海洋立国日本とその鍵となる 国家基幹技術

海洋研究開発機構 理事

堀田 平

平成25年4月15日

海洋分野における国家基幹技術検討委員会(第3回)説明資料

科学技術に基礎をおいた海洋立国日本

海洋国家日本の目指すべき姿

(次期海洋基本計画(原案)より抜粋・要約)

海洋の開発・利用による富と繁栄

- 海洋環境保全との調和を図りつつ水産資源、エネルギー・ 鉱物資源等を開発
- 海洋産業の振興・創出と国際展開

「海に守られた国」から「海を守る国へ」

- 安全、効率的かつ安定的な海上輸送ルートの確保
- 海洋由来の災害に対する備えを徹底
- 領海、排他的経済水域等を守り抜く
- 海洋を世界人類の公共財として保ち続けるために努力

未踏のフロンティアへの挑戦

- 深海底など海洋の未知なる領域の研究による人類の知的財産の創造
- 海洋環境や気候変動等の全地球的課題の解決

科学技術の面で

国際的に連携・協力

海洋に基礎をおいた豊かな国家モデルの提示、 恩恵を国民が享受し、世界における海洋立国の 規範に 鍵となる技術基盤

次世代有人潜水船 システム

ケーブル式海底プラットフォーム

多数編成AUV群

次世代超深海掘削船

次世代海洋観測 システム (参考)JAMSTEC保有技術

- ・有人潜水調査船「しんか い6500」
- •7000m級無人探査機「かいこう7000III
- ·資源探査用ROV 等

・地震・津波観測監視システム(DONET)

・深海巡航探査機「うらしま」、深海探査機「ゆめいるか」、深海探査機「じんべい」、深海探査機「おとひめ」等

・地球深部探査船「ちきゅう」

- ・トライトンブイシステム
- ·超深海用自己浮上式地 震計 等

2

次世代有人潜水船システム

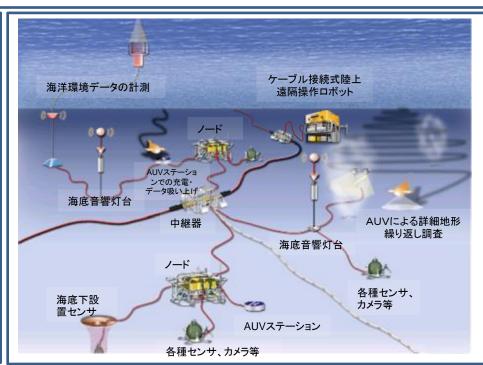
〇目的、必要性

- ▶ 我が国の領海には9,000mを超える極めて水深の深い海底を持ち、海溝型地震の発生帯や深海底などに生息する 特異な機能を有する微生物群、海底に堆積する有用資源泥等、様々な調査すべき対象が存在する
- ▶ 海洋フロンティアを開拓し、国民生活・社会経済に還元する成果を創出する
- ➤ 深海および海底下のエンジニアリングでは、直接その現場を見ることで明らかになることが多い。

○技術開発のポイント

- ▶ 高圧力(海洋最深部(11,000m)の水圧)に耐え、長距離、長期間潜航可能な潜水調査システムの開発
 - •高強度耐圧殼
 - •浮力材等の新規素材
 - ・長期間潜航システム(複数人乗船、燃料 電池、居住システム)等
- ▶ 広視野型で機動的かつ実用的な潜水調査 システム
 - ・新規アクリル等耐圧殻用素材
 - ・高機動力の付与 等
- ▶母船システムの開発
 - ・効率的な着水揚収装置 等

- ▶極限環境条件に適応した生物の有する新奇な機能・生体分子・生物材料の開発 (生物資源、遺伝子資源)
- ▶ ダイナミックな地質イベント、流体移動が観察される超深海海溝域における地球科学的な探査や体系的研究 (海洋科学、地球科学) 等


