資料1-3

放射能測定法シリーズ 33

ゲルマニウム半導体検出器を用いた in-situ 測定法

(案)

平成 年

文 部 科 学 省

科学技術・学術政策局 原子力安全課防災環境対策室

第1章	序 論	1
第2章	測定機器	3
2.1	機器に必要な要件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
2.2	機器構成	3
2.3	機器仕様の例	3
2.4	機器校正	5
第3章	測定方法とスペクトル解析 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
3.1	測定場所の選定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
3.2	測定	10
3.3	記録	11
3.4	土壌の採取 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
3.5	スペクトル解析 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
∽ <i>4</i> 辛	故射総連府乃7,"穴明故射组是変の管山	11
- 年 早 - ▲ ▲	成別 能 辰 反 び 全 间 成 別 緑 里 卒 の 昇 山	14
4.1		14
4.2		10
4.3	全间放射線重率の昇山・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	22
第5章	測定結果の補正 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	26
5.1	周辺地形の広がりに対する補正 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	26
672 言凶		
用午 □九	instu测定法の日的乃び测定提低	21
用十百九 7		33
用午 □ 九 □		32
用午百九 \ 备忍言台 「		33 41
用午口九□		52
用午百九 [备汉主省 [52
州牛百兀「	大际のポル[7]	54
付録		
付録	放射性核種濃度と地上高 1m での 線フルエンス率との関係 ・・・・・・・・・	65
付録2	2 土壌中に指数分布する放射性核種による地上高 1m での線量率と	
	線フルエンス率の関係 ・・・・・	77

付録 3	放射性核種濃度と地上高 1m での線量率との関係	 89

付録 4	参考文献		95
------	------	--	----

第1章 序 論

優れたエネルギー分解能を持つゲルマニウム(以下「Ge」という。)半導体検出器を用いて in-situ¹¹測定を行うと、放射性核種を容易に特定することができ、原子力施設における原子 力緊急事態の発生時(以下「緊急時」という。)等において、状況を把握するのに有効である。

放射性物質が環境中に放出された場合には、Ge半導体検出器を用いた in-situ 測定(以下 「in-situ 測定」という。)法により、地表に沈着した放射性物質の放射能濃度(Bq/m²)及び 空間放射線量率(Gy/h)を求めることができる。

in-situ 測定法は、土壌を採取して実験室に持ち帰り測定する方法と比較して、測定時間 は十分の一程度でよく、また、地表面に沈着した放射性物質が均一に分布していない場合で も、測定地点周辺の平均的な測定結果を得ることができる。したがって、放射性物質が環境 中に放出され広い範囲に放射能汚染が生じ、その汚染の分布を作成する場合等に特に有効な 測定法である。

本マニュアルは、Ge 半導体検出器の校正方法、地表に沈着した放射性物質からの 線の測 定及び解析方法を記載した。

解析方法については、HASL²方式(H.L.Beck, et al.;HASL-258(1972))に準拠し、ICRU³ Rep.53(1994)等の最近の研究結果も参考にした。HASL方式では、放射性物質の土壌中におけ る鉛直分布、周囲の地形及び検出器設置高さ等について、ある仮定のもとに解析を行うため、 仮定と実際の条件が異なった場合の解析結果への影響を把握しておく必要がある。本マニュ アルでは、それらの影響を明確にするとともに、補正方法等も記載した。

検出可能レベルは、1時間の測定で、地表に沈着した放射性核種に対して、0.03 kBq/m²程 度、それらの核種からの空間放射線量率として 0.1 nGy/h 程度である。検出可能レベルを表 1.1 に示す。

また、in-situ 測定法は、もともと自然に存在する放射性物質であるウラン系列核種、ト リウム系列核種、カリウム 40 等についても、土壌中の放射能濃度(Bq/kg)及び空間放射線 量率(Gy/h)を求めることが可能であることから、その方法についても記載した。

^{*1}「in-situ」とは「現場」を示す。

^{*2} Health and Safety Laboratory(現在はEnvironmental Measurements Laboratory)

^{*3} International Commission on Radiation Units and Measurements

¹³⁷ Csの検出可能レベル			
放射能濃度	線量率		
(kBq/m ²)	(nGy/h)		
0.34	0.87		
0.13	0.32		
0.09	0.22		
0.06	0.15		
0.05	0.12		
0.03	0.08		
	¹³⁷ Csの検出 放射能濃度 <u>(kBq/m²)</u> 0.34 0.13 0.09 0.06 0.05 0.03		

表1.1 検出可能レベルの例

下記の条件を基に、計数誤差の3倍となる値を検出可能レベルとした。

- ・ セシウム 137 が地表 (無限平面) に分布
- 相対効率 25%の Ge 半導体検出器を使用
- ・ バックグラウンドが日本の平均的なレベル(線量率 50nGy/h)

検出可能レベルは、セシウム 137 以外の放射性核種の影響により変動するので、ここに示した 値はあくまで参考とする。

なお、in-situ で 60 分間測定した場合の検出可能レベル(放射能)は、実験室でマリネリ容器 を用いて 10 時間測定した場合と同程度である。また、検出可能レベル(線量率)は 1mSv/年(約 140nGy/h に相当)の約 1/1,000 のレベルである。 2.1 機器に必要な要件

in-situ 測定に用いられる Ge 半導体検出器は、実験室で環境試料の測定に用いられる通常の 線スペクトロメータと基本的には同じである。検出器及び各機器の詳細については、 文部科学省放射能測定法シリーズ 7「ゲルマニウム半導体検出器によるガンマ線スペクト ロメトリー」を参照のこと。

但し、屋外の測定に対応するため、通常のスペクトロメータとしての性能に加え、以下 の要件が必要となる。

機器の運搬及び設置が容易に行えること。 屋外の気象条件下において安定して動作すること。 バッテリー駆動が可能なこと。

2.2 機器構成

Ge 半導体検出器及びポータブルデュワー瓶

ポータブル マルチチャンネルアナライザ(MCA)

検出器支持架台

- パーソナルコンピュータ (PC)(測定制御及び解析用)
- ソフトウェア
- その他付属品
- なお、in-situ 測定においては通常遮蔽体は使用しない。
- 2.3 機器仕様の例

Ge 半導体検出器及びポータブルデュワー瓶

- 同軸型高純度 Ge 半導体検出器 *1
- ・ 25cm 相対効率 25%以上
- ・ エネルギー分解能 コバルト 60 1,333keV に対して 半値幅 (FWHM) 1.9keV 以下
- ・ ピークコンプトン比 54 以上
- ・ 測定対象エネルギー範囲 40keV~2,000keV ^{*2 *3}
- ・ デュワー容量 2~5リットル
- 検出器を下向きに設置可能であること。
 (検出器をどのような方向に向けても液体窒素の漏れが生じないこと)

^{*1} Ge 結晶の直径と長さが同程度である検出器が望ましい(ピーク効率の 線入射角度依存性が小 さいため)。低エネルギーの 線/X線を測定対象とする場合にはn型検出器を用いるが、ベリリ ウム製等の入射窓を持つものは破損し易く、屋外での使用には適さないことから、アルミニウム 製エンドキャップの方が良い。

^{*2}低エネルギーX線/線を測定対象とする場合は、30keV~2,000keV程度とする。

^{*3} 自然に存在する放射性核種の 2,000keV 以上の 線 (タリウム 208、2,615keV) 等を対象とする 場合は、測定エネルギー範囲の上限を 4,000keV とする。

検出器支持架台

- ・ 検出器及びデュワー瓶を地表面上 1m に下向きに安定した状態で保持できること。
- ・ 検出器と地面との間に遮蔽物となるものが少ない構造であること。

ポータブル MCA

- ・ 高圧電源及びアンプ内蔵
- ・ アンプゲイン 2~2,000 程度
- HV ± 10 ~ 5,000V
- ・ 検出器保護回路

検出器の温度が上昇した場合に自動的に高電圧を遮断する機能を有すること。

- ・ スペクトルメモリ 4kch ~ 8kch *4
- 積分非直線性 0.025%以下
- · 微分非直線性 1%以下
- ・ バッテリーで駆動可能であること。

本体にディスプレイを持たず、接続した PC でスペクトルの表示及び測定制御を行う
 タイプの場合、PC の電源を切った状態でも測定が継続できること。

- PC (MCA 制御及びデータ解析用)
- ・ ポータブル MCA と接続し、測定の制御ができること。
- ・ バッテリー駆動が可能であること。
- ・ 屋外の明るさでも判読が可能なディスプレイを備えていること。⁵
- ソフトウェア
- ・ MCA 制御ソフトウェア
- ・ 解析ソフトウェア

HASL 方式に準拠していること。(詳細は第4章に示した。)

その他必要な付属品等

- ・ 検出器、MCA、PC の運搬用ケース
- ・ ケーブル類(MCA-検出器、MCA-PC 接続ケーブル、電源ケーブル等)
- ・ MCA 及び PC 用予備バッテリー
- 液体窒素補充用デュワー瓶(容量:20~30 リットル程度)
- その他液体窒素補給に必要な器具一式
- ・ 校正用 線源
- 線源セット用治具
- 汚染防止用器具(ビニール袋等)

^{*4} チャネルとエネルギーの対応関係は原則として 0.5keV/ch とし、測定対象のエネルギー範囲に 応じて使用するチャネル数を選択する。(2,000keV : 4kch、4,000keV : 8kch)

自然に存在する核種の 2,000keV 以上のエネルギーの 線 (タリウム 208、2,615keV) 等を対象 とする場合は、8kch を使用する。

^{*5} PC の液晶ディスプレイは明るい屋外での視認性が悪いため、簡易的な遮光フードのようなもの

図 2.1 in-situ 測定用機器の構成例

2.4 機器校正

in-situ 測定では Ge 半導体検出器を地上面から 1m の位置に下向きに設置して測定を行 う。この場合、地表に沈着した放射性物質からの 線は、検出器の中心軸方向を 0°とし た場合 0°~90°の方向から検出器に入射する。そのため、検出器のピーク効率の角度依 存性を考慮する必要がある。HASL 方式による角度依存性の校正方法の詳細は第4章を参照 のこと。本章では 線源を用いて検出器のピーク効率及びその角度依存性を実測する手順 について示す。

