_Educat ional_Goals_for_Young_Australians.pdf World-class curriculum and assessment:

- a solid foundation in skills and knowledge
 for further learning
- \circ deep knowledge and skills
 - \rightarrow advanced learning
 - ightarrow ability to create new ideas
- $\circ~$ general capabilities that underpin
 - \rightarrow flexible and critical thinking
 - ightarrow capacity to work with others
 - ightarrow ability to move across subject

disciplines to develop new expertise.

Educational Goals for Young Australians

Goal 1: Australian schooling promotes equity and excellence

Goal 2: All young Australians become:

- successful learners
- confident and creative individuals
- active and informed citizens

TRANSLATING EDUCATIONAL **GOALS INTO CURRICULUM AND** ASSESSMENT

Importance of early education

The Early Years Learning Framework was developed by the Council of Australian Governments to contribute to realising the vision that:

"All children have the best start in life to create a better future for themselves and for the nation."

http://files.acecqa.gov.au/files/National-Quality-Framework-Resources-Kit/belonging_being_and_becoming_the_early _years_learning_framework_for_australia.pdf

Early Years Learning Framework: Belonging, Being and Becoming

Five main outcomes

Children:

- □ have a strong sense of identity
- are connected with and contribute to their world
- □ have a strong sense of wellbeing
- □ are confident and involved learners
- □ are effective communicators

Focus on playbased learning

Australian Curriculum: Years Foundation to 10 (compulsory schooling)

http://www.australiancurriculum.edu.au/

Learning areas	General capabilities	Cross-curriculum priorities	
English	Literacy	Aboriginal and Torres	
Mathematics	Numeracy	Strait Islander Histories and Cultures	
Science	Critical and Creative Thinking		
Humanities	Personal and Social Capability	Asia and Australia's Engagement with Asia	
The Arts	Ethical Understanding	Sustainability	
Technologies	Intercultural understanding		
Health and Physical Education	Information and Communication Technology		
Languages			
Optional: Work studies (Years 9 and 10)			

Australian Curriculum: Science

Development of the Australian Curriculum: Science was informed by the paper:

'Shape of the Australian Curriculum: Science' https://acaraweb.blob.core.windows.net/resources/Australian_Curriculum_-_Science.pdf

□Of particular interest to educators was the statement:

"...there needs to be less emphasis on a transmission model of pedagogy and more emphasis on a model of student engagement and inquiry..."

Science aims:

https://acaraweb.blob.core.windows.net/resources/Australian_Curriculum_-_Science.pdf

- The aim of the Australian science curriculum is to provide students with a solid foundation in science knowledge, understanding, skills and values on which further learning and adult life can be built
- In particular, the science curriculum should foster an interest in science and a curiosity and willingness to speculate about and explore the world. Students should be able to engage in communication of and about science, value evidence and scepticism, and question scientific claims made by others. They should be able to identify and investigate scientific questions, draw evidence-based conclusions and make informed decisions about their own health and wellbeing. Science is a human endeavour that students should learn to appreciate and apply to daily life.

Types of scientific inquiry: from 'transmission' to engagement

Level of inquiry	Problem or question	Procedure	Solution
Confirmation/ verification	Teacher	Teacher	Teacher
Structured	Teacher	Teacher	Student
Guided	Teacher	Student	Student
Coupled (linked to an earlier inquiry)	Initial: Teacher Coupled: Student	Student	Student
Open	Student	Student	Student

SSESSMENT AUTHORITY

Senior Curriculum (Years 11 and 12)

http://www.australiancurriculum.edu.au/

15 subjects:

English	Mathematics	Science	Humanities
Essential English	Essential Mathematics	Biology	Ancient History
English	General Mathematics	Chemistry	Modern History
Literature	Mathematical Methods	Earth and	Geography
English as an	Specialist Mathematics	Environmental	
Additional Language or Dialect		Science	
		Physics	

National Assessment Program

National Assessment Program – Literacy and Numeracy (NAPLAN)

The main purposes of NAPLAN are:

- I enable governments, education authorities and schools to determine whether young Australians are meeting important educational goals in literacy and numeracy.
- To give parents information on how well their children are developing fundamental skills in literacy and numeracy

Other national assessments

http://www.nap.edu.au/nap-sample-assessments

Sample assessments on a three-yearly basis.