ケーブル式海底プラットフォーム

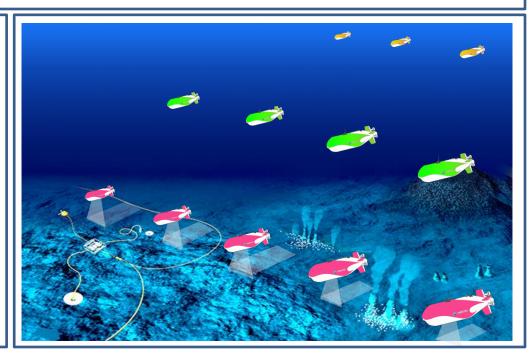
〇目的、必要性

- ▶ 海底ケーブル式観測システムは、長期間、リアルタイムで信頼性の高い海洋情報を得るために必要となる電力供給やデータ伝送に大きな強みがある。これを活かし、ロボット(AUVやROV等)やセンサ技術等と組み合わせることで、海洋観測や地震・津波防災だけでなく、海底資源探査、海域モニタリング等多様な課題への解決策が提案可能。従来、シップタイムに制約されていた海中ロボットの運用等も本システムにより大幅な効率化が見込まれる。
- ▶ 海中の音響技術を駆使し海底探査することは、国家の安全保障上極めて重要。

○技術開発のポイント

- ▶長期で信頼できるデータを取得する技術
 - ロボットやセンサの長期メンテナンスフリー化
 - ・センサ検定手法等
- ▶水中のAUV用灯台(位置把握)及びステーション技術
 - •給電方法
 - ・メンテナンス方法
 - データ伝送、コマンド送信等
- プラットフォームを活用した現場実験・解析等作業システム
 - ケーブル接続式ロボット・クローラーシステム
 - ・現場実験・解析システム 等

- ▶対象海域における24時間365日のAUV群による海底繰り返し探査の実施 (海域の機動的モニタリング)
- ▶固定観測点とそれを補完するロボット観測による超高密度観測網の構築 (地震防災、海洋環境調査)
- ▶メタンハイドレート開発、海底下二酸化炭素貯留(CCS)のモニタリングシステムの構築 (資源開発)
- ▶ケーブル接続式陸上遠隔操作ロボットによる、海底でのレアアース成分抽出作業 (資源開発) 等

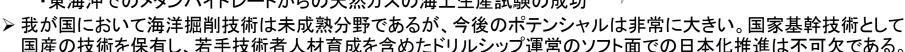

多数編成AUV群

〇目的、必要性

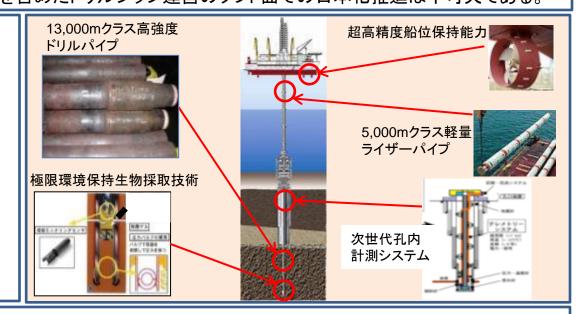
- ▶多数機のAUVを同時展開し、観測範囲を飛躍的に拡大することのできる観測網の基盤を構築する。
- ▶ 多数のAUVから得られたデータを統合的に解析することで、観測海域を広く面的、あるいは3次元的に捉えることが可能になり、そこから様々な社会的課題の解決に貢献する。
- ▶ グライダー型のAUV等も含めて役割の異なる複数のAUVを複合的に運用することで、1機のAUVでは実現できない高度な観測を実現する。

○技術開発のポイント

- ▶稼働信頼性の向上
 - ・船舶レス完全自律航行の実現
- ▶多数機展開に向けた小型化、長稼働時間化
- ▶観測範囲を飛躍的に拡大
 - ・多数のAUVから得られたデータを統合的に解析
 - 複数のAUVの協調運動制御技術
 - 航行の高速化
- ▶機体間のマルチ通信システムの確立
 - •役割の異なる複数のAUVを複合的に運用
- ▶海底ケーブル等他のプラットフォームとの連携
- ▶センサー類の高度化


