(様式1)		
広島大学 学問分野 情報・電気・電子		
ナノデバイス・システム研究センター		
你 テラビット情報ナノエレクトロニクス		
岩 田 穆 所属部局・職 先端物質科学研究科		
Jコンナノデバイス・回路・アーキテクチャの融合による高度な認識・学習機能をもった 情化システムの基盤構築 ,および先端研究を幅広い視野で推進し,思考力と実行力 情えた自立した人材を育成する		
的] 世界最高水準のシリコン集積回路の各要素技術を連携 .本流となる革新的支術を開発する.研究目的は,回路・システムとデバイス・プロセスの領域間を,デバイモデル技術を要として融合して,無線・光複合インターコネクションと立体構造のナノメタトランジスタを用いた3次元集積システムと高度認識・学習集積システムの基盤技術築である.この拠点形成により学術の進歩のみでなく,産業の振興,開拓により,情報社会の進歩に貢献する.また,研究開発の実践を通して,有能な人材を育成する.		
成 14年 - 保有する世界水準基盤技術の向上と研究融合 研究の 3 本柱間を融合化する研究の加速と体制の整備		
若手提案型研究プロジェクト:デバイス・モデル融合領域で2件開始 成15年 - 領域融合の研究拡充 チップ間無線インタコネクトの研究推進若手提案型研究 Project: デバイス・回路及び回路・システム融合領域で4件に拡充 成16年 - 光インタコネクト,機能メモリなどの技術高度化 光インタコネクトや機能メモリの新要素技術の高度化 ガ17年 - デバイス,回路統合設計手法の高度化 三次元電子・光融合設計技術三次元集積基盤技術(立体デバイス,実装) 成18年 - 学問領域体系化と将来方向策定 高認知度処理とナノデバイス集積のハード・ソフト融合領域の体系化		
票:高い見識と実行力を備えた博士研究者を輩出(年10名以上)		
先端技術に関する大学院教育を充実させ,研究と直結する教育を拡充 回路・モデル・デルイス3分野で、ダブルメジャーに対応できる教育プログラムの構築 将来のリーダとなる博士学生の質向上プログラム a. 博士号取得条件 海外における主要国際会議発表 審査に海外の研究者,他分野の教官を加える b. ダブルメジャー 複数教官指導制でデバイスからシステムまでの習得 c. 自立した研究の企画・立案により 思考力,企画力を養う d. 設計・試作・評価の実体験により 実践力,実行力を養う e. 国際ワークショプと共同研究により 国際感覚とコミュニケーション能力を養う		

拠点プログラム: テラビット情報ナノエレクトロニクス

広島大学 ナノデバイス・システム研究センター(RCNS) 大学院先端物質科学研究科量子物質科学専攻

[拠点形成の理念]

- 1. 研究: シリコン技術の本流を進み, 設計原理に立脚 して、新しい集積化システムの基盤を構築する。
- 2. 教育: 先端研究を幅広い視野で推進し, 思考力と 実行力を備えた 自立した人材を育成する。

[拠点形成の目的]

シリコンナノデバイス・回路・アーキテクチャ の融合による高度認識・学習機能集積化 システムの基盤構築

研究拠点の3本柱

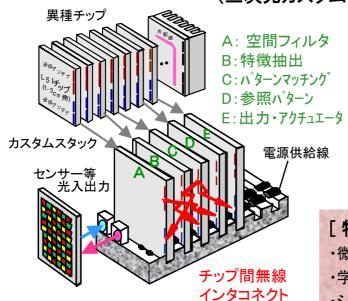
- I. 回路・システム・アーキテクチャ
- 1. RF・アナログ回路(岩田, 佐々木)
- 2. 機能メモリ回路(マタウシュ)
- 3. 画像認識システム(小出)
- 4. 高認知度処理システム(岩田)

Ⅱ.デバイス・モデリング

ドリフト・拡散物理に基ずく デバイスモデル

HISIM

(三浦、上野)


- Ⅲ. ナノデバイス・プロセス
- 1. 微細化基盤技術(芝原,宮崎)
- 2. 微細SOIデバイス(角南,三浦)
- 3. ナノ機能メモリ(宮崎、村上)
- 4. 無線インタコネクト(吉川)
- 5. 光インタコネクト(横山,中島)

LSIテスタ、EBテスタ、 LSI設計システム

シミュレーションシステム デバイス物理測定システム スーパークリーンルーム 極微細デバイス、LSI試作ライン

拠点の特色:高度なクリーンルームを中核として世界水準の実証的研究を推進し デバイスからシステムまで幅広く見通せる人材を育成

基盤研究を実証するシステムとベンチマーク (三次元カスタム・スタックシステム)

[新学問領域]

- ■チップ間・チップ内無線伝送技術
 - ·超広帯域(UWB)方式
 - ・リコンフィギャラブルコネクト方式
- ■アンテナ・回路統合集積化技術

「特徴]

- ・微細化限界ブレークスルー ⇒ 三次元集積
- ・システム構築の柔軟性 ⇒ カスタムスタック