□ Science literacy (Year 6)

□ Civics and citizenship (Years 6 and 10)

□ Information and communication technology (ICT) literacy (Years 6 and 10).

VICTORIAN CURRICULUM PERSPECTIVES

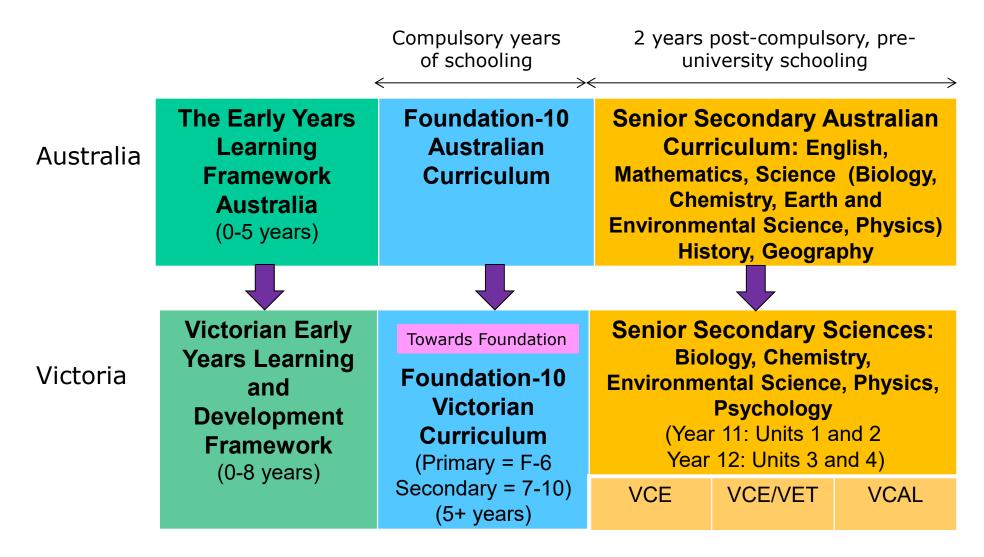
Victorian education priorities

There is important **(including science-related)** content that every young Victorian should learn. This includes:

- Australia's system of government, history and cultures, including Aboriginal and Torres Strait Islander histories and cultures
- the values of democracy, equity and justice, including reconciliation between Indigenous and non-Indigenous Australians
- □ high levels of enabling skills in English **literacy** and **numerac**y
- a broad knowledge and understanding of the importance of the STEM (Science, Technology, Engineering and Mathematics), Humanities and Arts disciplines
- □ the knowledge and skills necessary for participation in a digital world
- □ knowledge of how wellbeing and safety can be protected and nurtured
- attributes central to participation in the contemporary economy and for civic participation such as creativity and innovation, critical thinking, problem-solving, and learning to learn

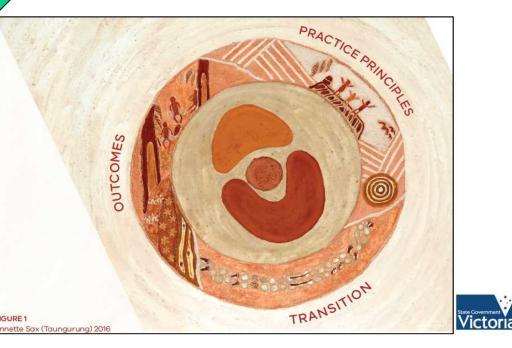
Education State Targets Goal: Learning for life

More students -


- ✓ excel in reading and mathematics (NAPLAN)
- ✓ excel in scientific literacy (PISA)
- ✓ excel in the arts (Victorian Curriculum)
- ✓ develop strong critical and creative thinking skills (Victorian Curriculum online assessment)

