XFELと利用推進5課題の関係

(3利用研究+2基盤技術開発)

<u>* 利用研究</u>

1. ポンプ・プローブ手法に関する研究開発

(代表:東大山内)

フェムト秒時間分解能での原子分子反応の解明に向け、XFEL光とレーザー光を用いたポンプ・プローブ計測(ビームを試料に照射し、試料の変化を観測)を行う。

<u>* 利用研究</u>

X線領域)

験ハッチ

2. 化学反応過程におけるイメージングに関する研究開発 (代表:京大松原)

エレクトロニクスデバイスと気体分子などとの 吸着などの高速で行われている化学(触媒)反 応等を、散乱パターンから導かれるイメージン グ画像を使ってフェムト秒時間分解能で測定 する。

BL3

BL1

<u>*基盤技術開発</u>

4. X線レーザーの光学系・制御系に関する基礎技術研究開発

(代表:阪大山内)

実験支援することを目的に、入射XFEL光をより細く絞り込むため、極めて精度の高いミラーの開発を行う。

* 利用研究

アンジュレータ

アンジュレータ

3. 生体分子の構造解析、機能解析に関する研究開発

X線集光

(代表:慶大中迫)

結晶化が困難な膜タンパク質や細胞内小器 官などの構造解析に向け、実験設備の整備 と画像解析方法の検討を行い、実機利用に 向けた実験技術と解析技術の確立を目指す。

*基盤技術開発

タンパク質回折データ

5. 生体分子の立体構造決定に向けたシミュレーションに関する研究開発

(代表:JAEA河野)

XFELで測定される生体分子の2次元回折データから3次元回折像を求め、位相回復により立体構造を求めるソフトウェアの開発を行う。

平成21-22年度における利用推進研究の体制

(3利用研究+2基盤技術開発)

	分野	研究課題	研究者 (代表者は「*」)	所属機関	配分額 (百万円)
1	利用研究	ポンプ-プローブ手法に関する研究開発	山内 薫* 上田 潔 八尾 誠	東京大学 東北大学 京都大学	35 35
2	利用研究	化学反応過程におけるイメージ ングに関する研究開発	松原 英一郎* 守友 浩 北川 進 角田 匡清	京都大学 筑波大学 京都大学 東北大学	17 17 7 17
3	利用研究	生体分子の構造解析、機能解析に関する研究開発	中迫 雅由*中嶋 敦	慶應義塾大学 慶應義塾大学	26 26
4	基盤技術開発	X線レーザーの光学系・制御系に関する基礎技術研究開 発	山内 和人* 玉作 賢治 中村 一隆 米田 仁紀 初井 宇記	大阪大学 理化学研究所 東京工業大学 電気通信大学 理化学研究所	26 12. 3 7 17 7
5	基盤技術開発	生体分子の立体構造決定に向けたシミュレーションに関する研究開発	河野 秀俊*	日本原子力研究開 発機構	16. 5