- 2.4.1 ピーク効率校正
- 2.4.1.1 必要な機器

Ge 半導体検出器及び測定回路一式

標準点線源

測定対象とする 線エネルギー範囲をカバーするように核種を選択する。 校正用に用いられる核種の例と 線エネルギーを表 2.1 に示す。

表 2.1 校正に用いられる核種と 線エネルギーの例

核種	線エネルギー (keV)
²⁴¹ Am	59.5
¹³³ Ba	81.0
⁵⁷ Co	122.1
¹³⁹ Ce	165.8
¹³³ Ba	356.0
¹³⁷ Cs	661.6
⁵⁴ Mn	834.8
⁸⁸ Y	898.0
oO ⁰⁰	1173.2
²² Na	1274.5
oO ⁰⁰	1332.5
⁸⁸ Y	1836.0

(Atomic Data and Nuclear Data Tables (1983)より引用)

検出器、線源固定用治具

Ge 半導体検出器と線源との距離を一定(1m以上)に保ち、かつ線源と検出器を結ぶ 線と検出器中心軸とがなす角度を変えられること。(10°~15°刻みで設定できること) 測定に用いられる治具の例を図2.2に示す。

線源の設置にあたっては、線源自体による遮へいが生じないよう線源の向きに注意する(図2.2参照)。また治具の回転中心と検出器の中心を合わせる(図2.2参照)。

図 2.2 治具の例

角度依存性の補正を行うため、検出器のピーク効率の角度依存性 N()/N⁶を実測 によって求める。ピーク効率の角度依存性は 線エネルギーに依存するため、複数のエ ネルギーについて実測する必要がある。

- 2.4.1.2 測定手順
 - (1) 点線源を治具に固定し、ピークの計数が10,000カウント程度になるまで測定を行う。 (複数の線源を同時にセットして測定しても良い)
 - (2)角度を変えて同様の測定をくり返す。
 (角度は0°~90°の範囲とする)
 - (3) それぞれの測定結果について目的核種の正味ピーク計数率(cps)を求める。
 - (4) 用いた標準線源の 1 秒あたりの 線放出数および線源と検出器の距離から、検出器 位置における 線のフルエンス率(cm⁻² s⁻¹)を求める。
 - (5) (3)のピーク計数率を(4)のフルエンス率で除し、単位フルエンス率あたりのピーク 効率を求める。
 - (6) 線のエネルギーごとに、ピーク効率を角度 の関数で表す。(=0°の値を 1.0 として規格化した後、最小二乗法により関数化する)
 - (7) 得られた関数式を用い、第4章式(4.6)を用いて角度依存性補正項を 線エネルギ ーごとに計算する。

2.4.1.3 角度依存性

Ge 結晶の長さ(L)と直径(D)の比が1に近い検出器の場合、低エネルギー領域以外 (>200keV)におけるピーク効率の角度依存性は小さく、角度依存性の補正項は1に近く なる(図2.3、図2.4参照)。

L/D 比が 0.9~1.1 の範囲内の検出器を使用し、200keV 以下の低エネルギー 線/X線 を測定対象としない場合には、角度依存性補正項 N_f/N₀はほぼ 0.9~1.1 の範囲内に収ま る。このような場合は角度依存性の校正を必ずしも行う必要はなく、90°方向からの照 射のみで校正することもできる。

^{*6} 第4章 式(4.6)参照

図2.4 Ge半導体検出器の長さと 直径の比(L/D)と角度依存 性補正項(N_f/N₀)の関係 (HASL-300より引用)

2.4.2 エネルギー校正

適当な 線源を測定し、 線による光電ピークが目的のチャネルに来るようにアンプの ゲイン及びアナログデジタルコンバータ(ADC)のゼロレベルを調整する。(コバルト 57、 コバルト 60 等を用いると良い)

ソフトウェア上で 線エネルギーとチャネルの関係を関数化し、得られた校正式をファ イルに保存しておく。^{*7}

通常、in-situ測定においては、測定場所を移動する際には測定装置の電源を切るため、 測定場所が変わるごとに機器を立ち上げ直す必要がある。機器を安定させるためには立ち 上げ後ある程度時間をおいてから測定を開始した方が良いが、一般的に in-situ 測定の場 合ウォームアップ時間をとる余裕はないことが多い。機器の安定性が高い場合は高電圧印 加後数分後に測定を開始しても問題はないが、ウォームアップに必要な時間は装置によっ て異なるので、事前に確認しておくこと。

2.4.3 その他の準備

液体窒素は測定開始の6時間前には充填しておくこと。

バッテリーを充電しておくこと。(ポータブル MCA 及び PC)

バッテリー駆動できない機器がある場合は発電機を使用しても良いが、測定にノイズの 影響が出ないことを事前に確認しておくこと。

^{*7} ほとんどの MCA では、事前にエネルギー校正を行った結果を保存しておくことにより、スペク トルの横軸を 線エネルギーで表示できる。

- 3.1 測定場所の選定^{*1}
 - ・ 測定場所としては、平坦で開けた場所(原則として最低で半径 10m 程度開けた場所)を 選定する。
 - ・草地や裸地等が広がっている場所で、放射性物質が降下した後、人の手の入っていない
 そのままの状態となっている場所が望ましい。
 - ・車による 線の遮蔽を避けるため、運搬用車両は測定位置から 20m 以上離れた場所に駐 車する。
- 3.2 測定
 - 3.2.1 機器の設置手順
 - (1) 選定した測定場所の中央に、Ge 半導体検出器を地表面から検出器結晶の中心までの 高さが1mになるように下向きに架台にセットし、地表面の起伏に合わせ、安定するよ うに架台の脚を調整する。
 - (2) ポータブル MCA 及び PC を 3m 以上離れた場所に設置し^{*2}、検出器との間のケーブルを 接続する。MCA および PC を設置する台等を用いる場合は、地表からの 線の遮蔽が少 なくなるよう、必要最小限の大きさとする。
 - (3) 気象条件に応じて、機器内の温度を動作保証範囲内に保つような措置を講ずる。*3
 - 3.2.2 検出器の立ち上げ及び測定手順
 - (1) MCA の電源を入れ、Ge 半導体検出器に高電圧を印加する。
 - (2) 測定時間をプリセットし、測定を開始する。測定時間は30分~1時間程度とするが、 測定されたスペクトルを見てその都度判断する。(測定時間と検出可能レベルの関係 については表1.1参照。)
 - (3) デッドタイムを確認する。
 - (4) 測定を開始したら、検出器周辺には近づかないようにする。(地表からの 線の遮蔽 を避けるため。)
- 3.2.3 測定中のチェック

in-situ 測定で得られる 線スペクトルには、通常は自然に存在する放射性核種に由来 するピークが検出されるので、それらを用いた測定中のスペクトルチェックが可能である。 スペクトル上でカリウム 40 のピーク(1,461keV)の位置(中心チャネル)及び FWHM を 確認する。ピークが本来検出されるべき位置より 2keV 以上ずれていた場合や FWHM が大き

^{*1} 解説 A、D-1 参照。なお、周辺地形の広がりに対する補正方法については第5章参照。

^{*2} 汚染の可能性がある場所で測定する場合、検出器、ケーブル及び MCA をビニール等で覆ってお くこと。

^{*3} 夏季の炎天下の測定では日除け、冬季には保温カバー等を必要に応じて用いると良い。

く変化した場合には、機器に異常がある可能性が考えられるため点検を行う。

- 3.2.4 測定終了時の手順
 - (1) プリセットした測定時間に達しているかを確認する。
 - (2) データ収集が停止しているのを確認した後、スペクトルをデータファイルに保存し、 ファイル名を記録する。
 - (3) 高圧電源をシャットダウンし、MCA の電源を切る。
 - (4) PC をシャットダウンし、電源を切る。
 - (5) MCA と検出器、MCA と PC の接続ケーブルを外す。
 - (6) 検出器に衝撃を与えないように注意しながら支持架台から外し、運搬用ケースに収納 する。
 - (7) 次の測定場所に移動する。

3.3 記録

測定場所や測定に関して、以下の項目等を記録する。

- 3.3.1 測定場所に関する記録
 - ・ 測定場所周辺^{*4}の状況を記録する
 - 地形(平坦、傾斜地等)
 土地利用(グラウンド、神社等の一角、耕地、未耕地等)
 地面の状況(草地、裸地、芝地、砂地、畑、樹園地、アスファルト等)
 土壌の種類(砂質、壌質、粘質等)⁵
 草地等の広がりの範囲
 土壌中水分⁶
 周囲の建物の状況(測定地点から建物までの距離、建物の大きさ、建材(木造、コンクリート等))
 - ・ 測定場所周辺の状況を写真撮影する。
 - ・測定地点付近の線量率をサーベイメータで測定し、記録する。*7
 - ・ GPS^{*8}が使用可能であれば、測定場所の緯度・経度を測定し、記録する。
 - ・ 天候(降雨状況を詳細に記録、可能ならば風向、風速及び気温等も記録)

3.3.2 測定に関する記録

^{*4} 周囲 30mの範囲について、状況を記録する。

^{*5} 土壌の分類は、放射能測定法シリーズ 16「環境試料採取法」参照。また特殊な土壌(腐葉土等) の場合はその内容を記録する。

^{*6} 可能ならば表土を採取して測定する。

^{*7} 局所的に線量率の高い又は低い場所を測定していないことを確認するため。

- 測定開始年月日、時間
- ・測定者
- ・ 検出器及び測定器(型番、シリアル番号等)
- ・ 測定スペクトルのファイル名
- ・ 主要ピーク^{*9}の中心チャンネル等
- ・ スペクトルの特徴(特異的な形状や FWHM の増加等があれば記録)
- 3.4 土壌の採取

in-situ 測定によって人工放射性物質が沈着していることが判明した場合には、付近(5m 以内)の土壌をコアサンプルとして採取しておくと有効である。(解説 C-2(2)参照)