- ▶海底資源の賦存海域の面的・空間的調査による、探査の高効率化・高精度化 (海底資源)
- ▶局所的に発生する極端現象へのAUV群集中投入による追跡観測と短期予測への応用 (防災研究)
- ▶ 海底ケーブル網、海底設置観測ステーション、グライダー型AUV等との連携による、EEZ内の機動的モニタリングネットワークの構築(海域管理)等

次世代超深海掘削船


〇概要、必要性

- ▶ 海底下は依然として未知の部分が多い。しかし、実際に掘削したサンプルから、これまでわからなかった事実や試験 の成功が得られた。
 - 南海トラフにおける津波断層の活動痕発見
 - 東北地方太平洋沖地震震源域における断層を含む地質資料の採取
 - ・沖縄トラフにおける海底熱水鉱床の発見と巨大熱水帯構造の解明
 - 東海沖でのメタンハイドレートからの天然ガスの海上生産試験の成功

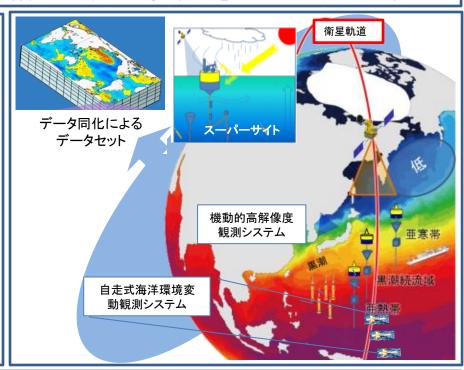
- 超深海・超深部掘削システムを搭載した掘削船の建造 (5,000m級ライザー掘削、13,000m級ドリルパイプ:第9世代型 掘削船の能力)
 - 水平掘を可能とする掘削方向制御システム
 - •超高精度船位保持能力
- 人工ダイヤを使った新たなドリルビットの開発
- 軽量炭素繊維材等を使用した高強度新規掘削資機材の開発
- ▶次世代孔内計測システム等付帯技術開発 保圧、非コンタミのコア試料採取装置
- >メタハイ、レアアース等採取システム
- ▶長期孔内リアルタイム観測網の開発推進
- ▶超大水深での運用技術の確立

我が国のエネルギー問題や地震

津波防災に対して極めて高い貢献

- ▶前人未到のマントル掘削 (地球科学)
- ▶超深部限界地下生命圏の探索 (地球生命科学、環境エネルギー)
- ▶地球創生史解明といった科学 (地球科学)
- ▶レアアース、メタハイ等様々な資源開発など、海洋資源開発プラットフォームとしての活用 (資源エネルギー)

