2010年11月24日

次世代太陽電池における計測機器

韓 礼元

(独)物質・材料研究機構 次世代太陽電池センター

太陽電池の分類

次世代有機系太陽電池

	色素増感太陽電池(DSC)	有機薄膜太陽電池(OPV)	量子ドット太陽電池		
概略図	透明電極 TiO ₂ 色素 電解液 対向電極	共役ポ゚リマー フラーレン	ボール 輸送材料 TiO ₂ (A+A+ 量子ドット 透明電極 対極		
共通点	発電層に大きな界面が存在する				
特長	低コスト(高温・真空プロセスが不要)		超高効率		
セル 効率	11.2 %	8%	_		
モシ [・] ュール 効率	8-9%	<2%	_		

- ・試行錯誤的な物質探索や、input、outputの評価が主流
- •メカニズムが完全に解明されていない

時間制限のため、色素増感太陽電池を中心に説明していく

色素增感太陽電池

メリット 1. 安 価

2. カラー化

色素増感太陽電池の特徴-1

Device Concept: "Artificial Photosynthesis"

The principles of DSCs are different from those that conventional solar cells and are more similar to the plant photosynthesis, as light absorption (dye) and carrier transportations in both TiO₂ and electrolyte in DSCs occur separately.

色素増感太陽電池の特徴-2

• Photocurrent is enhanced (> 1000 times) when sensitization of nanocrystalline vs single crystal TiO₂

この広い表面積を有する界面はメカニズム研究に困難をもたらす

等価回路

Si Solar Cells Dye - sensitized Solar Cells TCO TiO₂ Electrolyte CE n-Si p-Si The experience & knowledge of Si solar cells are useful to DSCs

高効率アプローチ

$$\eta = Jsc \times Voc \times FF$$

1) Jsc

Development of dye

Light trapping effect

2) Voc

Suppression of recombination

3) FF

Reduction of series resistant

高効率化-1

1. 等価回路の提案

L. Han et el, Appl. Phys. Lett. 84, 2433(2004)

2. シリーズ抵抗(Rs)の低減によるFFの向上

L. Han et al., Applied Physics Letters, <u>86</u>, 213501 (2005)

高効率化-2

3. 光閉じ込め効果による J_{sc} の向上 Incident light T0 T0 TiO₂ Introduce Haze to estimate TiO₂ film Y. Chiba et al., Jpn. J. Appl. Phys. 45, L638 (2006) Τï 22 100 External QE (%) 80 21 $J_{sc} (mA/cm^2)$ 60 20 Haze 76% @800nm 40 19 Haze 60% Haze 53% 20 18 Haze 36% 0 17 600 400 800 1000 20 40 60 80 Wavelength (nm) Haze of TiO₂ @800nm (%)

色素増感太陽電池の現状

- ・セル変換効率>11% (小面積セル)
- モジュール変換効率>8%
- ・長期信頼性:加速試験で10年相当

~シリコン系太陽電池における現状~

	Cell	Module	Durability	
Single Crystal Si	25 %	16 ~ 18 %		
Poly Crystal Si	20 %	13 ~ 16 %	> 20 年	
Thin film Si	14 %	6 ~ 10 %		

2. 高信頼性化(20年)

劣化メカニズムの解明

1. 更なる高効率化(15%)

- ・メカニズムの解明
- •高性能材料開発
- ・デバイス構造の改善

Voc向上の課題

TiO₂表面への添加物吸着(パシベーション)によってVoc向上

キャリア再結合の抑制

TBP濃度のセル特性への影響

TBP濃度の増加と共に、 Vocは上昇するが、Jscは低下する

高効率化にはこのトレードオッフを解消する必要

JscとVocのトレードオフ解決に向けたこれまでのアプローチ

H. Kusama and H. Arakawa, Solar Energy Materials & Solar Cells 81 (2004) 87-99.

試行錯誤的な材料探索では、問題解決できず

詳細なメカニズムの解明が必要

固液界面

解明すべきの課題

- 1)TiO2色素界面における色素の吸 着状態
- 2)色素吸着によるTiO2のエネル ギー準位などの変化
- 3)添加物(TBP)の吸着サイト
- 4)色素からTiO2への電子注入
- 5)キャリア再結合速度

Role of Nanoscale Interface Characterization

Origins of Functionality of Photovoltaic Cell Materials

Atomic-scale, Nano-scale, Micron-scale
Chemical Analysis, Morphology, 3-D tomography, Electronic State, ...
In-situ Measurements, Time-resolved Analysis, etc ...