Source: The Education State: Schools, 2015

Victorian Curriculum: building on the Australian Curriculum


Early Years Education

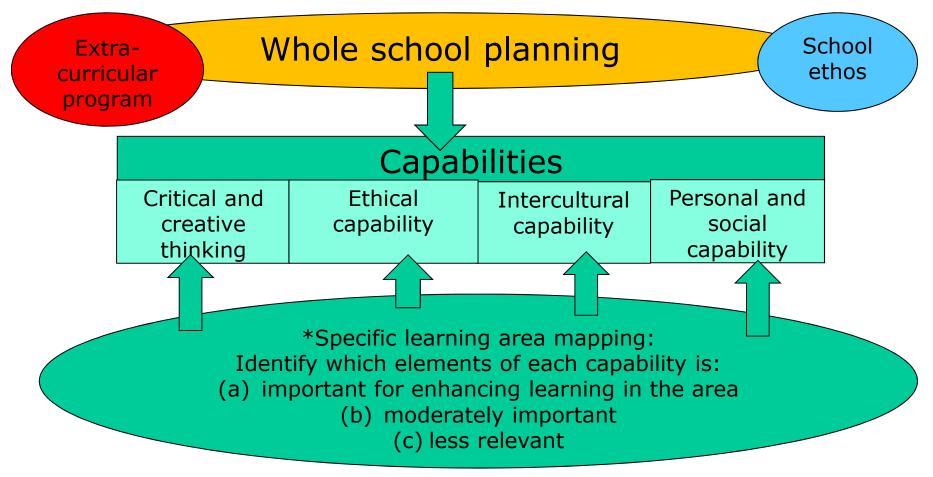
The Early Years Learning Framework Australia

(0-5 years)

Victorian Early Years Learning and Development Framework for all Children from Birth to Eight Years

http://www.education.vic.gov. au/childhood/providers/edcar e/pages/veyladf.aspx?Redirect =1

Victorian curriculum - design and structure


http://victoriancurriculum.vcaa.vic.edu.au/

Learning areas	Capabilities
English	Critical and creative thinking
Mathematics	Personal and social capability
Science	Intercultural capability
Health and physical education	Ethical capability
Humanities and social sciences (<i>History</i> , <i>Geography</i> , <i>Civics and</i> <i>citizenship</i> ; <i>Business and economics</i>)	
Languages	
The Arts	
Technologies (<i>Design and technologies</i> and <i>Digital technologies</i>)	

One approach to whole-school planning

*Note: mapping across all 8 learning areas should confirm coverage of all elements of the capabilities

VICTORIAN CURRICULUM AND ASSESSMENT AUTHORITY

Science curriculum structure Years F-10

Australian Curriculum			Victorian Curriculum Science		
Strand	Sub-strand		Strand	Sub-strand	
Science Understanding	Biological sciences		Science Understanding	Science as a human	
	Chemical sciences			endeavour	
				Biological sciences	
	Earth and space sciences			Chemical sciences	
	Physical sciences			Earth and space sciences	
Science as a Human Endeavour	Nature and development of			Physical sciences	
	science				
	Use and influence of science		Science Inquiry	Questioning and predicting	
Science Inquiry Skills	Questioning and predicting		Skills	Planning and conducting	
	Planning and conducting				
	Processing and analysing			Recording and processing	
	data and information			Analysing and evaluating	
	Evaluating			Communicating	
	Communicating				
		.,	AN	D ASSESSMENT AUTHORITY	

Identify and record life in the school ground

- What do living things need to survive?

- What are life cycles and do all animals have the same life cycles?

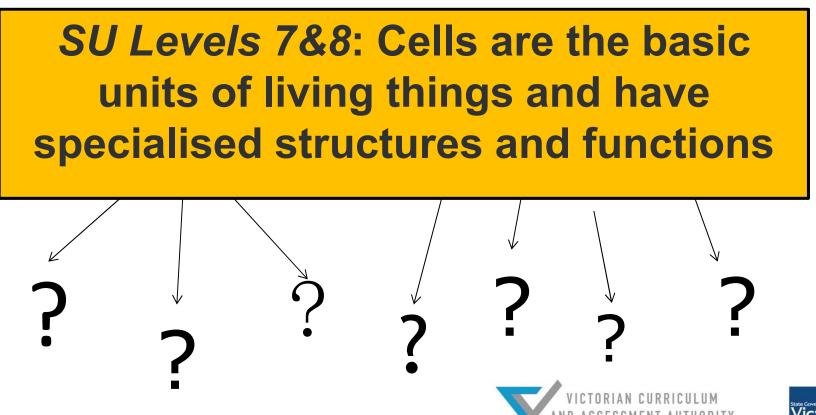
 How might we attract wildlife to our school ground?

