

資料 1 科学技術・学術審議会 先端研究基盤部会 量子科学技術委員会 量子ビーム利用推進小委員会(第4回) 平成29年1月24日

イオントロニクスが拓く電子機能と 高輝度軟X線光源への期待

東京大学 大学院工学系研究科 理化学研究所 創発物性科学研究センター

イオントロニクス

-国内外のサイエンスの動向-

基礎科学へのフィードバック

新しいサイエンスの創成

エレクトロニクスとイオニクスの融合による新概念

「電子」を利用する技術

- ・高い集積性
- ・速い応答性
- ·光電変換

「イオン」を利用する技術

- ·低電圧動作
- ・高い応答性
- ・大容量の電荷蓄積

2次電池とキャパシタ

イオントロニクスによる創発物性のデバイス展開

-国内外のサイエンスの動向-

共役系高分子材料

創発物性デバイス

強相関電子材料

- ·高温超伝導
- 金属絶縁体転移
- 超巨大磁気抵抗効果
- ・トポロジカル相転移

東京大学HPより

ヘルムホルツの電気二重層が可能にする超高電界発生

-国内外のサイエンスの動向-

- 1. 超高電界印加による物性値の増強
- 2. 電気化学過程のその場観測により、通常では不可能な 物質状態や物質機能を実現

電気二重層トランジスタによる高濃度キャリア注入

-国内外のサイエンスの動向-

4

イオントロニクスの展開

-国内外のサイエンスの動向-

特別推進研究「イオントロニクス学理の構築」(2013-2017)

-国内外のサイエンスの動向-

重元素を対象とした多数の研究手法を利用可能

非周期構造、電子状態

強相関電子系の理解に不可欠

イオントロニクスによりねつ造データを現実に実現

ねつ造データの一 つである、電界誘 起超伝導は、EDLT の超強電界と高密 度キャリヤ蓄積を 利用してで実際に 実現された。 【川崎・岩佐(ともに 当時東北大金研) の共同研究】

温度(K)

電気化学エッチングにより超伝導転移温度を劇的に向上

FeSe: EDLTによる極薄膜化(東北大塚崎グループ) J. Shiogai et al. Nature Physics 12, 42 (2016).

VO2強相関トランジスタと動作機構の解明

イオン液体をゲート絶縁体として利用

高い電気二重層キャパシタンスを有するイオン液体の開発

多価イオンカチオンによるキャパシタンスの増大

東大・理研 相田グループとの共同研究

イオントロニクスの鍵

デバイスイオン液体の ナノスケール構造とダイナミクス

表面コヒーレントX線散乱による 1. 軽元素の界面構造ダイナミクスの解明 2. 非周期イオン液体構造の可視化

X線散乱と同時測定の蛍光XAFSによる 1. 電気化学ダイナミクスの可視化

高輝度軟X線光源により実現

固体とイオン液体の相互作用を解明

高性能イオン液体の開発

FeSeの熱電パワーファクターを劇的に向上

革新的熱電変換技術に対する社会的期待

【第221-1-2】世界のエネルギー消費量の推移(エネルギー源別、一次エネルギー)

コロイド量子ドット(CQD)格子による熱電変換

コロイド量子ドット

Low thermal conductivity (κ)

半導体材料と配位子の組み合わせにより 多種多様な材料への展開が可能

配位子置換によるCQD格子の電気伝導上昇

S.Z. Bisri, et al. Adv. Mater. 26, 5639 (2014)

無機有機ハイブリッド強相関電子系における高輝度軟X線分析への期待

超安定・高輝度・コヒーレント軟X線ナノビーム計測 重元素を含むハイブリッドシステム中で 機能の鍵となる軽元素構成体の 非周期構造・電子状態ダイナミクスを可視化

現行施設では軽元素材料の 構造・化学状態ダイナミクス は計測不能

無機有機ハイブリッドシステムの例
> EDLT中固液界面におけるイオン液体のナノスケール構造 → 高性能イオン液体開発研究への展開
> CQDアレイの輸送特性を支配するリガンド構造と状態 → 高性能CQD熱電材料開発研究への展開

強相関電子材料研究を支援する必須要件

コヒーレンス及び輝度が高い軟X線

コヒーレントX線散乱法の軽元素への適用

高い安定性 高い空間分解能 高いエネルギー分解能

高い空間コヒーレンス

コヒーレント軟X線散乱法の基盤技術化

反射配置でのptychograpy測定の実現 色収差のない光学系 高ダイナミックレンジな検出器 測定データのハンドリング技術 高速なデータ解析技術

研究・技術サポート

試料アクセサリーの開発支援 ユーザーフレンドリーな測定プログラム 洗練された解析プログラムの整備 解析用高速計算機環境の提供

試料環境の整備

試料調整設備(スピンコーター等)
試料評価設備(半導体パラメーターアナライザ等)
デバイス動作に必要な配線の導入機構
放射光照射位置モニター
温度(4.2 K ~ 400 K)