3.5 スペクトル解析

3.5.1 解析の手順

^{*8} Global positioning system

^{*9} 通常検出される放射性核種及び 線エネルギーについては表 3.2 参照。

3.5.2 ピーク探査、核種同定及びピーク面積算出

ピーク探査、核種同定及びピーク面積算出については、通常の 線スペクトロメトリー と同様であるため、放射能測定法シリーズ7を参考に実施する。

平常時に一般的に検出される核種を表 3.1 に示す。

表 3.1 in-situ 測定において一般的に検出される放射性核種

	人工放射性核種		
ウラン系列	トリウム系列	その他	
²¹⁴ Pb ²¹⁴ Bi	²⁰⁸ TI ²¹² Pb ²¹² Bi ²²⁸ Ac	⁴⁰ K ⁷ Be	¹³⁷ Cs

3.5.3 エネルギー校正

エネルギー校正については、野外での測定であり、温度変化の影響や電源投入後比較的 短時間の内に測定を開始しなければならないことなどから、in-situ 測定特有の注意が必 要である。実験室等での 線源を用いたエネルギー校正時から、温度変化等によってピー クがシフトしてしまう可能性があるため、in-situ 測定したスペクトルについて、その中 に検出されたエネルギー既知のピークを用いてエネルギー校正を再度実施する。in-situ 測定では、大抵の場合自然に存在する放射性核種が検出されるため、それらのピークを利 用することができる。放射性核種と放出 線エネルギーの一例を表 3.2 に示す。

表3.2 エネルギー校正に利用できる自然に存在する放射性核種と 線エネルギー

核種	線エネルギー (keV)	放出率 (%)
²¹² Pb	239	43.4
²¹⁴ Pb	352	36.9
²⁰⁸ T I	583	30.6
²¹⁴ Bi	609	46.9
²²⁸ Ac	911	29.0
⁴⁰ K	1461	10.7
²⁰⁸ TI	2615	35.9

(ICRU Rep.53 より引用)

第4章 放射能濃度及び空間放射線量率の算出

4.1 解析の条件

in-situ 測定では、地表面に沈着した放射性物質について放射能濃度(単位面積あたりの放射能: Bq/m²)及び空間放射線量率(Gy/h)を算出することができる。これらを評価するために、Beck らが開発した HASL の解析法(以下「HASL 方式」という。)が世界的に利用されており、また国際放射線単位測定委員会(ICRU)においてもこの方式が採用されていることから、本マニュアルにおいても HASL 方式に基づいて解析を行うものとする。

HASL 方式では、周囲の地形、放射性物質の土壌中における鉛直分布、検出器設置高さ等のいくつかの条件を仮定した上で放射能濃度や空間放射線量率を算出する。仮定条件を表 4.1 に示す。

表 4.1	in-situ	測定にお	ける(仮定条件
-------	---------	------	-----	------

条件	内容
周囲の地形	無限に開かれた平らな地形(無限平面)
放射性物質の土壌中に おける鉛直分布	地表面分布、指数分布、均一分布
検出器設置高さ	地上高 1m

土壌中の深さZにおける放射能濃度A(Z)は次のように表わせる。

$$A(Z) = A_0 \cdot \exp(-\frac{Z}{\beta}) \tag{4.1}$$

- A(Z): 深さ Z における放射能濃度(Bq/g)
- Z :深さ(g/cm²)
- *A*₀ : 地表面における放射能濃度(Bq/g)
 - :放射性物質の土壌中における鉛直分布を表すパラメータで、単位 はg/cm²である。 は浸透の程度を表し、数値が大きい程深く浸 透していることを示す。

の値は放射能濃度が地表の 37%になる深さであり、地表面分布の場合 は限りなく 0 に近づき、土壌中均一分布の場合無限大となる。指数関数モデルは単なる近似であるが、 放射性物質の沈着後ある程度の期間においてはかなり現実的なものである。時間の経過と ともに放射性物質の移動・拡散によってある深さにピークを持つような分布となったり、 土地の利用や侵食によって指数分布ではなくなる可能性がある。しかしながら、これらの ような場合であっても、地上での測定結果を土壌中線源に関連付けるために、実効的な を用いることができる。

単位面積あたりの放射能(総沈着量;インベントリー)A_aは次のように表わせる。

$$A_a = \beta \cdot A_0 \tag{4.2}$$

- *A_a*:単位面積あたりの放射能(Bq/cm²)
- *A*₀ : 地表面における単位重量あたりの放射能(Bq/g)
 - :鉛直分布を表すパラメータ(g/cm²)
- 4.2 放射能濃度の算出
- 4.2.1 地表に沈着した放射性物質の解析

地表に沈着した放射性物質の評価について、放射能濃度 A_a(単位面積あたりの放射能; Bq/cm²)は、以下の式により算出する。

$$A_a = N_f / \frac{N_f}{A_a}$$
(4.3)

- *A*_a : 単位面積あたりの放射能(Bq/cm²)
- N_f : in-situ 測定におけるあるエネルギーE のピーク計数率(cps)
- *N_f/A_a*:in-situ測定における効率

N_f/A_aは、以下の式により算出する。

$$\frac{N_f}{A_a} = \frac{N_0}{N_0} \cdot \frac{N_f}{N_0} \cdot \frac{A_a}{A_a}$$
(4.4)

- *N*。:検出器軸方向(0°)から入射するエネルギーEの 線によるピーク計数
 率(s⁻¹)
 :フルエンス率(cm⁻²s⁻¹)
- (1) $N_0/$

 N_0 / は、検出器軸方向(0°)でのフルエンス率(cm⁻²s⁻¹)あたりのピーク計数率(cps)である。この値は純粋に検出器に依存するもので、測定を行う者が検出器毎に 線源を使った照射実験によって算出する。

・ 検出器の軸方向で 1m 以上の距離にエネルギーの異なるいくつかの線源を設置する。

・検出器の実効中心は、高エネルギー(>1MeV)の場合には幾何学的中心とし、低エネ ルギー(<0.1MeV)の場合には検出器結晶面とする。その間のエネルギーでは平均通過 距離の深さを実効中心とする(表4.2)。平均通過距離は 線の数が最初の37%になる 深さである。

線エネルギー (MeV)	平均通過距離 (cm)
0.1	0.3
0.15	0.8
0.2	1.1
0.3	1.7
0.4	2.0
0.5	2.3
0.6	2.5
0.8	2.9
1	3.3

表 4.2 約	泉の Ge 半	導体検出器□	中における	5平均通過距離
---------	---------	--------	-------	---------

- ・平均通過距離の深さが幾何学的中心を超える場合には幾何学的中心を実効中心とする。
- ・ 測定を行い、N₀を算出する。
- ・ は以下の式により算出する。

$$= \frac{S \cdot a}{4 \cdot \pi \cdot r^2} \tag{4.5}$$

- S: 線源の放射能(Bq)
- *a* : 線の放出比
- r : 線源と検出器実効中心の距離(cm)

• N_o/ を算出し、エネルギーの関数として表す。例を図 4.1 に示す。

図 4.1 相対効率の異なるいくつかの検出器についてのフルエンス率あたりの計数率 (*N*₀/)のエネルギーによる変化

P1~P5およびO1~O3は検出器の種類、右側の数字は相対効率を示す。 (HASL-300より引用)

(2) N_f / N_o

*N_f/N_o*は検出器の方向依存性を補正するための項で、環境 線の入射方向と検出器の方向依存性を考慮して以下の式により算出する。

$$\frac{N_f}{N_0} = \int_0^{\frac{\pi}{2}} \frac{\phi(\theta)}{\phi} \frac{N(\theta)}{N_0} d\theta$$
(4.6)

- ()/:あるジオメトリにおいて、エネルギーEの環境 線が の角度から 検出器に入射する割合。例として、セシウム 137(662keV)に対し ていくつかのジオメトリについて計算した結果を図 4.2 に示す。な お、この値は 線エネルギーによって大きく変化しない。
- N()/N₀:エネルギーEの線がの角度から入射する場合の相対感度(0° での感度を基準)。エネルギーの異なるいくつかの線源を用いて 入射角度を変えて照射を行い算出する。

図 4.2 地上高 1m における 線の入射角度依存性 (JAERI-M 6498 より引用)

Ge 結晶の長さ(L)と直径(D)がほぼ同じ検出器の場合には、検出器感度の角度 依存性が小さいため、補正項 N_f/N_0 は1に近く、また in-situ 測定では多くの 線が水 平方向から入射するため、その方向のみの照射で機器を校正することもできる。その 場合式(4.4)は以下のような単純な式となる。

$$\frac{N_f}{A_a} = \frac{N_{90}}{A_a} \cdot \frac{A_a}{A_a} \tag{4.7}$$

N₉₀

:検出器軸に対し 90°方向から入射するあるエネルギーEの 線に よるピーク計数率(s⁻¹)。

in-situ測定では通常検出器を下向きにして使用し、環境 線の多くは水平方向から入射するため、*N_{gg}=N_f*とすることができる。

(3) /A_a

/A_aは、土壌中放射能濃度(A_a)と検出器位置(1mの高さ)の 線フルエンス率の関係を示し、線源分布によって異なった値となる。代表的な核種について、放射性物質の土壌中における鉛直分布()ごとに、 /A_aの値を付表-1に示す。

には放射性物質沈着後の経過時間及び降水量に応じて、基本的に表 4.3 の値を用 いることができる。また、透過性のない地表面(屋根、アスファルト、コンクリート) の場合には、 は 0.1 g/cm²が適している。表 4.3 の値は、土質が特殊(腐葉土等) ではなく、人間活動による土地の乱れがない場合に適用できる。

なお、放射性物質の土壌中における鉛直分布を正確に把握することが in-situ 測定の信頼性を高める最も効果的な方法であることから、詳細を解説 C に記載した。

衣4.3 放射性物質の工壌中にのける鉛具分	表 4.3	放射性物質の土壌中における鉛直分布
-----------------------	-------	-------------------