次世代海洋観測システム

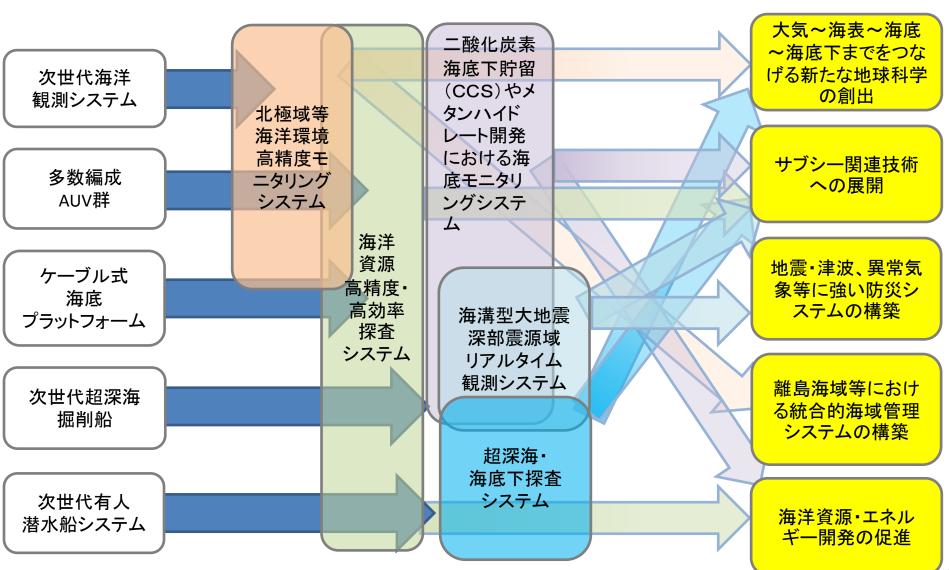

〇目的、必要性

- ▶特に地球環境の問題は、科学的研究としての課題にはとどまらず政策ニーズ
- ▶ 政策ニーズに対応した研究開発のため、広大な海洋空間の総合的な理解に必要な技術など世界をリードする基盤的な技術開発を実施
- ▶ 我が国周辺の環境を我が国の技術で観測することは、安全保障上の観点や海洋開発を進める上で極めて重要

○技術開発のポイント

観測システムの多重・同時運用や、小型化しシステムとして洗練化。質の高い海洋情報(1.高解像度 2.多様な項目 3.長期間 4.広範囲)を得ることを目指した技術開発。

- ▶スーパーサイト観測システム
- 海上~海面~海中と鉛直方向に得られた多項目のデータ と衛星データとデータ同化を組み合わせた観測システム
- ▶自走式海洋環境変動観測システム 小型で編隊を組んで長距離走行。海水温や酸性化状況、 生物生産等をモニタリング
- ▶機動的高解像度観測システム 沿岸域観測や海洋由来の極端現象の高解像度観測に対応する超小型自動プロファイリングフロート観測網。船舶のみならず航空機からも投下可能であり、緊急時に機動的に観測が可能。



- ▶我が国の海洋マネジメントならびに海洋保護区設定にあたって基盤となる仮想海洋の構築
- ▶季節レベル(3~6ヶ月程度)で確率を示す高精度季節予測や気候変動リスク監視に係わる国際分担 (気象・気候)
- ▶遠洋においても高解像度な漁場分布予測システムの構築 (水産)
- ▶漂着物など自治体レベルで把握可能な沿岸管理システムへの応用 (環境・沿岸管理)
- ▶離島周辺等における統合的海域管理システムの構築 (海域管理)