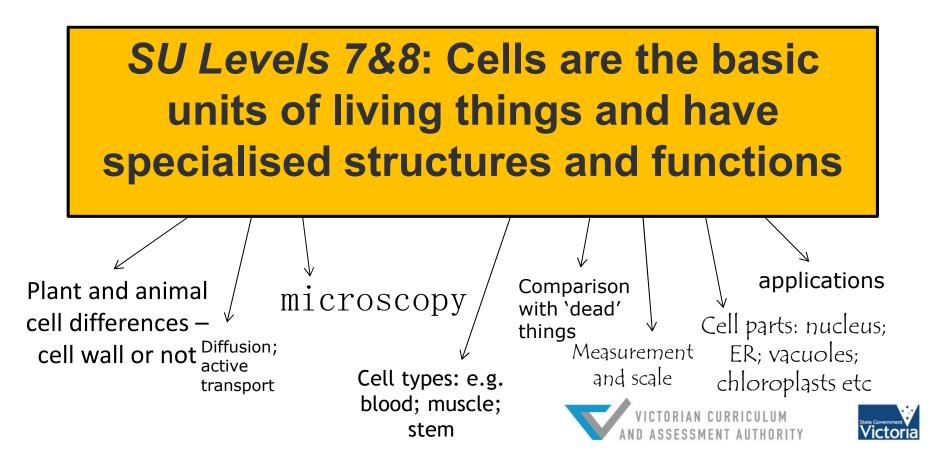
Choose and arrange materials and safe tool use

- Do materials change over time?
- What makes materials `safe'?

Level Foundation–2 Construct a Minibeast Hotel

Victorian Curriculum: Science

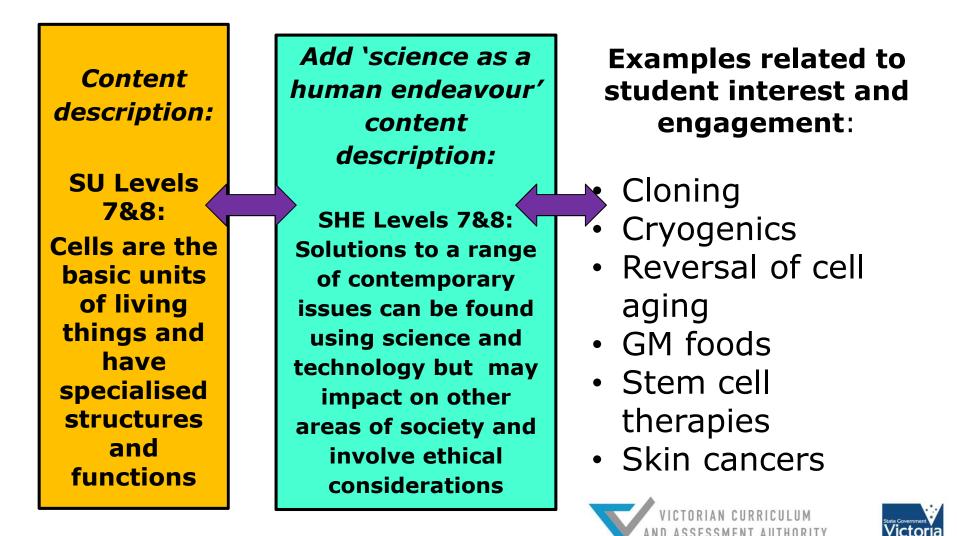

How does combining **'Science Understanding'** and 'Science as a Human Endeavour' help teachers to personalise learning for their students?


Cells: planning learning

What conceptual understandings and skills are involved in teaching the following content description?

What conceptual understandings and skills are involved in teaching the following content description?