沈着後の経過時間 (年)	降水量(mm)	鉛直分布を表すパラメータ (g/cm²)
0~1	<3	0.100
0~1	>3	1.00
1~5	-	3.00
5 ~ 20	-	10.0
指針		4.85

数値は一部を除き ICRU Rep.53 より引用

*「発電用軽水型原子炉施設の安全審査における一般公衆の線量評価について」 原子力安全委員会(平成13年)

4.2.2 土壌中に均一に分布する放射性物質の解析

ウラン系列核種、トリウム系列核種及びカリウム 40 など土壌中に均一に分布している と考えられる自然に存在する放射性物質についても、前述と同様に算出することができる。 ただし、放射能濃度は、単位重量あたりの放射能 *A*_nとなり、単位は Bq/g である。均一分 布として計算した式(4.4)中の /*A*_nを表 4.4 に示す。

大抵の自然状況において、自然に存在する放射性物質が土壌中に均一に分布するとの仮 定は有効である。ただし、近くに建造物がある場合には、その中にも自然に存在する放射 性物質が存在し、その影響を受けるため注意が必要である。

なお、ウラン系列核種を解析する場合には放射平衡について注意が必要である。ラドン 222 が土壌から散逸するため、ラドン 222 の壊変生成物である鉛 214、ビスマス 214 など は低い値を示すことがある。ラドン 222 の散逸は一般的に 15%程度であるが、大気中の壊 変生成物が測定に影響するため、一概に過小評価の程度を決めることはできない。また、 降雨時には雨滴とともにラドン 222 やその壊変生成物が地表面に集まるため、降雨時及び 降雨後数時間以内の測定は、土壌中のウラン系列核種を解析する場合には適さない。

ウラン系列のラジウム 226 は、放出 線のエネルギー(186keV)がウラン 235(186keV) と重なるため、定量に用いることはできない。

		エネルギー	放出比*	/A
系列	核種	MeV	s ⁻¹ Bq ⁻¹	(cm ⁻² s ⁻¹)/(Bq/g)
				<u> </u>
²³⁸ U	²¹⁴ Pb	0.295	0.192	0.828
	"	0.352	0.369	1.71
	²¹⁴ Bi	0.609	0.469	2.75
	//	0.665	0.0158	0.0965
	//	0.768	0.0497	0.325
	//	0.934	0.0319	0.229
	^{234m} Pa	1.001	0.00845	0.0629
	²¹⁴ Bi	1.120	0.155	1.22
	//	1.238	0.0610	0.507
	//	1.378	0.0410	0.361
	//	1.408	0.0250	0.223
	//	1.509	0.0220	0.203
	//	1.730	0.0300	0.298
	//	1.765	0.162	1.62
	//	1.847	0.0216	0.222
	//	2.119	0.0125	0.138
	//	2.204	0.0525	0.592
	//	2.448	0.0162	0.193
²³² Th	²¹² Pb	0.239	0.434	1.73
	²²⁴ Ra	0.241	0.0397	0.158
	²²⁸ Ac	0.338	0.120	0.547
	//	0.463	0.0464	0.241
	²⁰⁸ T I	0.511	0.0809	0.438
	11	0.583	0.306	1.76
	²¹² Bi	0.727	0.0675	0.430
	²²⁸ Ac	0.795	0.0484	0.322
	²⁰⁸ T I	0.861	0.0453	0.313
	²²⁸ Ac	0.911	0.290	2.060
	//	0.965	0.0545	0.398
	"	0.969	0.175	1.282
	"	1.588	0.0371	0.352
	²¹² Bi	1.621	0.0149	0.143
	²²⁸ Ac	1.630	0.0195	0.187
	²⁰⁸ T I	2.615	0.359	4.418
⁴⁰ K	⁴⁰ K	1.461	0.107	0.971

表 4.4 土壌中放射性核種濃度と地上高 1m での 線フルエンス率との関係(/A_m) (放射性物質が土壌中に均一に分布している場合)

*親核種の壊変あたりの放出

(ICRU Rep.53より引用)

4.3 空間放射線量率の算出

地表に沈着した放射性物質あるいは土壌中に均一に分布する放射性物質による地上高 1m における空間放射線量率(以下「線量率」という。)は、以下の式により算出する。

$$I = N_f / \frac{N_f}{I}$$
(4.8)

/ :線量率(nGy/h)

 N_f : in-situ 測定におけるあるエネルギーE のピーク計数率(s⁻¹)

N_f/1は、以下の式により算出する。

$$\frac{N_f}{I} = \frac{N_0}{N_0} \cdot \frac{N_f}{N_0} \cdot \frac{1}{I}$$
(4.9)

*N*₀ : 検出器軸方向(0°)から入射する 線によるピーク計数率(s⁻¹)
 : フルエンス率(cm⁻²s⁻¹)

式(4.9)は、放射能濃度 A が線量率 I に変わった以外は、式(4.4)と同様である。線 量率の単位は空気カーマである。 //は、あるジオメトリにおける放射性物質からのエネ ルギーE の 線による 線フルエンス率とその放射性物質からの全線量率との関係を表す 係数である。線量率 I には、エネルギーE の 線の一次線による線量率のみではなく、散 乱線及びその放射性物質から放出される全ての 線の寄与を含める必要がある。散乱線の 評価にはモンテカルロ計算またはボルツマン輸送方程式を用いる必要がある。放射性物質 が土壌中に指数分布している場合について計算された // の値を付表-2 に、土壌中に均 ーに分布している場合(自然に存在する放射性物質)についての //を表4.5 に示す。ウ ラン系列核種やトリウム系列核種の //は、系列内のある核種から放出されるある 線の フルエンス率と、系列内の全ての核種から放出される 線による線量率との関係を表して いる。従って、ある核種のある 線について線量率を算出すると、その系列の全ての核種 からの線量率¹¹となる。系列内の複数の核種から放出される 線または一つの核種から放 出される複数の 線について解析を行う場合、それぞれの 線から算出した線量率を平均 して¹²、その系列の線量率とする。

また、線量率は、放射能濃度から算出することも可能である。指数分布の場合の換算係 数を付表-3 に示す。均一分布(自然に存在する放射性物質)の場合の換算係数を表 4.6 に

^{*1} in-situ 測定の対象エネルギー範囲を 2MeV までとした場合でも、測定された核種の 2MeV 以下の線を解析して得られる線量率には、その核種が属する系列の 2MeV 以上の線による寄与分も含まれることになるので、3MeV まで測定した Nal(TI)シンチレーション検出器等による線量率と同等の結果を得ることができる。

示す。表 4.6 中のウラン系列やトリウム系列の合計の値は、系列核種が放射平衡となって いるとして算出している。³

*2 計数誤差を用いて荷重平均する。

^{*3} ウラン系列核種には気体のラドンが含まれるため、放射平衡が成立していないことが考えられるが、in-situ測定において測定対象となるのはラドン 222 以降の鉛 214 及びビスマス 214 などであり、また線量に寄与するのも鉛 214 及びビスマス 214 の 線が主であるため、通常放射平衡が成立していないことを問題にする必要はない。

表 4.5	土壌中に均一に分布する放射性物質による地上高 1m での線量率と
	線フルエンス率の関係(/ <i>I</i>)

		エネルギー	//
系列	核種	(MeV)	$(cm^{-2}s^{-1})/(\mu Gy/h)$
220	214-		
2300	²¹⁴Pb	0.295	1.79
	<i>II</i>	0.352	3.70
	²¹⁴ B1	0.609	5.95
	"	0.665	0.209
	"	0.768	0.703
	<i>II</i>	0.934	0.496
	^{234m} Pa	1.001	0.136
	²¹⁴ Bi	1.120	2.64
	"	1.238	1.10
	"	1.378	0.781
	"	1.408	0.483
	"	1.509	0.439
	"	1.730	0.645
	"	1.765	3.51
	"	1.847	0.481
	"	2.119	0.299
	"	2.204	1.28
	"	2.448	0.418
²³² Th	²¹² Pb	0.239	2.86
	²²⁴ Ra	0.241	0.262
	²²⁸ Ac	0.338	0.906
	"	0.463	0.399
	²⁰⁸ T I	0.511	0.725
	"	0.583	2.91
	²¹² Bi	0.727	0.712
	²²⁸ Ac	0.795	0.533
	²⁰⁸ T I	0.861	0.518
	²²⁸ Ac	0.911	3.41
	"	0.965	0.659
	"	0.969	2.12
	11	1.588	0.583
	²¹² Bi	1.621	0.237
	²²⁸ Ac	1.630	0.310
	²⁰⁸ T I	2.615	7.31
⁴⁰ K	⁴⁰ K	1.461	23.3

線量率(I)は、系列核種の放射平衡が成立しているものとして、 系列核種全てによる線量率とする。

	放射能濃度あたりのカーマ率		
亥種	(μGy/h)/(Bq/g)		
³⁸ U series			
²³⁸ U	4.33 • 10⁻⁵		
²³⁴ U	5.14 • 10 ⁻⁵		
²³⁴ Th	9.47 • 10 ⁻⁴		
^{234m} Pa	3.00 • 10 ⁻³		
²³⁴ Pa	4.49 • 10 ⁻⁴		
²³⁰ Th	6.90 • 10 ⁻⁵		
²²⁶ Ra	1.25 • 10 ⁻³		
²²² Rn	8.78 • 10 ⁻⁵		
²¹⁴ Pb	5.46 • 10 ⁻²		
²¹⁴ Bi	4.01 • 10 ⁻¹		
²¹⁰ TI	1.15 • 10 ⁻⁴		
²¹⁰ Pb	2.07 • 10 ⁻⁴		
Total	4.62 • 10 ⁻¹		
³² Th series			
²³² Th	4.78 • 10 ⁻⁵		
²²⁸ Ra	5.45 • 10 ⁻⁵		
²²⁸ Ac	2.21 • 10 ⁻¹		
²²⁸ Th	3.44 • 10 ⁻⁴		
²²⁴ Ra	2.14 • 10 ⁻³		
²²⁰ Rn	1.73 • 10 ⁻⁴		
²¹² Pb	2.77 • 10 ⁻²		
²¹² Bi	2.72 • 10 ⁻²		
²⁰⁸ TI	3.26 • 10 ⁻¹		
Total	6.04 • 10 ⁻¹		
⁴⁰ K	4.17 • 10 ⁻²		