技術基盤を活用したシステム構築例

〇開発した技術基盤を組み合わせ、我が国が海洋国家として必要な様々なシステムを実現

有人潜水船システムの技術状況

世界の大深度有人潜水調査船								
船名(国)	アルビン(米)	ノチール (仏)	ミール 1 & 2 (露 ※フインランド)	しんかい6500 (日)	コンスル (露)	蛟竜(中)	(参考) ディープシー・チャレ ンジャー(豪)	(参考) TRITON 3300/3(米)
完成年	1964 (2013)	1984	1987	1989	2011	2012	2012	-
最大潜航深度	4,500m (耐圧殻は 6,500m)	6,000m	6,000m	6,500m	6,270m	7,000m	11,000m	1,000m
空中重量	20.4 t	19.5 t	18.6 t	26.7 t	26.0 t	24.0 t	11.8 t	8 t
全長	7.0m	8.0m	7.8m	9.7 m	8.4 m	8.2 m	7.3m	4.0m
耐圧殻 (加工)	チタン合金 (溶接)	チタン合金 (O-ring+ボル ト)	マルエーシ`ンク゛鋼 (O-ring+ボル ト)	チタン合金 (溶接)	チタン合金 (溶接)	チタン合金 (溶接)	鋼鉄	アクリル
電池	鉛	鉛	ニッカド	リチウムイオン	銀&鉛	銀	リチウムイオン	鉛
特徴	・浮力オームを開いた。 ディックフォームを潜れる という では、	・半面はとわ採自シト量な技いの溶ボトを表えいで、注いで調と術を語ど術るのとうでで、合き、といってではいいで、これで、これで、これで、これで、これで、これで、これで、これで、これで、これ	 ・建ン・1隻に ・1隻に ・1隻に ・1隻に ・1隻に ・2機・1 ・3を ・4を ・4を ・4を ・5を ・6を ・7を ・7を ・8を ・9を <	 ・1989年に世界 最深を記録 (6,527m)。 ・油漬均圧型リチ ウムイオン電 池を世界・搭 ・2012年に建設・ 以規実を ・スター等を表する スター等を表する。 	・軍が所管し ており、情報 がない	-2012年に 7,020mまで 新し、世を 前し、最終 ・部品の が が が が は り ・2013年 は り ・2013年 は り ・2013年 は り ・2013年 は り ・2013年 は り ・2013年 り ・3 1 1 2 4,000m は り ・3 1 2 4 5 5 5 6 6 7 7 7 8 7 8 7 8 8 7 8 8 8 8 8 9 8 9 8 9	・民間別名の ・民間別名の ・2012年 ・2012年 ・潜航子で ・潜航子で ・潜航子で ・潜航子で ・潜航の ・で ・で ・で ・で ・で ・で ・で ・で ・で ・で ・で ・で ・で	・視界は340度 (フルビジョン)。 ・小型軽量でシ ステムクト ・購入 のの ・購入 のの ・購入 のの ・11,000m級 TRITON 36000/3を開 発中(ガラス 製耐圧殻)。
外観	-			-	-			

ケーブル式海底プラットフォームの技術状況

世界の主な海底ケーブル式観測プラットフォームと計画							
名称	Martha's Vineyard Coastal Observatory	ALOHA	MARS	Regional Scale Node	Neptune Canada	EMSO	地震・津波観測監視シス テム(DONET)
設置国	*	*	*	米	カナダ	EU各国	日本
運用 開始年	2001	2011	2006	開発中	2007	開発中	2011
目的	沿岸域の大気 と海洋の相互 作用	汎用海洋観測 ステーション	汎用海洋観測 ステーション	別用海洋観測 ステーション	汎用海洋観測ス テーション	汎用&特定 (ニュートリノ 研究等)観測	東南海地震発生域での 地震・津波観測
設置機関	ウッズホール 海洋研究所	ハワイ大学	モントレー湾水 族館研究所	Ocean observatories Initiative	Ocean Network Canada	各国大学、研 究機関	海洋研究 開発機構
特徴	・浅海域のみのシステム・気象タワーも併設(大気観)・ノードは1基	 ・ノードは1基 ・温度・水サ電気圧の類を配置 ・設・設・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	・全長52km、水 深891mにノー ドが1基 ・様々なセン サーやツール を設置可能 ・Regional Scale Nodeのテスト ベッド	・7基の ・7基の ・7基の ・7基の ・7基の ・7基の ・7基の ・7基の ・7基の ・7基の ・7基の ・7基の ・7基の ・7基の ・7型の ・7回 ・7回 ・7回 ・7回 ・7回 ・7回 ・7回 ・7回	・カ大大テでタ接を大きでか置フレモケががロ親ととのかには、カーが探していたがいがって、カーをでは、カーをでは、カーをは、カーをは、カーをは、カーをは、カーをは、カーをは、カーののでは、カーののでは、カーののでは、カーののでは、カーののでは、カーののでは、カーののでは、カーののでは、カーののでは、カーののでは、カーののでは、カーののでは、カーののでは、カーののでは、カーののでは、カーのでは、カ	E目にケ観統ローつ開 圏の開ブ網すが部いに 国開ブ網すなので着 国域る式をプロは手	 ・世界で初めて実用化されたシステム ・緊急地震速報、津波警報にも活用 ・5基のノードに20点の観測点 ・微細な海底の動きから大型地震動までを捉表る高精度センサを搭載 ・「ちきゅう」による掘削孔内に設置した観測装置とも接続し、リアルタイムでデータ取得に成功・全長約250km、最大水深4,300m ・DONET2システムについても展開中