SHE Years 7&8: Scientific knowledge and understanding of the world changes as new evidence becomes available


SHE Years 7&8: Science knowledge can develop through collaboration and connecting ideas across the disciplines and practice of science

SU Years 7&8: Cells are the basic units of living things and have specialised structures and functions

SHE Years 7&8: Solutions to a range of contemporary issues can be found using science and technology but may impact on other areas of society and involve ethical considerations

Content Add 'science as a description: human endeavour' content description: **SU Levels** 7&8: Cells are the SHE Levels 7&8: basic units of Science knowledge living things can develop and have through specialised collaboration and structures connecting ideas and functions across the disciplines and practice of science

Examples related to student interest and engagement:

- Fiona Wood (a plastic surgeon) and Marie Stoner (medical scientist) - work on 'spray on skin' for burns victims
- Scientific collaborative groups such as Diabetes
 Research Institute Federation seeking to find diabetes cure
- Interdisciplinary knowledge needed to research bacterial resistance to antibiotics (identify roles of immunologists, biochemists, toxicologists, geneticists, statisticians, pharmacologists, cytologists)

VICTORIAN CURRICULUM AND ASSESSMENT AUTHORITY

Victorian Curriculum: Science

How do the capabilities and embedded cross-curriculum priorities engage students and deepen their understanding of science and its applications in the world around them?

Exploring science language: primary years

Line	Template	Student example	Literacy applications
1	What does the living thing start as?	egg	
2	Size /shape /colour of (line 1 object)	brown-speckled, oval	
3	Three things that (line 1 living thing) does (ending in "ing") - description of where it does it and how it is done	resting, waiting, expecting – a twiggy nest protects	
4	How does (line 1 object) change into (line 7) object?	breaking through a cracked shell into a new world…	
5	Three things that (line 7 living thing) does (ending in "ing") – description of where it does it and how it is done	stumbling, exploring, stretching – the fresh air welcomes	
6	Size /shape /colour of (line 7 living thing)	fluffy, yellow	
7	What does (line 1) become?	chicken	

ESSMENT AUTHORITY

Numeracy applications

Eggs? Exactly!

How do class measurements of an egg's length and width compare? Do eggs with larger circumferences crack more easily?

What is the degree of precision of different weighing machines? Use Archimedes' principle to measure the volume of an egg

Does egg weight production by a single hen follow a normal distribution?

ICT can be used to generate, process and present scientific data and findings. <section-header>

Are brown hens better egg layers than white hens?

Do brown eggs taste better than white eggs?

Both of these animals are endangered – which would you rather save?

A purple pig-nosed frog

A giant panda

Frogs and pandas – what should be our research priorities?

Years 9&10 Science

Science Understanding: <i>Science as a Human</i> <i>Endeavour</i>	The values and needs of contemporary society can influence the focus of scientific research
Science Understanding: <i>Biological sciences</i>	Multicellular organisms rely on coordinated and interdependent internal systems to respond to changes to their environment
	Ecosystems consist of communities of interdependent organisms and abiotic components of the environment; matter and energy flow through these systems
Science Inquiry Skills: Communicating	Communicate scientific ideas and information for a particular purpose, including constructing evidence- based arguments and using appropriate scientific language, conventions and representations

'Ugly' frog or 'cute' panda?

Significant public funding and research is allocated to protecting and conserving species, for example the Giant panda. In 2014, there were 2464 animals with an assessment of "critically endangered" (compared with 1998 levels of 854). How are species selected as targets for conservation?

Activities:

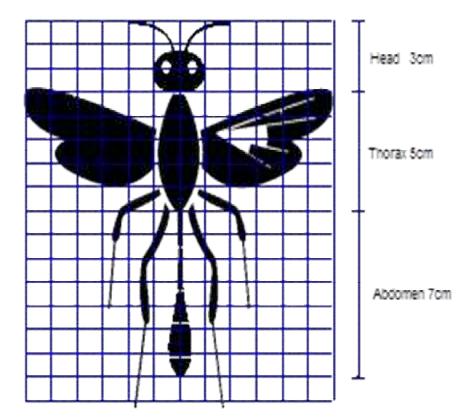
- Critical thinking: discuss cases where species have been supported by public funding and/or research and consider, "How does being 'cute' or 'ugly' affect the survival chances of a species?"
- Creative thinking: select an 'ugly' threatened animal and prepare an advertising campaign (TV advertisement; poster; pamphlet) to promote the case for its conservation.

