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Mira: Argonne’s Newest GREEN Supercomputer

= Blue Gene/Q System
— 48 racks
— 786,432 cores
— 786 TB of memory
— Peak flop rate: 10 PF

= Half size of LLNL Sequoia

= Storage System
— ~30 PB capability
e 240GB/s bandwidth (GPFS)

LY Pete Beckman Argonne National Laboratory 2



U
BlueGene/Q Compute chip + 360 mm® Cu-45 technology (SOI)

— ~ 1.47 B transistors
System-on-a-Chip design : integrates processors,

memory and networking logic into a single chip " 16 user + 1 service PPC processors
— plus 1 redundant processor

— all processors are symmetric

— each 4-way multi-threaded

— 64 bits

- 1.6 GHz

— L1 1/D cache = 16kB/16kB

— L1 prefetch engines

— each processor has Quad FPU
(4-wide double precision, SIMD)

— peak performance 204.8 GFLOPS @ 55 W

= Central shared L2 cache: 32 MB
— eDRAM

— multiversioned cache — will support transactional
memory, speculative execution.

— supports atomic ops
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= Dual memory controller
— 16 GB external DDR3 memory
—1.33 Gb/s
— 2 * 16 byte-wide interface (+ECC)

= Chip-to-chip networking
— Router logic integrated into BQC chip.

= External 10
— PCle Gen?2 interface

S Pete Beckman Argonne National Laboratory 3
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S

C.f. Power7: 1.2B, BG/Q: 1.5B, SPARC IX fx: 1.9B,
Sandy-Bridge EP: 2.3B, GF110: 3.0B, GK110: 7.1B

NVIDIA “Kepler2” GK110

28nm TSMC, ~600m2?

7.1 Billion Transistors

2880 CUDA Cores, 15 SMXs

4.? TFLOPS SFP / 1.? TFLOPS DFP
> 200GB/s Memory BW

6~XXGB GDDR5 Memory

PCle3 Interface

GPU Direct3 — Direct PCle transfer
to IB and other HCAs (no CPU
memory buffering)

Hyper-Q multi-job queuing
Hardware-assisted dynamic
parallelism

GPU Virtualization

CUDAS & OpenACC directive-based
programming

18,000 Kepler2s in ORNL Jaguar ->
Titan (Cray XK6) Upgrade

Pete Beckman Argonne National Laboratory 55
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A grand challenge for the 21st century

Development of an Exascale Computing System is a Grand

Challenge for the 215t Century

“[Development of] An “exascale” supercomputer capable of a million trillion calculations
per second — dramatically increasing our ability to understand the world around us
through simulation and slashing the time needed to design complex products such as

therapeutics, advanced materials, and highly-efficient autos and aircraft.”

Sept 20t 2009

EXECUTIVE OFFICE OF THE PRESIDENT NATIONAL ECONOMIC COUNCIL OFFICE OF

SCIENCE AND TECHNOLOGY POLICY
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£l U.S. DEPARTMENT OF

W ENERGY Current Exascale Programs
Office of Science (2011-12)

* Advanced Architectures and Critical Technologies for Exascale

— 6 projects focused on power management, memory management, and
reducing the cost of data movement

 R&E Prototpyes
« X-Stack Software Research

— 10 projects focused on operating systems, fault tolerance, programming
challenges, performance optimization, etc.

* Scientific Data Management and Analysis at Extreme Scale

— 10 projects spanning file systems and |/O, data triage, feature detection and
data analysis, and visualization

Y Pete Beckman Argonne National Laboratory 88



5B, U-S. DEPARTMENT OF

{© ENERGY | Exascale Co-Design Centers

Office of Science

Exascale Co-Design Center for Materials ExMatEx CESAR
in Extreme Environments (ExMatEx) Germann Rosner
LANL ANL SNL

Director: Timothy Germann (LANL)

National LLNL PNNL LBNL

Center for Exascale Simulation of Labs

SNL LANL LANL
Advanced Reactors (CESAR)
X ORNL ORNL ORNL
Director: Robert Rosner (ANL)
LLNL LLNL
Combustion Exascale Co-Design Center NREL
(CECDC) Stanford Studsvik Stanford
Director: Jacqueline Chen (SNL) U““’;’ sity CalTech TAMU GA Tech
Woning aBohant W i Industry Rice Rutgers
e mE Partners U Chicago UT Austin
(i T IBM Utah
TerraPower

General Atomic

N

- ]
scals| | Mesoscale | | Macroscale. Areva
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U.S. DEPARTMENT OF Exa Sca Ie Reve rse