表 4.6 土壌中放射能濃度と地上高 1m での線量率の関係(I/A_m)

(放射性物質が土壌中に均一に分布している場合)

放射平衡が成立しているとしての値である。

(ICRU Rep.53 より引用)

第5章 測定結果の補正

in-situ 測定法は、周囲の地形、検出器設置高さ等を仮定して解析を行うため、解析の条件と実際の条件が異なった場合の解析結果への影響を把握しておく必要がある。

in-situ 測定で放射能濃度を算出する際に必要な係数(式 4.4 の /A、付表-1 及び表 4.4 の値)は、 線を減衰させるような障害物が周囲になく、無限に開かれた地形(無限平面) を仮定しての計算値である。しかし、実際の測定では完全な無限平面地形はあり得ないため、 無限平面を仮定して放射能濃度を解析すると過小評価となる(解説 B-1)。この過小評価につ いては、周辺の広がりを把握することで補正することができる。なお、定点での変動監視を 目的として in-situ 測定を行う場合には、必ずしも補正の必要はない。

検出器の設置高さについては、通常 1m の高さに設置するので補正する必要はなく、土壌中の水分については、土壌中における放射性物質の鉛直分布(解説 A)の影響に含まれるので これについても補正する必要はない。

なお、検出器設置高さの放射能濃度測定値への影響は解説 B-2 に、土壌中水分の影響は解 説 B-3 に記載した。

また、空間放射線量率の測定値については、十分に開かれていない場所で測定したスペク トルを無限平面として解析すると、直接線と散乱線の寄与割合が異なるため、線量率の解 析結果は過大評価となる。しかし、その影響はわずかであるため、空間放射線量率の測定値 については補正する必要はない。

5.1 周辺地形の広がりに対する補正

セシウム 137 が土壌中に指数分布(:4.85 g/cm²)している場合の地上 1m 位置の 線 フルエンス率について、周囲からの寄与割合を図 5.1 に示す。周囲が半径 10m 開けている 場合の測定値は、無限平面の場合の測定値の 85%となる。無限平面でないことに伴う過小 評価の程度は、放射性物質の土壌中における鉛直分布によって異なり、厳密には 線エネ ルギーにも依存する。詳細は解説 B-1 に記載した。

補正方法としては、検出器を中心として開かれた範囲(平均的な半径)をメジャーやテ ープを用いて算出し、放射能濃度の測定値に表 5.1 の補正係数を乗ずる。表 5.1 は、600keV の 線を対象とした場合の補正係数であるが、エネルギーの違いによる補正係数の差異は 大きくないため、他のエネルギーに対しても適用することができる。なお、基本的に、空 間放射線量率の測定値を補正する必要はない。

また、補正には、開かれた範囲を特定する必要がある。人工放射性物質がフォールアウトとして地表に沈着した場合において、アスファルトや建造物への沈着が少ないと考えられる場合には、土が露出している範囲を開かれた範囲とする。沈着が少ないかどうかの判断には、サーベイメータによる測定結果や放射性物質が降下してからの経過時間等を参考にする。

鉛直分布を表すパラメータ (g/cm ²)	周辺地形の広がり (半径: m)			
	10	15	20	25
0.100	1.6	1.4	1.3	1.2
1.00	1.3	1.2	1.1	1.1
3.00	1.2	1.1	1.1	1.1
10.0	1.1	1.1	1.0	1.0
4.85	1.2	1.1	1.1	1.0
(均一分布)	1.1	1.0	1.0	1.0

表 5.1 周辺地形の広がりに対する補正係数

図 5.1 セシウム 137 が土壌中に指数分布(: : 4.85 g/cm²)している場合の地上高 1m での 線フルエンスの周囲からの寄与割合 (HASL-300 より引用)

解 説

本マニュアルに示した測定法は、放射性物質が環境中に放出され地表に沈着した場合にお いて、下記に示す項目を目的に実施される。

- ・ 放射性核種の特定
- ・ 放射能濃度の算出(放射性核種毎)
- 空間放射線量率の算出(放射性核種毎)

上記項目の内、放射能濃度の算出にあたっては、測定場所について注意が必要である。測 定場所の状況が放射能濃度の解析結果に大きく影響するので、解析の条件(無限平面)に近 い場所、すなわち周囲が十分に開放されている場所(原則として最低で半径 10m 程度開けた 場所)を確保する必要がある。また、in-situ 測定法により得られる放射能濃度は地表に沈 着した量なので、降下した量と比較検討するような場合には、アスファルト等で覆われた場 所ではなく、放射性物質が保持されていると考えられる草地や裸地等が広がっている場所で、 放射性物質が降下した後、人の手の入っていないそのままの状態となっている場所が望まし い。

なお、放射性核種の特定や空間放射線量率の算出を目的とする場合には、場所を特に限定 せずに測定することができる。

解説 B in-situ 測定法の有効性

 緊急時等の初期の段階においては、サーベイメータと in-situ 測定法との併用により、 より詳細に状況を把握することができる。in-situ 測定法を用いると放射性核種を特定でき るので、放射性物質の放出状況を把握することが可能であり、さらに、特定した放射性核種 のそれぞれの半減期により、測定後の空間放射線量率の変化を予測し正確な線量評価に資す ることができる。

ただし、本マニュアルに示した測定法は放射性物質が地表に沈着した場合を想定しており、 緊急時等の初期の段階では、希ガスや施設からの直接 線等が測定に影響する可能性もある ので、正確な放射能濃度を算出することは容易ではないと考えられる。

2. 放射性物質が環境に放出され広い範囲に放射能汚染が生じ、その汚染の分布を作成する ような場合には、in-situ測定法は特に有効である。

降雨とともに降下した放射性物質は窪んだ地形に集まりやすく、地表面では風の影響によってある場所に滞まることもあるため、放射性物質は測定地点周辺において均一に分布しない可能性がある。このような場合、土壌を採取して代表的な値を得るのは困難であるが、 in-situ測定法によれば測定地点周辺の平均的な放射能濃度を求めることができる。

^{*}緊急時等の初期の段階においても、解説 A 同様、放射性核種の特定や空間放射線量率の算出は可能である。
解説 C-1 解析結果への影響

土壌中の深さZにおける放射能濃度A(Z)を以下のように表した場合について、放射性物 質の土壌中における鉛直分布を表すパラメータの解析結果への影響を図C.1に示す。

$$A(Z) = A_0 \cdot \exp(-\frac{Z}{\beta}) \tag{C.1}$$

A(Z) : 深さZにおける放射能濃度(Bq/g)

- Z : 深さ(g/cm²)
- A。: 地表面における放射能濃度(Bq/g)
 : 放射性物質の土壌中における鉛直分布を表すパラメータで、 単位は(g/cm²)である。 は浸透の程度を表し、数値が大き い程深く浸透していることを示す。
 パラメータとしては、 を土壌密度 (g/cm²)で除して RL(cm)、 の逆数を / (cm²/g)、RLの逆数を (cm⁻¹)とし て表す場合もある。

図 C.1 はある場所で測定した一つのスペクトルについて、放射性物質の土壌中における鉛 直分布を表すパラメータ を変えて、線量率及び放射能濃度(単位面積あたりの放射能; Bq/cm²)を解析した結果である。線量率は に大きく依存しないが、放射能濃度は に大き く依存する。従って、放射能濃度を算出する際には、 の把握が測定の信頼性に関わる最も 大きな問題である。フォールアウトのセシウム 137 を評価するため、現在 の値として 4.85 g/cm²(:0.33cm⁻¹)⁻¹が一般的に利用されているが、この値をそのまま事故直後の地表面分 布に適用してしまうと放射能濃度を約 3 倍に過大評価することになる。

また、同一核種からエネルギーの異なる複数の 線が放出される場合において、エネルギーによって放射能濃度の解析結果に差異が認められる場合には、放射性物質の土壌中における鉛直分布の仮定等に問題のある可能性がある。

^{*1 「}発電用軽水型原子炉施設の安全審査における一般公衆の線量評価について」 原子力安全委員会(平成13年)

解析結果への影響

ある測定スペクトルに対してセシウム 137(¹³⁷Cs)を評 価する際に の値を 0 から 20 まで変化させて解析した結 果で、地表面分布(=0)として解析した結果に対する相 対値である。

を大きくする程、放射能濃度の解析結果も増加する。 これは、 が大きいということは、放射性物質が地中深く に浸透したことを意味し、測定したピーク計数率(ここで は一定の値)を小さくなった効率(N_f/A_a)で除することで、 大きな放射能濃度が算出されるためである。

線量率が に大きく依存しないのは、放射性物質が深く 浸透しても、線量率のための効率(N_f/I)が大きく変化し ないためである。 放射性物質の土壌中における鉛直分布を表すパラメータ を正確に把握することが、 in-situ 測定の信頼性を高める最も効果的な方法であるが、 は、土質、気象状況、経過 年数によって大きな変動を示すため、正確に評価するのは容易ではない。また、地表沈着 後の侵食や人間活動による土地の乱れも考慮する必要がある。参考としてさまざまな研究 グループが報告したセシウムについての を表 C.1 に示す。