Medicine and fuel – at what cost?

A species of Himalayan yew tree, *Taxus contorta*, is used to produce Taxol, a chemotherapy drug used to treat human cancers. It is also used for fuel. The tree is now reported to be on the brink of extinction.

- Critical thinking: Should yew trees be harvested for medicine or fuel?
- Creative thinking: Develop and assess alternate strategies for ensuring renewability of the Himalayan yew tree

Victorian Curriculum: Science

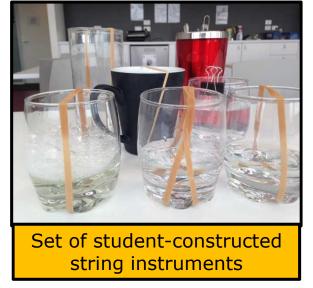

How can teaching science within an interdisciplinary context be used to engage students?

Science links to Mathematics

Is this a new insect?

STEM: Pinball machines

- Science
 - Forces
- Mathematics
 - Properties of circles
 - Angles
- Design and Technologies
 - Creating Designed Solutions
 - Investigating, generating, planning and managing, producing, evaluating



Cross-peer learning: science links to music

Levels F-2 Science: Light and sound are produced by a range of sources and can be sensed Class concert

Levels 7&8 Science:

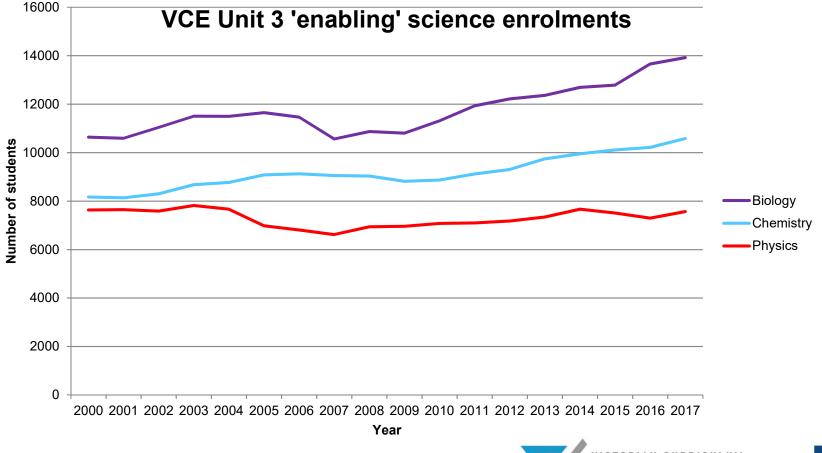
The properties of sound can be explained by a wave model

Levels 1&2 Music: Sing and play instruments to improvise, compose and practise a repertoire of chants, songs and rhymes, including those used by cultural groups in the local community

The music of chemistry

Task: Students take timelapse images of a chemical reaction involving visible changes and present a slow-motion sequence of the chemical change, accompanied by selected music that focuses on important aspects of the change

Visible evidence of a chemical reaction: colour change; production of a gas Other sensory observations: energy change; odour production


Science skills F-12 continuum

Victorian Curriculum Science Inquiry Skills	VCE key science skills
Questioning and predicting	Develop aims and questions, formulate hypotheses and make predictions
Planning and conducting	 Plan and undertake investigations Comply with safety and ethical guidelines Conduct investigations to collect and record data
Recording and processing	Conduct investigations to collect and record data
Analysing and evaluating	 Analyse and evaluate data, methods and scientific models Draw evidence-based conclusions
Communicating	Communicate and explain scientific ideas

