光による粒子の加速とその利用

日本原子力研究開発機構 加藤義章

第5回光資源委員会 平成19年4月24日

加速器の産業利用

- ・半導体にイオン(B, P, As等)を注入して
 回路を形成
- ・CCD, C-MOSなど撮像素子では 高エネルギーイオンを注入

資料:住友重機械工業

小型放射光装置

X線によるMEMS加工

資料:住友重機械工業

4

SPring-8 (8GeV電子) 放射光による物質・生命の構造・機能解明

LHC (7 TeV 陽子コライダー) @CERN 周長27km ヒッグス粒子(質量の起源)の探求

プラズマ波電界による電子加速 E>10GeV/m (絶縁破壊限界無し)

$$ph$$
 ($v_{ph} = v_g$) v_g
航跡波

高強度レーザー光の圧力で電子が押しの けられ、ほぼ光速で進むプラズマ波(航跡 波)ができる。航跡波に乗った電子は、非 常に強い電界で加速される。

レーザー加速器の提案 (田島、Dawson 1979)

Laser Electron Accelerator

T. Tajima and J. M. Dawson Department of Physics, University of California, Los Augetes, California 90024 (Received # March 1979)

Prof. John Dawson

田島俊樹氏 (原子力機構関西光科学研所長)

レーザー加速器の実現 "Dream beam"

英、米、仏の成果がNature誌(2004年 431号)に同時掲載され、Dream Beamと 命名される。

産総研でも、ほぼ同時期に同様の成果

特徴: コンパクト、低エミッタンス、短パルス、大電流

≫ 指向性の良い単色電子の生成

M. Mori, et al. Phys. Lett. A 356, 146 (2006)

電子加速の機構 (高強度レーザー光の場合)

光圧による電子空洞生成

電子の自己注入

by W. Lu, UCLA, HEEAUP2005 9

レーザー加速による1 GeV 電子ビームの生成

電子インジェクションによる加速電子の制御

V. Malka and J. Faure, ICUIL (2006)

(JAEA)

(KEK中島教授提案)