表 C.1 放射性物質(セシウム)の土壌中における鉛直分布の評価例

 沈着後の	フォールアウト		а				
経過時間	の種類	場所	g/cm ²	参照			
3-4 weeks	Chernobyl	Western Russia	0.1-2.0 ^b	Golikov <i>et</i> <i>al</i> .,1993			
5-6 weeks	Chernobyl	Germany	0.5-1.0 ^b	Jacob and Meckbach, 1992			
<1y	Chernobyl	Sweden	2.2	Karlberg, 1987			
<1y	Chernobyl	Germany	1.4	Winkelmann <i>et al</i> .,1988			
<1y	Chernobyl	Germany	0.5-4	Jacob <i>et al</i> ., 1994a			
1-3y	Chernobyl	Germany	1.0-10	Jacob <i>et al</i> ., 1994a			
1-3y	Chernobyl	Western Russia	1.4 ± 0.2	Golikov <i>et</i> <i>al</i> .,1993			
4y	Chernobyl	Western Russia	1-7	Miller <i>et al</i> ., 1991			
4y	Chernobyl	Belarus, Ukraine	1.4-5.6	IAEA, 1991a			
1-5y	Weapons test	Eastern U.S.	4.2	Beck, 1966			
5у	Chernobyl	Western Russia	2-4.5	Jacob <i>et al</i> ., 1994a			
3-6y	Chernobyl	Germany	2.5-15	Jacob <i>et al</i> ., 1994a			
3-6y	Chernobyl	Ukraine	1-4	Jacob <i>et al</i> ., 1994a			
3-6y	Chernobyl	Western Russia	3.3 ± 0.7^{b}	Golikov <i>et</i> <i>al</i> ., 1993			
>15y	Weapons test	Western U.S.	14 ± 4 ^c	Beck and Krey, 1980			
>15y	Weapons test	Western U.S.	2.9 ± 1.6^d	Miller and Helfer, 1985			
>15y	Weapons test	Southern U.S.	14-20	Faller, 1992			
>15y	Weapons test	Eastern U.S.	2-7(forests) 8-19(fields)	Miller <i>et al</i> ., 1990			

^a±は標準偏差を示す。

^b 降雨による沈着。

。乾燥地域、潅漑した芝地。

^d 乾燥地域、未耕地。

(ICRU Rep.53より引用)

(1) 簡易的な評価方法

放射性物質の土壌中における鉛直分布についての指数関数モデルは単なる近似である が、放射性物質の降下後ある程度の期間においてはかなり現実的なものである。時間の 経過とともに放射性物質の移動・拡散によってある深さにピークを持つような分布とな ったり、土地の利用や侵食によって指数分布ではなくなる可能性がある。しかしながら、 これらのような場合であっても、指数関数モデルにおける実効的な を用いることで、 地上での測定結果を土壌中線源に関連付けることができる。また、地表の粗さの影響に ついても、実効的な で対応することができる。

土質が特殊⁻²ではなく、人間活動による土地の乱れがない場合には、放射性物質沈着後の経過時間及び降水量に応じて、本文中の表 4.3 の値を用いることができる。表 4.3 の の値は、地表の粗さの影響も考慮されている。

図 C.1 に示したように、放射能濃度を解析する際、大きな を用いるほど解析結果が 高くなり安全側の評価になる。従って、放射性物質沈着後の経過時間や降水量に不確定 な要素がある場合には、想定される範囲内で大きな を用いる必要がある。

放射性物質の土壌中における鉛直分布を表す際、その場の土壌密度を考慮する必要が あるため、パラメータとしては (g/cm²)または / (cm²/g)を用いるべきである。しか し、現在市販されている解析ソフトの一部には放射性物質の土壌中における鉛直分布を 表すパラメータとして (cm⁻¹)を入力するものがあるので、 及び 等を換算するための 表を表 C.2 に記載した。

表 C.2 放射性物質の土壌中における鉛直分布を表すパラメータの換算表

(土壌密度()を1.6g/cm ³	とした場合)
--------	------------------------	--------

沈着後の	降水量				
経過時間(年)	(mm)		RL	/	
		(g/cm ²)	(c m)	(cm ² /g)	(c m ⁻¹)
0~1	<3	0.100	0.0625	10.0	16.0
0~1	>3	1.00	0.625	1.00	1.60
1 ~ 5	-	3.00	1.88	0.333	0.533
5 ~ 20	-	10.0	6.25	0.100	0.160
指針*3		4.85	3.03	0.206	0.330

数値は一部を除き ICRU Rep.53 より引用

RLは を土壌密度()で除したもの、 / は の逆数、 は RLの逆数である。

^{*2} 森林地域では腐葉土の影響により は低い傾向にある。

^{*3 「}発電用軽水型原子炉施設の安全審査における一般公衆の線量評価について」 原子力安全委員会(平成13年)

(2) 土壌を採取する方法

土質が特殊な場合や、より正確に放射性物質の土壌中における鉛直分布を評価するた めには、深さ30cmまでの土壌を層別に採取する。HASLのマニュアルでは、深さ0~2.5、 2.5~5、5~30cmの土壌採取、放射性物質が地中深く浸透していると考えられる場合には 深さ0~5、5~10、10~30cmの土壌採取を提案している。沈着直後は地表に近い所をさ らに細かく採取するのが有効と考えられる。放射性物質は水平方向では不均一分布にな る可能性があるが、鉛直分布については土質が同等であれば大きな違いは生じないと考 えられるため、多数の土壌を採取する必要はない。

採取した土壌(コアサンプル)の測定結果から鉛直分布を算出するには、放射能濃度 (Bq/g)を深さに対する関数(指数関数)で近似して式(C.1)を基に (g/cm²)を算出す る。ここで、深さ(cm)を重量厚(g/cm²)に換算するには、その場の土壌密度^{*4}を用いる必 要がある。

現在市販されている解析ソフトの一部には放射性物質の土壌中における鉛直分布を表 すパラメータとして (cm⁻¹)を入力するものがあるが、その場合には注意が必要⁵である。

また、土壌を採取するなら in-situ 測定が無意味と思われがちであるが、環境への影響を評価するには代表的な値が必要であり、in-situ 測定はそのために重要な意味を持つため、土壌採取と in-situ 測定の併用が最も理想的な測定手法といえる。

^{*4} 土壌密度として一般的に 1.6g/cm³が用いられることがあるが、土壌を採取して を求める際に はその場の土壌密度を用いる必要がある。

^{*5} 放射性物質の土壌中における鉛直分布を表す際、その場の土壌密度を考慮する必要があるため、 パラメータとしては (g/cm²)または / (cm²/g)を用いるべきである。しかし現在市販されて いる解析ソフトの一部には (cm⁻¹)を入力するものがある。この場合には、実際の(見かけ上の) ではなく、土壌を採取して求めた / (cm²/g)に解析ソフトが仮定している土壌密度(例; 1.6g/cm³)を乗じて、便宜上の を求めてから解析を行う必要がある。

(3) 同一核種から放出されるエネルギーの異なる 線を利用する方法

同一核種がエネルギーの異なる 線を放出している場合には、それらのフルエンス率の比から放射性物質の土壌中における鉛直分布()を推定することができる。セシウム 137 の 662keV(線)と 32keV(X線)のフルエンス率の比(32keV/662keV)の による変化を図 C.2 に示す。32keV(X線)と 662keV(線)の土壌での減弱の差が現れており、これを利用して放射性物質の土壌中における鉛直分布を推定することができる。この方法を適用するためには 32keV を測定するため低エネルギーまで測定可能な n 型のGe 半導体検出器を用いる必要がある。

この方法は地面の粗さの影響も低減できるため有効である。ただし、事故後の1ヶ月 は短半減期核種からの放射線が32keVの領域の測定を妨害するため適用は困難である。 また、長期間経過の場合にもセシウムが土壌中に深く浸透すると32keVのX線が検出で きなくなるので適用は困難である。

ランタン 140 やセシウム 134 も適用可能であるが、セシウム 137 ほど有効ではない。

図 C.2 同一核種から放出されるエネルギーの異なる 線のフルエンス率の比と 放射性物質の土壌中における鉛直分布()との関係 (ICRU Rep.53 より引用)

解説 D 解析条件と実際の測定条件が異なった場合の影響

解説 D-1 周辺地形の広がり

in-situ 測定で放射能濃度を算出する際に必要な係数(式4.4の /A、付表-1及び表4.4 の値)は、 線を減衰させるような障害物が周囲になく、無限に開かれた地形(無限平面) を仮定しての計算値である。しかし、実際の測定では完全な無限平面地形はあり得ないた め、無限平面を仮定して放射能濃度を解析すると過小評価になってしまう。

周囲の広がりによる計測値への影響を、放射性物質の土壌中における鉛直分布()別 に、図 D.1~図 D.6 に示す。グラフ中の値は、周囲の広がりを変えてシミュレーション計 算したピーク効率(ピーク計数率/放射能濃度)で、半径 150m 開けている場合(無限平面 と見なせる)の値に対する相対値である。このグラフを参考に過小評価の程度を判断する ことができる。

過小評価の許容範囲を-20%とすると、地表面近くに分布している状況(=0.1g/cm²図 D.1)でセシウム 137(およそ 600keV)を測定する場合には半径 25m 以上周囲が開けてい る必要がある。 =4.85g/cm²(図 D.5)では半径 10m、土壌中均一分布では半径 5m 周囲が 開けている必要がある。

十分に開放された場所の確保が困難な場合には、図 D.1~図 D.6 を参考に測定結果を補 正することができる。ただし、補正に伴う不確かさを小さくするため、地表面近くに分布 している状況等では最低でも 10m 程度は開けていることが望ましい。

これらの結果は、シミュレーション計算¹¹を基にしており、Ge 半導体検出器としては、p 型の比較的方向依存性の少ない検出器について計算した結果である。地表面近くに分布し ている場合(=0.1g/cm²)について、一般的なp型検出器と低エネルギーまで測定可能な n型検出器について計算した結果を図 D.7 及び図 D.8 に示す。周囲の広がりによる計測値 への影響において、検出器の違いによる差は大きくない。なお、それぞれの検出器の方向 依存性については解説 E を参照のこと。

また、周囲のどの範囲からどの程度の 線が in-situ 測定に寄与しているかを、図 D.9 ~図 D.11 に示す。なお、図 D.9 は放射性物質の土壌中における鉛直分布()による違いを示し、図 D.10 及び D.11 は 線エネルギーによる違いを示している。

^{*1} ピーク効率シミュレーションソフトウェアを使用した。

(検出器:p型 : 0.1g/cm²)

図 D.2 周囲の広がりによる計測値への影響 (検出器:p型: 1.0g/cm²)

(検出器:p型: 3.0g/cm²)