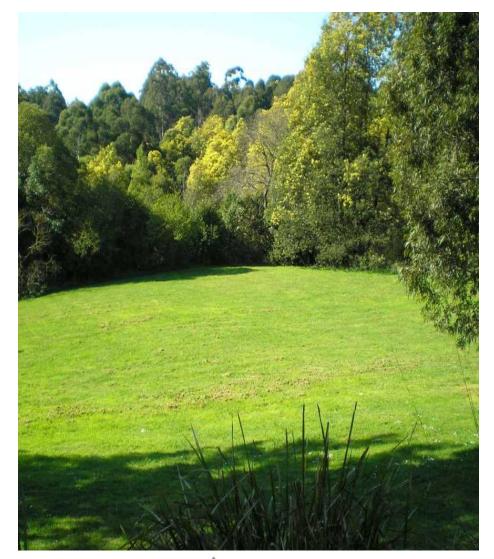
Pre-university Victorian senior secondary science enrolments 2000-2017

Sample Units 3 and 4 inquiry questions from students

- □ **Biology**: <u>Is</u> there a better way to measure the rate of photosynthesis?
- □ Chemistry: <u>Which</u> factors affect the amount of metal deposited at a cathode in the electrolysis of an ionic compound?
- □ Environmental Science: <u>How</u> does temperature inversion affect the accumulation of pollutants?
- □ **Physics:** <u>Does</u> the height of a leap depend on the depth of a squat from a standing start?
- □ **Psychology**: <u>What</u> effect does concurrently listening to music have on the time taken to complete a task?

CASE STUDY: The Patch Primary School Dandenong Ranges, Victoria 280 students, 30 staff

Creating a 'learning landscape'



What is the problem?

There is an area of the school that nobody uses.

Students in Grades 5 and 6 were given a broad 'design brief' to propose a solution to this problem.

A 'learning landscape' was negotiated as a multi-functional school community space

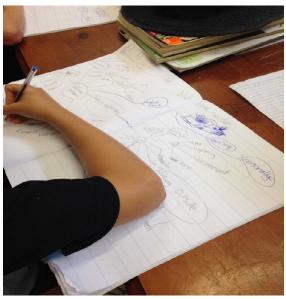
Preferred Landscape Elements

Top 10 elements identified by students for inclusion in 'learning landscape' design

✤Water

- Animals
- Construction Opportunities
- ✤ Maze
- Meeting Place and Performance Area
- Pizza Garden and Pizza Oven
- Artwork and Sculpture
- Secluded Spaces and Seating
- Edible Plants and Flowers
- Area to Climb and Play

Learning opportunities

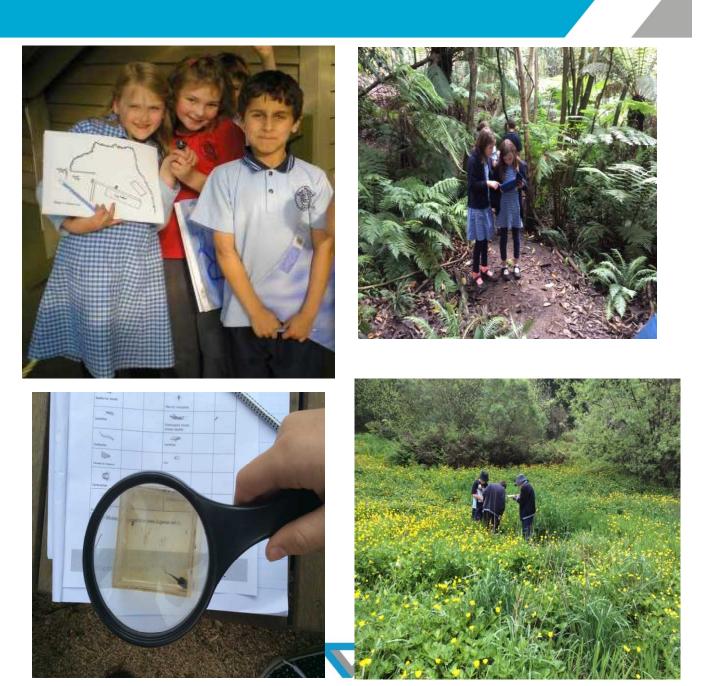

Identify what the students want to learn about

Establish how student interests will align to curriculum elements

Shed # [2/35] Animals ~ Social Ingring ford. Types of Plants * Taking lacof our space Responsibility > -tin . Construction # Jeasons Building Cublics * magination Leorning is hun Eing Creative 2 Hands On Achilter Working Together . eamwich k carming by doi eeping track leather reading rasult record things) y State *Wanaging* a gardeni Visualizing the 110 finidad ganten Water Concervation & Building Aquatic Life # Responsibilit Confidence Handling animals k Irganization* Making teopees atc Parcistence o-eperation . Reduce Tomat plina along carning about air country collect water for ood Chains 1. other colline Create brouty # Daff animals

