

Polarised e- Source

偏極電子源

- Laser-driven photo cathode (GaAs)
- DC gun

ilr

İİL

 Integrated into common tunnel with positron BDS

2014.06.30

Positron Source

ilr

Damping Rings 減衰リング

- Concept
 - Reduce eimittance with SR(輻射によりエミッタンスを減少)
 - Further reduction in short time, by using Wiggler (Wiggler 磁石を用いることで、さらに短時間で減少)
 - All bunch in the DR, same time, (一旦全てのバンチを収納)
- Requirements
 - γε_x = 5.5 μm, γε_y = 20nm
 - Time for damping 200 (100) ms
 - 1st step 1312 bunches, (2625) bunches
 - bunch-by-bunch injection/extraction

Values in () are for 10-Hz mode

Many similarities to modern 3rd-generation light sources

 \rightarrow To be presented by K. Yokoya

2014.06.30

10 km を越えるとても長いビームライン。地磁気の影響も考える必要がある。

BDS and MDI (Beam Delivery System and Machine-Detector Interface) ビーム伝達システム、加速器・測定器・接続

 \rightarrow To be reported by A. Emonoto, M. Miyahara

3D View of Target Region

陽電子源·BDS、中央領域.

Engineering Data Management (EDMS)

- Collaborative engineering:
 Design integration, visualisation, traceability, configuration management
- Design integration:

ic

- Geology, Civil engineering, accelerator design, experimental groups
- Different user groups in remote:
 - ILC Community, Planning team, local team, sub-contractors
- Standardization:
 - Names, procedures, formats, conventions, design rules

2014.06.30

- Introduction
- Accelerator R&D
- Accelerator Baseline Design,
- Detectors
- Energy Staging
- Schedule
- Summary

 \rightarrow To be reported by A. Enomoto and M. Miyahara

MDI (Detector Hall) 検出器ホール

2 Detector Concepts: Detailed Baseline Design

- Large R with TPC tracker
- 32 countries, 151 institutions, ~700 members
- Most members from Asia and Europe
- B=3.5T, TPC + Si trackers
- ECal: R=1.8m

- High B with Si strip tracker
- 18 countries, 77 institutions, ~240 members
- Mostly American
- B=5T, Si only tracker
- ECal: R=1.27m

Both detector concepts are optimized for Particle Flow Analysis

ILD Detector

International Large Detector

Performance Goal as compared to LHC detectors

Vertex resolution Momentum resolution Jet energy resolution 2-7 times better 10 times better 2 times better

The key is ultra high granularity!

Detector	ILD	ATLAS	Granularity
Vertex Det.	5×5µm²	400×50µm²	x 800
Tracker	1×6mm ²	13mm²	x 2.2
EM Calorimeter	Silicon: 5×5mm² Scintillator: 5×45mm²	39×39mm²	x 61 x 7 ⁵⁶
			3

Vertex Detector

detects production and decay points of unstable particles and identifies band c-quarks.

> Time Projection Chamber measures momenta of charged particles

Calorimeter

measures energies of neutral particles