自律型無人探査機(AUV)の技術状況

世界の主な自律型無人探査機(AUV)								
機体名称 (所有者or メ ー カー)	Bluefin-21 (Bluefin Robotics (米国))	Autosub6000 (英国サザンプ トン海洋研究所)	HUGIN4500 (Kongsberg Maritime AS (ノルウェー))	うらしま (JAMSTEC)	ゆめいるか (JAMSTEC)	じんべい (JAMSTEC)	おとひめ (JAMSTEC)	TUNASAND (東京大学生 産技術 研究所)
大きさ (L×B×D)	4.93 × Ф0.53m	5.5 × Ф0.9m	6×1×1m	10 × 13. × 2.4m	5×1.4 × 1.4m	4×1.1×1.1m	2.6 × 1.3 × 1.3m	1.1 × 0.7 × 0. 65 m
空中重量	750kg	2000kg	1900kg	8000kg	2700kg	1700kg	900kg	240kg
深度クラス	4500m	6000m	4500m	3500m	3000m	3000m	3000m	1500m
稼働時間	25hrs	30hrs	60hrs	20hrs	16hrs	10hrs	8hrs	3hrs
主な 観測機器	サイドスキャン ソーナー、サブ ボトムポロファ イラー、マルチ ビーム測深機	マルチビーム音 響測深器、サブ ボトムプロファイ ラ、CTD計等	サイドスキャン ソーナー、サブ ボトムポロファ イラー、マルチ ビーム測深機、 CTD計、メタンセ ンサ	サイドスキャン ソーナー、音響 画像装置、サブ ボトムプロファ イラ、マルチ ビーム測深器、 CTDO、自動採 水器、カメラ	CTD計、蛍光濁 度計、pHセン サ、サブボトム プロファイラ、イ ンターフェロメト リソーナー、 合成開ロソー ナー	CTD-DO計、 蛍光濁度計、 pH-CO2ハイブ リッドセンサ、 サイドスキャン ソーナー、マル チビーム測深 機	CTD計、 pH-CO2ハイブ リッドセンサ、サ イドスキャンソー ナー、HDTVカメラ、 NTSCカメラ、ステ レオモザイクカメ ラ	CCDカメラ、 プロファイリン グソーナー
特徴	・市販品(汎用)	・同形状で3号 機まで ・長距離、大水 深での調査が 可能	・世界で最も売れている市販品(汎用)シリーズ ・開発には海軍なども携わっている	 ・世界で初めて 燃料電池を搭 載 ・機器搭載能力 に優れるため、 センサー類の 試験も可能 	・世界初のX舵 前翼搭載により、熱水鉱床 等複雑な地 形の調査が 可能	・複数スラスタ 搭載により、 <u>浅海、低速での航行も可能</u> となり、 <u>化学</u> 成分のデータ 等の取得も可 能	・ <u>深海型のホバリ</u> ング型AUVは 世界で2機のみ (2機とも日本)	・ホバリング 型AUV ・超低速写真 撮影が可能
外観				3	- mil			in the

12

科学掘削船の技術状況

これまでの「ちきゅう」運航技術蓄積成果

- ▶ 科学掘削としては世界最長の総ドリルパイプ長(7,740m:水深6889.5m、海底下850.5m)の掘削を実施(H24.4 東北地方太平洋沖地震調査掘削)。
- ▶ 科学掘削としては世界最深度(海底下2,466m)の掘削を実施(H24.9 下北八戸沖石炭層生命圏掘削)。
- ▶ 世界初となるメタンハイドレートの海洋産出試験を実施(H25.1~ 愛知県渥美半島沖)。