VICTORIAN CURRICULUM AND ASSESSMENT AUTHORITY

Conduct Site Surveys: physical features

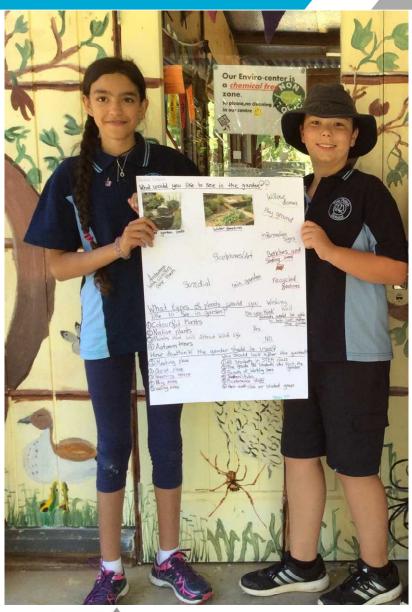

Slope Soil type Soil pH Water content Orientation

Conduct site surveys: living things

Animal and vegetation surveys

Collate data

Analyse results and their implications for the site



Consult with the community

Gather feedback to identify broader views and to share ownership


Summarise community recommendations

Negotiate suitable procedures for resolving issues and evaluating alternative views

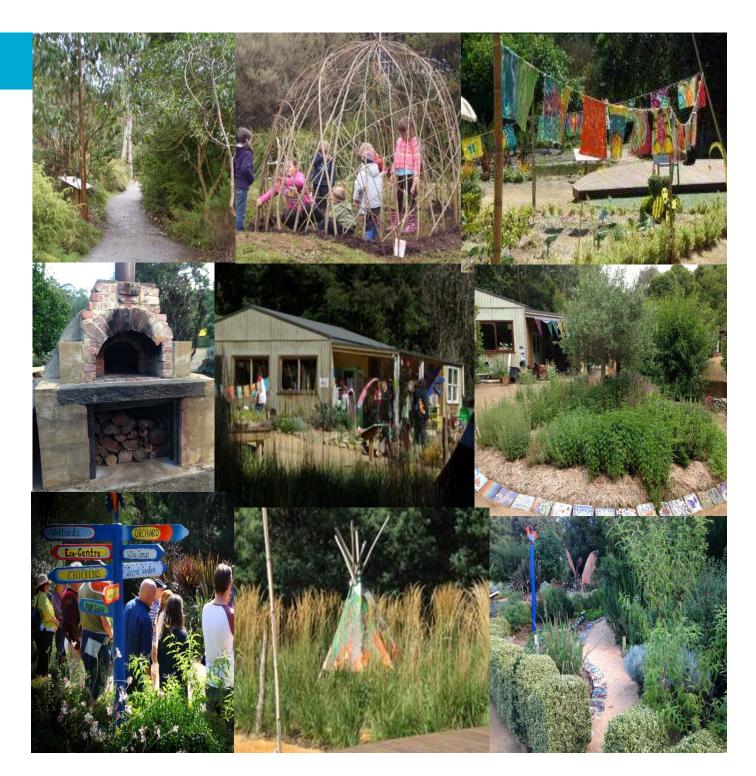
Develop a concept for the garden design

Individual and group ideas and drawings Research and discussion

SSESSMENT AUTHORITY

Model Designs

Final Concept Plan



The Patch School "Learning Landscape" 2016

ご清聴ありがとうございました。 Thank you very much for your attention

VCAA contact

Maria James Curriculum Manager, Science

Email: james.maria.m@edumail.vic.gov.au

Telephone: 61 3 9032 1722