)ENERGY Timeline

Office of Science

Exascale Exascale Exascale Exascale
Programing Programming Exascale Programming Programming
Applications Start Environment — v0.8 Environment —v0.9

Environment — concept design Environment — v0.1

Sl

Software Technology — programming environme

06/ 12/ 06/ 12/ 06/ 12/ 06/ 12/ o6/ 12/ 06/ 12/ 06/ 12/ 06/ 12/ o6/ 12/ 06/ 12/
2011 2011 2012 2012 2013 2013 2014 2014 2015 2015 2016 2016 2017 2017 2018 2018 2019 2019 2020 2020

Technology risk reduction & : i
echnology FiSKECEEEEE System design & build
node design

- o | ! [

Exascale node Experimental RFP issued System First First Accept
architecture design Facility Contract node Cabinet Exascale
starts (hardware and/or Starts System
simulators/emula
tors)
[Labs | >

(Integrafors ——————— N U
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SR U.S. DEPARTMENT OF

JENERGY

J Anticipated Future Programs

Office of Science

* Programming Models, Languages, Compilers, and Tools

— Minimize exposure of system complexity
— Extreme concurrency

— Heterogeneous system

— Minimize data movement

e« X-Stack

— Strong focus on runtimes for efficiency and resiliency
— Self-aware OS

 Exascale Architectures

— Abstract machine models for design space exploration, utilizing simulation
— Driven by DOE selected applications

 Extreme Scale Solver Algorithms
— Fine grain parallelism
— Data movement & locality

Pete Beckman Argonne National Laboratory 1M



Exascale... Xstack (new call) $45mil?
2012-2015

2012

I
i BT _— — I th
! = :: — Build/install Build/install ! [ | R F P Wa S d u e M ay 1 1
! | craation ! Industry Contracts prototypes Exascale >:
il
i E\ralall}ati:lni: Gollo Go S HEsthess GolloGoL_fEEms E
r'd £
! prugusals:H Exascale Platform RED L1 L |
|________'|_________________‘ﬂ _______________________________________________________ !
Startof Exascale : - : Application I&pplication Readiness
Co-D & Critical Technol
program RIS Ll s Readiness | NNSAand 5C Science u P rOCESS
2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | IVI e m O ry
Table 1. Exascale System Goals m /
Exascale System Goal Sto ra ge a N d | O
Delivery Date 2019

Performance

1000 PF LINPACK and 300 PF on to-
be-specified applications

= Good responses

Power Consumption* 20 MW
MTBAT** 6 days
Memory including NVRAM 128 PB
Node Memory Bandwidth 4 TB/s
Node Interconnect Bandwidth 400 GB/s

*Power consumption includes only power to the compute system, not

associated storage or cooling systems.

**The mean time to application failure requiring any user or administrator
action must be greater than 24 hours, and the asymptotic target is
improvement to 6 days over time. The system overhead to handle automatic
fault recovery must not reduce application efficiency by more than half.

PF = petaflop/s, MW = megawatts, PB = petabytes, TB/s = terabytes per
second, GB/s = gigabytes per second, NVRAM = non-volatile memory.

Pete Beckman Argonne National Laboratory 12



The 4 Issues for Exascale Software

"Memory & Interconnect
" ow Power

"Parallelism

" Fault

Pete Beckman Argonne National Laboratory 13



S
3D Chip Stacking: Fast, Close, (relatively) Small
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Micron HMC

o

Univ of Michigan
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Micron Hybrid Memory Cube

Future on-module

Interconnect pipe?

@\&\k\\\\\\&\\m&\\\\m\\m%\\\x»
$ _
N

% & Wide Data Path

“Early benchmarks show a memory cube blasting .
data 12 times faster than DDR3-1333 SDRAM while  "°&
using only about 10 percent of the power."

S Pete Beckman Argonne National Laboratory 15



The Great Wall..... The Interconnect

Slow

Massive
Multi-threading
to Hide Latency

Time

3D (HMC)

Fast

Near _ ) Far
Memory Distance (Size)

LY Pete Beckman Argonne National Laboratory 16



Impact on System Software:
Memory / Interconnect

" |ntra-node data movement
— Data movement dominates power

e Explicit core-to-core data movement
e MPI for intranode?

— Programmable memory logic functions
= Next-gen message layer (to hide latency):

— Redesigned for massive multithreading
e Not just message rates, but pending requests

— Implementation must become parallel
= OS/R: lightweight active messages & threads
= Design Question: Interconnect to Memory or CPU?