図 D.4 周囲の広がりによる計測値への影響 (検出器:p型: 10.0g/cm²)

図 D.6 周囲の広がりによる計測値への影響 (検出器:p型 均一分布)

図 D.7 周囲の広がりによる計測値への影響 (: 0.1g/cm²) (検出器:p型、L/D; 0.9、不感層; 1mm、相対効率; 40%)

図 D.8 周囲の広がりによる計測値への影響 (: 0.1g/cm²) (検出器:n型、L/D; 1.0、不感層; 0.1µm、相対効率; 25%)

図 D.9 in-situ 測定における周囲からの寄与割合 (線エネルギー600keV)

図 D.10 in-situ 測定における周囲からの寄与割合 (B: 0.1 g/cm²)

図 D.11 in-situ 測定における周囲からの寄与割合 (B: 4.85 g/cm²)

in-situ 測定法では、検出器を地表面から 1m の高さに設置して測定したという前提で解 析が行われる。通常、検出器は 1m の高さに設置されるため補正の必要はないが、周辺地 形の状況等により、やむを得ず異なる高さに検出器を設置しなければならないことも考え られることから、検出器設置高さの計測値への影響を以下に記載した。

土壌中における放射性物質の鉛直分布()別に、in-situ測定におけるピーク効率(ピーク計数率/放射能濃度)について、検出器設置高さを変えてシミュレーション計算した 結果を図 D.12~図 D.14 に示す。グラフ中の値は、高さ 1m での値に対する相対値である。

検出器設置高さが高いほど、ピーク効率は低くなる。従って、やむを得ず1mよりも高い 位置に検出器を設置した場合や、崖などがあって周辺地形が下がっている場合には、過小 評価することになるので注意が必要である。

放射性物質が地表面近くに分布している場合(図D.12、 =0.1g/cm²)には、検出器の設置高さによる影響が大きくなるため特に注意が必要である。

図 D.12 検出器設置高さによる計測値への影響 (: 0.1g/cm²)

図 D.13 検出器設置高さによる計測値への影響 (: 4.85g/cm²)

図 D.14 検出器設置高さによる計測値への影響 (均一分布)

土壌中水分の影響は、土壌中における放射性物質の鉛直分布(解説 C)の影響に含まれ るため、特別な場合を除いて補正の必要はない。しかし、同一地点を継続的に測定するよ うな場合には、異なる時期での in-situ 測定結果を比較することが考えられ、晴天時と降 雨直後の測定結果を比較するような場合も想定されることから、土壌中水分の計測値への 影響を以下に記載した。

土壌中における放射性物質の鉛直分布()別に、in-situ 測定におけるピーク効率(ピーク計数率/放射能濃度)について土壌中水分を変えてシミュレーション計算した結果を図 D.15~図 D.18 に示す。グラフ中の値は、水分が 10%の場合の値に対する相対値である。

放射性物質が地表面近くに分布している場合(=0.1g/cm²)には、当然、土壌中水分の 影響は小さい(図 D.15)。放射性物質が土壌にある程度浸透した場合(=4.85g/cm²)に は、土壌中の水分が大きいほど水による遮へいによって、ピーク効率が低くなる(図 D.16)。 すなわち計測値が低くなる。放射性物質の沈着直後には土壌中水分の影響は無視できるが、 沈着後時間が経過し放射性物質が土壌中に浸透した場合においては、測定時の土壌中水分 によって異なる測定結果が得られるので注意が必要である。従って、可能ならば測定時の 土壌中水分を測定し記録することが望ましい。

土壌中均一分布の放射性核種を解析する場合には、土壌中水分の影響はほとんど見られ ない(図 D.17)。これは、水の遮へいによる計数率の減少と、放射能濃度の水による希釈効 果が均衡し、ピーク効率 (cps / (Bq/g 湿土))が大きく変化しないことを示している。

しかし、乾土あたりの放射能に対するピーク効率(cps / (Bq/g 乾土))では、放射能濃度の水による希釈効果がないため、水分が大きいほど水の遮へいによる計数率の減少のみが生じ、ピーク効率が土壌中水分によって変化する。in-situ 測定で得られるのは、あくまで湿土あたりの放射能の結果である。通常、実験室で測定される土壌中放射能の値は乾土あたりで示されているので、その値と比較する場合には注意が必要である。

- 49 -

図 D.15 土壌中水分による計測値への影響 (放射性物質が地表近くに分布している場合、 : 0.1g/cm²)

図 D.16 土壌中水分による計測値への影響 (放射性物質が土壌中に浸透した場合、 : 4.85g/cm²)

図 D.18 土壌中水分による計測値への影響 (乾土あたりの放射能を計測する場合、均一分布)

解説 E 検出器の方向特性(ピーク効率の角度依存性)

p型 Ge 半導体検出器および n型 Ge 半導体検出器の方向特性の一例を図 E.1 および図 E.2 に示す。検出器は in-situ 測定では通常下向きにセットされる。真下方向を 0°とし、0°での効率に対する各角度での効率の相対値を示した。なお、線源と検出器の距離を 1m としてシミュレーション計算した結果である。 p型検出器は相対効率 40%、直径 61mm、長さ 56mm、不感層 1mm、n型検出器は相対効率 25%、直径 53mm、長さ 53mm、不感層 0.1 µm である。

p型検出器では低エネルギー(50及び60keV)において斜め方向から入射した 線に対し て低い傾向が見られる。これは、斜め入射によって不感層の通過距離が長くなり、そのため の減衰によるものと考えられる。100keV以上のエネルギーにおいては方向依存性がほとんど 認められない。

n 型検出器では、不感層が非常に薄いため、低エネルギーで斜め方向から入射した場合に もピーク効率が低くなることはなく、逆に高くなる傾向が見られた。これは、低エネルギー ではピーク効率が、検出器の体積よりも断面積に依存するためと考えられる。全体的には大 きな方向依存性は認められなかった。

ここで示した検出器は、長さと直径の比(L/D)がほぼ1.0に近い検出器であるが、L/Dが 0.9~1.1の範囲から外れるような検出器や低バックグラウンドのための特殊な検出器では大 きな方向依存性を示すことがあるので、そのような検出器を使用する場合には十分に方向特 性を把握しておく必要がある。

表 E.1 ピーク効率の角度依存性の例 (検出器:p型、L/D; 0.9、不感層; 1mm、相対効率; 40%)

表 E.2 ピーク効率の角度依存性の例 (検出器:n型、L/D; 1.0、不感層; 0.1µm、相対効率; 25%)

解説 F-1 地表に沈着した人工放射性物質

1. 目的

地表に沈着した人工放射性物質に対する in-situ 測定の妥当性を確認する。

2. 検討方法

実際の環境場において in-situ 測定及び採取した土壌の 線スペクトル測定を実施し、 両者の結果を比較した。測定場所は、自然に存在する放射性物質の濃度が低く、人の手 が入っていない未造成地があるという理由により富士山周辺を選定した。

(1) in-situ 測定

平坦で、樹木は別として周囲が 10m 以上開けている場所で測定を行った。測定は地上 1m の高さに Ge 半導体検出器を設置して 1 時間スペクトルを収集し、HASL 方式で解析を 行い、土壌中のセシウム 137 放射能濃度及び測定場所における 線量率を算出した。使 用した検出器の仕様を表 F.1 に示した。

(2) 土壌サンプリング及び測定

測定地点近傍において 5cm の採土器を用い、深さ 30cm までの土壌を 5cm 毎の 6 層に 分けて採取した。採取した土壌は乾燥せず、大きな石等を取り除いた後に測定容器(U-8) に詰め、測定室の Ge 半導体検出器で約 70,000 秒測定し、得られた 線スペクトルから セシウム 137 の放射能濃度を求めた。

検出器	相対効率 (%)	結晶の 直径(D) (mm)	結晶の 長さ(L) (mm)	(L/D)	エンド キャップ (mm)	不感層	エンドキャップ と結晶の距離 (mm)
A	25	53	53	1.00	0.5 (AI)	0.1µm	5.0
В	25	54.6	54.7	1.00	1.27(AI)	0.7 mm	3.0

表 F.1 in-situ 測定に用いた Ge 半導体検出器の仕様

3. 結果及び考察

in-situ 測定及びサンプリングした土壌から得られたセシウム 137 の放射能濃度を表 F.2 に示す。

in-situ測定結果から放射能濃度を算出する際には放射性物質の土壌中における鉛直分 布が必要であるが、ここでは一般的に用いられている =4.85 g/cm² と、それぞれの測 定地点における実際の値の両方を用いて解析を行った。

測定場所	in-situ解析に用いた 鉛直分布パラメータ	¹³⁷ Cs0	備老		
	(g/cm^2)	in-situ (検出器 A)	in-situ (検出器 B)	サンプリング土壌	μΨ.Ρ
地点A	4.85	1.6	1.6	1 7	府莅十
(富士宮市 人穴地区)	8.15 ¹⁾	-	2.1	1.7	肉未上
地点B	4.85	2	2	4.0	
(富士山スカイ ライン)	15.4 ²⁾	-	4.2	4.0	

表F.2 富士山での放射能濃度測定結果

1) 2) 採取した土壌から得られた値

=4.85 g/cm²を用いて解析した結果について、in-situ 法とサンプリング土壌の測定結 果は、地点 A についてはほぼ一致したが、地点 B については約 2 倍の違いが見られた。 これは、解析時に仮定した放射性物質の土壌中の鉛直分布が実際の分布と異なっている ことに起因すると考えられる。

それぞれの地点で採取して得られたセシウム 137 の土壌中の鉛直分布(図F.1、図F.2 参照)及び各地点の土壌の密度から を求めた。¹ これらの (表 F.2 1)2))を用い て in-situ 測定結果を解析した結果は、採取した土壌から得られた¹³⁷Csの放射能濃度に 近い値となった。

各地点で測定された in-situ スペクトルを図 F.3 及び図 F.4 に示した。

^{*1} 土壌の採取深度 Z(cm)と、深度 Z における ¹³⁷Cs の放射能濃度 A(Z)(Bq/kg 湿土)を、指数関数 A(Z)=exp(-Z)に適合させて (cm⁻¹)を求め、 = / (:採取土壌の密度)により を求 めた。