世界の主な掘削船

	JOIDES Resolution (米国)	地球深部探査船「ちきゅう」 (日本)	Deepwater Champion (米国)	West Vela (ノルウェー)	
運用者	USIO(米国IODP実施機関)	(独)海洋研究開発機構	TRANS OCEAN CO.,LTD.	Seadrill Ltd.	
目的	科学掘削	科学掘削	資源掘削	資源掘削	
建造年	1978年(2008年改造)	2005年	2011年	建造中	
外観					
全長	143m	210 m	229m	228m	
全幅	21m	38 m	36m	42m	
総トン数	10,282 t	56,752 t	51,320 t	60,000 t	
定員	130人	200人	210人	200人	
最大稼働水深	1	2,500 m	3,047 m	3,600 m	
総ドリルパイプ長	9,144 m(掘削深度は約2,000 m)	10,000 m	12,191 m	11,400 m	

- ▶「ちきゅう」建造時は世界で10隻ほどだった大水深掘削船は現在一種の建造ブーム(72隻が建造中、52隻が掘削活動中(すべて石油掘削)
- ▶ 建造中の掘削船のほとんどは「第7世代」(水深〈ライザー掘削〉3,600m、ドリルパイプ12,000m程度が基本性能)。第7世代のフェーズは10年ほど続く見込み

海洋観測システムの技術状況

<mark>海洋の観測システムの状況</mark>								
システム	海洋観測ブイ (TAO/TRITONブイ)	アルゴフロート	スーパーサイト	水中グライダー	海底地震計(Ocean Bottom Seismograph)			
外観	TRITON			Taururant!				
特徴	・海洋観測ブイを赤道域を中心に設置を行い、熱帯域の暖水が世界中の気候におよぼす影響を調査。 ・エルニーニョ・ラニーニャの発生予測などにも活用。1998年から熱帯赤道域で運用を継続中。	・世界各国で利用。20か国 以上が国際研究計画に参加。最大深度2000mまで 潜り、定期的に自己浮上し、 衛星経由でデータを送信 する。 ・さらなる小型化、大水深 化、低廉化が望まれる。	・海上〜海面〜海中と鉛直方向に、海洋環境を把握するために必要となる多項目のデータのデータを長期・時系列で取得するための観測サイト。	・比較的長期間、長距離の運用が可能。回収し整備することで何度でも利用化。	・海底で地震観測を行う 計測器。センサー・記録 器・時計・電池などが耐圧 容器に収納。 ・自然地震の観測やエア ガンと組み合わせて海底 下の構造探査に利用。			
海外 の 状況	米国は太平洋上に55基の 観測ブイを展開。インド洋 にも19基展開。 韓国、中国もブイをインド 洋に展開。	衛星電話回線から深度変 更等のコマンドにより、目 的にあったデータを取得す る機器、比較的小型の機 器、水温・塩分以外を計測 する機器等の開発が試み られている。	米国、EUが長期観測評価のための構築。一部のサイトでは他の観測システムと相互に結びつけた観測を実施。	米国では既に実用化が進んでいる。特に軍においても利用が進められ、ノウハウを蓄積。全球観測を補完するシステムとして活用。	海底下の構造探査や、地 震観測に活用。			
国内 の 状況	西太平洋(15基)、インド 洋(3基)に計18基を展開。 <mark>ブイの小型化</mark> など開発。信 頼性の高いデータを提供し ている。 また、この経験を活用し、 世界初となる南大洋での 海洋観測プラットフォーム 開発	・既存フロートでは、国産のものも存在するが、海外市場での存在感は薄い。 ・世界で初めて最大深度 4,000mのフロートを開発	生物生産や大気海洋相互 作用など、個別目的を対 象とした長期観測は実施さ れているが、海洋を汎用的 に調べるための観測点は ない。	国内に数基のみ。実験的 な利用に限定されている。	JAMSTECで培ってきた深 海技術を適用し、水深 11,000mでも使用可能な 超深海地震計や小型且 つ複数台の同時自動設 定や非接触充電が可能 な大規模展開型海底地 震計の開発に成功。			