The Large Hadron Collider (LHC) at CERN

-- Construction and Human Resource --

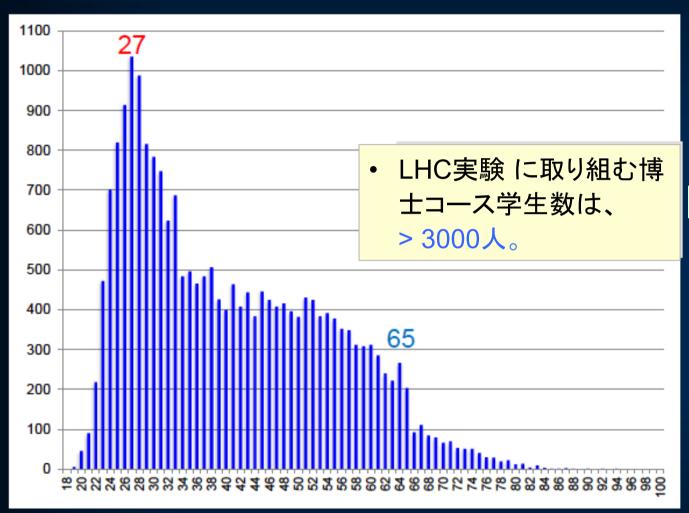
CERN・大型ハドロンコライダー(LHC)加速器建設と人材について

Akira Yamamoto (KEK)
in cooperation with
Lyn Evans (CERN)

報告: 山本 明(KEK)

協力:Lyn Evans (CERN-LHC Project Leader)

To be reported to the 4th MEXT ILC Human-Resource Working Group 文科省・ILC 人材確保・育成方策検証作業部会 (第4回)にて報告 2016-4-20


V-160418-jp



CERNでの科学者年令分布と展開(キャリアパス)

CERNでの経験・実績を踏まえ、広い分野に展開し活躍!

CERN における加速器の発展

加速器の進化:

1954: CERN の設立(12メンバー国)

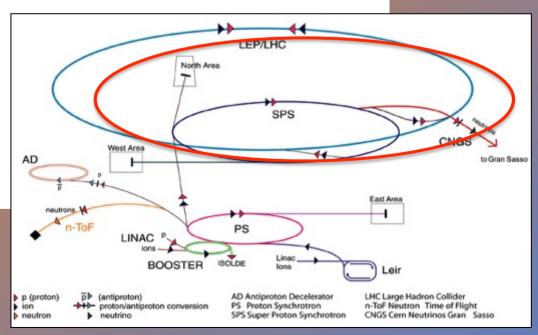
1959: 28GeV 陽子加速器 (PS) 完成

1971: 陽子・陽子コライダー (ISR) 完成

1976: 450GeV スーパー陽子シンクロトロン (SPS) 完成

1983: W and Z の発見。陽子・反陽子コライダー (SP[P-bar]S)による

1989: 50+50GeV 大型電子・陽電子コライダー(LEP) 完成


1994: <u>ラージハドロンコライダー(LHC) 建設の決定</u>

2000: LEP2 運転の終了

2010: 7 TeV 物理実験スタート

2012: Higgs の発見

2015: 13 eV 物理実験スタート

LHC 計画の概要

CERN

<u>目的</u>

・ヒッグス粒子の発見、超対称性粒子の探索。宇宙の起源、物質形成、物質の究極構造の研究。

LHC 加速器

•陽子•陽子衝突:エネルギー: 7+7 TeV

•周長: 27 km

地下トンネル深さ: ~100 m

•主二極磁石: 8.33 Tesla (1232 ユニット)

•磁石総重量: 35,000 tons

•LHe 120 t

•運転電力 120MW (of ~ 230MW at CERN)

·建設費 ~ 5000 MCHF (人件費含)

•建設期間 4+10 yrs

加速器国際協力

- CERN メンバー国 + 日本, アメリカ, ロシア, カナダ, インド, 他…
- 日本からの予算貢献: 138.5 億円
- KEK; 最終収束超伝導磁石、 日本企業、超伝導線、磁石要素 却システム要素など

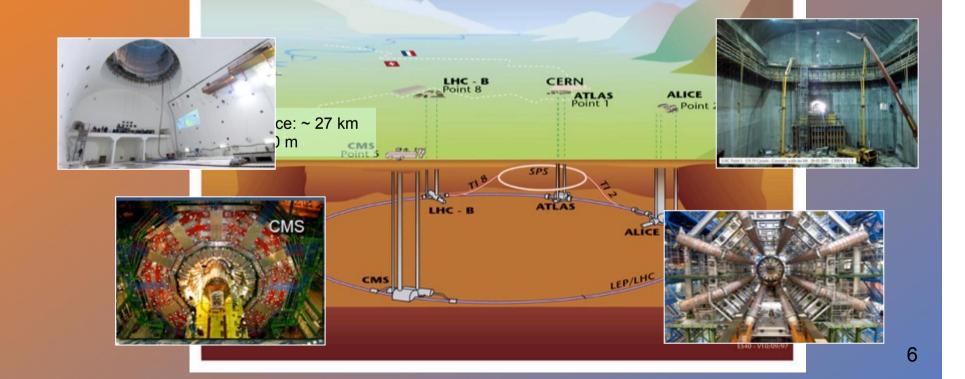
物理実験国際協力:

- ATLAS< CMS, Alice, LHCb, TOTEM< and LHCf
- 日本はATLAS 実験に重点参加。

LHC 実験 CMS, LHCb, ATLAS, and ALICE

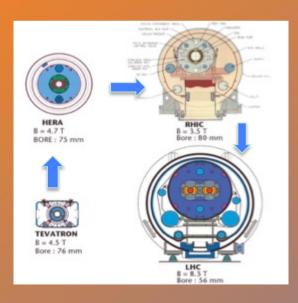
加速器•主二極磁石

衝突点最終収束磁石 (日本の貢献)

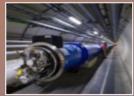



LHC 建設におけるCERNの責任範囲

- 加速器の建設
- 全ての土木・建築(実験エリアを含む)
- 測定器組み込み・運転の為のインフラストラクチャー
- 測定器建設への部分貢献(20%)



LHC加速器·超伝導磁石開発 国際協力·技術継承


- 国際スケールでの高エネルギー加速器・超伝導磁石技術の進展と継承がLHCに結実。
- 超伝導磁石のエキスパートは、プロジェクトの進展に合わせ主役を交代しつつ相互協力。

1970 | 1980 | 1990 | 2000 | 2010 | Main Dipole: Tevatron \rightarrow HERA \rightarrow RHIC \rightarrow LHC | IRQ: ISR Tristan \rightarrow LEP \rightarrow KEKB \rightarrow LHC

Acc.	Energy [GeV]	B , G [T , T/m]	Operation
Tevatron (Fermilab)	2 x 900	4.0 T	1983-2011
HERA (DESY)	820	4.68 T	1990-2007
RHIC (BNL)	2 x 100	3.46 T	2000 -
LHC (CERN)	2 x 7,000	8.36 T	2008 -

LHC 超伝導二極磁石・建設タイムライン

· · · · · · · · · · · · · · · · · · ·	開発研究	量産準	備 建設∙試	験・組み込み	運転
1985	1990	1995	2000	2005	2010
gnet designs rst LHC kshop, 1984	First LHC dipole prototype on th bench (June199		ection	ls in	First energy record the proton beam, December 2009

Continuous magnet line installed in the 27 km LHC tunnel, 2006

超伝導磁石の製造・量産経過