Pete Beckman Argonne National Laboratory 17



Parallelism

On-chip Parallelism Exploding = 700MHz ARM11
“The core is the new Mhz” = $25

= 2008: largest system had O(100K) cores " 4cores
= Today (2012)

LLNL BG/Q  1600K cores

RIKEN K 705K cores

Julich BG/P 295K cores

ORNL XT5 224K cores

ANL BG/P 164K cores

LY Pete Beckman Argonne National Laboratory 18



Key Changes:
Coherency, Power Management, Specialization
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Static or Dynamic?

= We must switch to dynamic view of our parallel
abstract machine

— Automatic correction of faults

— Explicit power management

— Implicit power management

— Contention
= Massive parallelism -> static is unscalable
= How will our programming change?

Pete Beckman Argonne National Laboratory 20



In-Socket Parallel Programming is a Mess:

#pragma omp parallel for \
default(shared) private(i) \
schedule({static, chunk) X\

reduction{+:result)

for (i=0; i < mn; i++)

result = result + (a[i] * b[i]);

printf("Final result= %f\n",result);

float function FTNReductionOMP(data, size)
float data(*)

integer size

ret = 0.0

ldir$ omp offload target(===) in(size) in(data:length(size))
I$omp parallel do reduction(+:ret)
do i=1,size
ret = ret + data(i)
enddo
1$omp end parallel do

FTNReductionOMP = ret

IF

-] -] -]
PRIVATE @ e ° e ] e
SHARED -] [ ] -] -]
DEFAULT ™Y ] -]
FIRSTPRIVATE e e ® e ] e
LASTPRIVATE ™ ™ ™Y
REDUCTION ™ ™
COPYIN ] -]
COPYPRIVATE ™
SCHEDULE e e
ORDERED e e
NOWAIT e e o

System Software Challenges:

OpenMP is a mess

OpenMP is not used by compiler writers
OpenMP is not used by message libs
Representation of deep memory

Pete Beckman Argonne National Laboratory

New, more expressive programming model
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Impact on System Software:
Parallelism

= Parallelism is growing exponentially in sockets

— graphs/trees handle exponentially growing resources
well

— Fork/join and loop parallelism does not scale
= Systems are no longer static
— graphs/trees handle load balancing well
= How will the community solve this?
— |Is a completely new programming model needed?

= OS/R redesign for massive numbers of dynamic
threads, memory placement, and support for remote

put/get

Pete Beckman Argonne National Laboratory 22



Low Power

BG/P & BG/Q Power Experiments

Total Power Consumption of 128 nodes [W]
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Exploring Power on

manycore-heater: Ibc meamopy
(KMF Jlapl -alphaB-update-2.0.2001-3)
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Impact on System Software:
Low Power

= Power will become first-class managed resource
— Dark Silicon: More functional units than can run at full speed
— Variable speed subcomponents

— New low-level interfaces for runtime systems

— New algorithms to optimize performance for given Thermal Design
Point (TDP)

= OS/R
— Actively manage turning cores and memory on and off
— Support for variable coherence domain to manage power
— Heterogeneous (10x10) multi-core (graphics, compression, etc)
e Programming model for this?

= Dynamic power-aware run-time system

Pete Beckman Argonne National Laboratory 25



Predictions are Hard

What we do know:

Example Prediction from 2007 = Driving down power
increases faults

s

= VVendors have great market
incentive to redesign for
reliable hardware

g

Mﬂmhﬁmgt{mh}

8

e = Qur current HPC software is
very fragile

—

h EDDB Eﬂt1ﬂ 2&12 2{.';14 20186 - EG'FE

“Over the past thirty years there have been several

predictions of the eminent cessation of the rate of m We ShO u |d |m p rove

improvement in computer performance. Every such
prediction was wrong. They were wrong because they

hinged on unstated assumptions that were overturned - Bu |Id SOl Ut|0ns at mu |t| ple
by subsequent events.
layers

S Pete Beckman Argonne National Laboratory 26



Summary: Exciting Times

= Deep memory hierarchies: 3D local RAM and NVRAM
= Distributed memory: cache coherence not power efficient
— OS/R support dynamic selection of coherence domains
= Parallelism within a node is dramatically increasing
— Current programming models are completely unprepared
= Dynamic power management is critical to performance
— System software will develop APIs and new algorithms
= Massive multithreading: hide latency and provide dynamism
— Overdecomposition, load balancing

= Faults may increase. Start building software now...

Pete Beckman Argonne National Laboratory 27
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