

1

第9回先端計測分析技術·機器開発小委員会

2010年11月24日

次世代太陽電池における計測機器

韓 礼元

(独)物質・材料研究機構 次世代太陽電池センター

太陽電池の分類

次世代有機系太陽電池

・試行錯誤的な物質探索や、input、outputの評価が主流 ・メカニズムが完全に解明されていない

時間制限のため、色素増感太陽電池を中心に説明していく

(独)物質·材料研究機構

色素增感太陽電池

色素増感太陽電池の特徴-1

Device Concept: "Artificial Photosynthesis"

The principles of DSCs are different from those that conventional solar cells and are more similar to the plant photosynthesis, as light absorption (dye) and carrier transportations in both TiO_2 and electrolyte in DSCs occur separately.

色素増感太陽電池の特徴-2

• Photocurrent is enhanced (> 1000 times) when sensitization of nanocrystalline vs single crystal TiO_2

この広い表面積を有する界面はメカニズム研究に困難をもたらす

等価回路

高効率アプローチ

 $\eta = Jsc \times Voc \times FF$

Typical I-V curve of the cell

高効率化-1

L. Han et al., Applied Physics Letters, <u>86</u>, 213501 (2005)

(独)物質·材料研究機構

高効率化-2

(独)物質•材料研究機構

ΝΙΛ

色素増感太陽電池の現状

- ・セル変換効率>11%(小面積セル)
- ・モジュール変換効率>8%
- ・長期信頼性:加速試験で10年相当

	Cell	Module	Durability	
Single Crystal Si	25 %	16~18%		
Poly Crystal Si	20 %	13~16 %	> 20 年	
Thin film Si	14 %	6~10%		
2. 高信頼性化(20年) 🛁		────────────────────────────────────	劣化メカニズムの解明	
		・メカニズ	ムの解明	
1. 更なる高効率化	(15%)	→ 高性能	材料開発	
		・デバイス	構造の改善	

~シリコン系太陽電池における現状~

(独)物質·材料研究機構

11

Voc向上の 課題

TiO₂表面への添加物吸着(パシベーション)によってVoc向上

<u>キャリア再結合の抑制</u>

TBP濃度のセル特性への影響

高効率化にはこのトレードオッフを解消する必要

(独)物質·材料研究機構

JscとVocのトレードオフ解決に向けたこれまでのアプローチ

H. Kusama and H. Arakawa, Solar Energy Materials & Solar Cells 81 (2004) 87-99.

固液界面

Role of Nanoscale Interface Characterization

