(様式1)

_L 24	~	事会開工上兴	半田八豆		
大学	名	東京農工大学	│学問分野 	化学・材料科学	
■ 専 攻 等 名 <u>工学研究科応用化学専攻</u> 、工学研究科電子情報工学専攻、工学研究科生命工学専注				Q、上字研究科生命上字専攻 	
拠点のプログラム名称		ナノ未来材料			
拠点リーダー氏名		纐纈 明伯	所属部局・職	工学研究科応用化学専攻・教授	
プログラム	本	本学の上記専攻に所属する教員を統合的に組織して、次世代の産業基盤へ展開			
の概要してき		きるような「ナノ未来材料」技術を研究開発するとともに、高度専門技術を身			
	につ	けた、次世代を担う優秀な人材を輩出できるよう、博士後期課程の系統的、			
	効率	的かつ柔軟なカリキュラムの整備・編成を行う。			
拠点形成の	本「ナノ未来材料」COE 研究拠点は、本学の将来構想の MORE SENSE (Miss				
目的・必要性	Earth)の実現を目指した研究部門の中でも、最も未来志向型の研究部門に属して				
	おり、「ナノ未来材料」技術の開発をミッションに据えている。そのためには、				
	ナノデザイン ナノファブリケーション ナノデバイスとスパイラル的に発				
	する自己循環型研究体制の構築が必要不可欠であり、化学系、物理系、電気電子				
	「系、生物・生命系の専門家の統合的組織として本 COE を構築し、究極的な原子				
	もしくは分子の操作や制御を達成して、先駆的なマテリアル・デバイスへと				
田宮切上民					
研 究 拠 点 形 成実施計画					
成美旭計画	ブリケーション・ナノデバイスの一連、3つの開発カテゴリーを通じて、循環的 に「ナノ未来材料」の創製を図る。(1)「ナノリアクター」では、原子や分子の 高効率・高選択的反応場を提供するナノリアクター創製の技術基盤確立を図る。				
	(2)「ナノエネルギー」技術では、次世代スーパーキャパシタや高容量二				
		利用できる新たな電極材料を、ナノ			
	「ナ	ナノハイパーエレクトロニクス」技術では、フォトン、エレクトロン、フォト			
	ン - 1	エレクトロン相互作用、さらには	電子スピンを高	度に制御し得る、高度ナノ	
	デバ	イスおよびその応用技術の実現を図	図る。これらの	推進のために、学長をメン	
	バー	とする研究推進本部を設置し、統領	合的な連携体制	整備、評価等に積極的に関	
	与す	ට ු			
教育実施計	本	研究拠点の教官が提供する、広範な	は専門分野を背	景にした博士後期課程の統	
画	合的カリキュラムを通して総合的知識や循環的思考を獲得し、これに立脚した。 創的なアイデアで学問上・技術上のブレイクスルーを達成すると共に、新しい ーズを探求できる能力を備えた人材の育成を図る。具体的なカリキュラムと て、ナノ未来材料特別講義 I、II、III、ならびに英語プレゼンテーション特別 義を開講する。更に、ナノ未来材料コロキュウムを専攻横断共通ゼミとして行			獲得し、これに立脚した独	
				具体的なカリキュラムとし	
				プレゼンテーション特別講	
				攻横断共通ゼミとして行う	
	とと	もに、ノーベル賞級研究者による扌	召待講演を含む	拠点シンポジウムを毎年開	
	催し、	、学生や若手研究者の強力な支援こ	プログラムを発	足させる。	