図 F.3 Ge 半導体検出器を用いた in-situ 測定スペクトル (地点 A)

図 F.4 Ge 半導体検出器を用いた in-situ 測定スペクトル (地点 B)

1. 目的

土壌中の、自然に存在する放射性物質に対する in-situ 測定の妥当性を確認する。

2. 検討方法

実際の環境場において、in-situ測定及び、採取した土壌の線スペクトル測定を実施し、両者の結果を比較した。

(1) in-situ 測定

周囲が 10m 以上開けている場所を選定し、地上 1m の高さに Ge 半導体検出器を設置し て 1 時間測定を行った。得られたスペクトルを HASL 方式で解析し、土壌中の自然に存在 する放射性物質の放射能濃度を算出した。

(2) 土壌採取及び測定

測定地点周辺において採土器を用いて土壌を採取した。採取した土壌は乾燥せず、大きな石等を取り除いた後に測定容器(U-8)に詰め、測定室の Ge 半導体検出器で約 70,000 秒測定し、得られた 線スペクトルから放射能濃度を求めた。

3. 結果及び考察

in-situ測定結果と、各測定地点で採取された土壌の測定結果を表 F.3 に示した。自然 に存在する放射性核種の測定結果について、in-situ測定から得られた結果と採取した土 壌の結果はよく一致していた。なお、in-situ測定結果の解析の際には、土壌中の分布は 均一であると仮定した。

in-situ 測定の結果得られた値と、各地点で採取された土壌の測定結果の関係を図 F.5 に示す。in-situ 測定結果とサンプリング土壌の結果には良い相関が見られた。

in-situの測定風景の一例を図F.6に、測定されたスペクトルの一例を図F.7に示した。

表F.3 in-situ測定結果と採取した土壌の 線スペクトロメトリーの結果との比較

単位: Bq/kg湿土

核種	U豸	系列			K-40		
採取/測定地点	²¹⁴ Pb (352.0keV)	²¹⁴ Bi (609.3keV)	²⁰⁸ TI (583.1keV)	²¹² Pb (238.6keV)	²²⁸ Ac (911.1keV)	⁴⁰ K (1460.8keV)	
地点 1 コンポジット試料 コア試料	25 ± 1.0	23 ± 1.0	7.2 ± 0.47	24 ± 0.7	17 ± 1.6	380 ± 10	
0 ~ 5cm 5 ~ 10cm 10 ~ 15cm 15 ~ 20cm 20 ~ 25cm	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$7.4 \pm 0.32 \\ 6.8 \pm 0.29 \\ 7.9 \pm 0.58 \\ 7.6 \pm 0.34 \\ 6.1 \pm 0.44$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	370 ± 8 350 ± 6 360 ± 12 370 ± 8 320 ± 8	
25~30cm in-situ	27 ± 1.1 27 ± 1.1	24 ± 1.2 21	7.0 ± 0.53 7.6	23 ± 0.8	23 ± 2.0 22	360 ± 11 430	
地点 2 コンポジット試料 コア試料	19 ± 0.6	16 ± 0.5	7.5 ± 0.26	26 ± 0.5	22 ± 0.8	470 ± 6	
0 ~ 5cm 5 ~ 10cm 10 ~ 15cm 15 ~ 20cm	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	410 ± 11 470 ± 7 470 ± 6 510 ± 12	
15 ~ 200m 20 ~ 25cm 25 ~ 30cm	21 ± 1.0 23 ± 0.7 24 ± 0.8 16	$20 \pm 1.0 \\ 20 \pm 0.7 \\ 21 \pm 0.7 \\ 18$	9.1 ± 0.30 9.8 ± 0.31 11 ± 0.3	31 ± 0.8 29 ± 0.5 37 ± 0.7	31 ± 1.0 25 ± 1.1 32 ± 1.1 24	510 ± 12 500 ± 8 530 ± 8 490	
			0.0	20	4 7		
地点 3 コンポジット試料 in-situ	20 ± 0.7 17	20 ± 0.7 18	9.4 ± 0.33 11	29 ± 0.5 26	28 ± 1.1 29	500 ± 8 530	

コンポジット: 測定地点から2m四方の4点で採取した土壌を混合した試料 コア試料: 測定地点直下で深度別に採取した試料 in-situ測定結果は、土壌中に<u>放射性物質</u>が均一に分布するとして解析した。

図 F.5 in-situ 測定結果と、各地点で採取された土壌の 線スペクトロメトリーによる結果との比較

図 F.6 in-situ 測定風景

図 F.7 Ge 半導体検出器を用いた in-situ 測定スペクトルの例

付 録

付録 1 放射性核種濃度と地上高 1m での 線フルエンス率との関係

エネルギー	放出比			:	放射性物	勿質の土	- 壌中における鉛直分布を表すパラメータ						(g·	cm ⁻²)			
(keV)	(s ⁻¹ Bq ⁻¹)	核種	3.	0	5.	0	10)	20)	30	30		50		100	
11.2	0.255	Pb-210	1.49	1E-03	9.01	1E-04	4.51	1E-04	2.26	1E-04	1.51	1E-04	9.09	1E-05	4.54	1E-05	
12.7	0.081	Th-232	7.85	1E-04	4.76	1E-04	2.39	1E-04	1.20	1E-04	8.00	1E-05	4.80	1E-05	2.40	1E-05	
12.7	0.089	Th-228	8.56	1E-04	5.19	1E-04	2.60	1E-04	1.30	1E-04	8.72	1E-05	5.24	1E-05	2.62	1E-05	
13.4	0.079	U-236	9.55	1E-04	5.81	1E-04	2.92	1E-04	1.46	1E-04	9.77	1E-05	5.86	1E-05	2.93	1E-05	
13.4	0.084	U-238	1.01	1E-03	6.13	1E-04	3.08	1E-04	1.54	1E-04	1.03	1E-04	6.19	1E-05	3.09	1E-05	
13.4	0.094	U-234	1.13	1E-03	6.86	1E-04	3.45	1E-04	1.73	1E-04	1.15	1E-04	6.93	1E-05	3.47	1E-05	
13.4	0.102	U-232	1.22	1E-03	7.44	1E-04	3.74	1E-04	1.87	1E-04	1.25	1E-04	7.51	1E-05	3.76	1E-05	
13.7	0.094	Nn-237	1.24 7.44	1E-03	1.55	1E-04	3.00 2.27	1E-04	1.90	1E-04	7.62	1E-04	1.02	1E-05	3.0∠ 2.20	1E-03	
13.7	0.502	Th-231	1.44	1E-03	4.55 6.25	1E-03	2.27	1E-03	1.14	1E-03	1.02	1E-04	4.57	1E-04	2.29	1E-04 1E-04	
14.1	0.040	Pu-239	5.73	1E-02	3 49	1E-03	1 75	1E-03	8.78	1E-05	5.88	1E-05	3.52	1E-04	1 76	1E-04	
14.1	0.082	Pu-242	1.19	1E-03	7.25	1E-04	3.65	1E-04	1.83	1E-04	1.22	1E-04	7.32	1E-05	3.67	1E-05	
14.1	0.089	Pu-240	1.28	1E-03	7.82	1E-04	3.93	1E-04	1.97	1E-04	1.32	1E-04	7.89	1E-05	3.95	1E-05	
14.1	0.102	Pu-238	1.47	1E-03	8.96	1E-04	4.50	1E-04	2.25	1E-04	1.51	1E-04	9.04	1E-05	4.53	1E-05	
14.1	0.103	Pu-236	1.49	1E-03	9.05	1E-04	4.55	1E-04	2.28	1E-04	1.52	1E-04	9.14	1E-05	4.57	1E-05	
14.4	0.365	Am-241	5.73	1E-03	3.49	1E-03	1.76	1E-03	8.80	1E-04	5.89	1E-04	3.53	1E-04	1.77	1E-04	
14.4	0.575	U-237	9.04	1E-03	5.51	1E-03	2.77	1E-03	1.39	1E-03	9.28	1E-04	5.56	1E-04	2.78	1E-04	
14.8	0.081	Cm-244	1.37	1E-03	8.33	1E-04	4.19	1E-04	2.10	1E-04	1.40	1E-04	8.41	1E-05	4.21	1E-05	
14.8	0.085	Cm-242	1.44	1E-03	8.79	1E-04	4.42	1E-04	2.21	1E-04	1.48	1E-04	8.87	1E-05	4.44	1E-05	
14.8	0.098	Am-242	1.66	1E-03	1.01	1E-03	5.09	1E-04	2.55	1E-04	1.71	1E-04	1.02	1E-04	5.12	1E-05	
14.8	0.461	Cm-243	7.81	1E-03	4.76	1E-03	2.39	1E-03	1.20	1E-03	8.03	1E-04	4.81	1E-04	2.41	1E-04	
14.8	0.471	Cm-245	7.98	1E-03	4.87	1E-03	2.45	1E-03	1.23	1E-03	8.21	1E-04	4.92	1E-04	2.46	1E-04	
15.2	0.273	Am-242m	5.05	1E-03	3.08	1E-03	1.55	1E-03	1.11	1E-04	5.20	1E-04	3.11	1E-04	1.56	1E-04	
10.0	0.101	Am-242 Mo 02	3.27	1E-03	2.00	1E-03	1.01	1E-03	5.05 7.29	1E-04	3.38	1E-04	2.03	1E-04	1.02	1E-04	
16.6	0.165	Nb-93	4.09	1E-03	2.07 9.55	1E-03	1.45	1E-03	2 4 2	1E-04	4.07	1E-04	2.93	1E-04	1.47	1E-04	
16.6	0.350	Mo-93	9.12	1E-03	5.58	1E-04	2.83	1E-03	1.42	1E-04	9.48	1E-04	5.69	1E-04	2.86	1E-04	
18.6	0.090	Mo-93	3.26	1E-03	2.00	1E-03	1.02	1E-03	5.10	1E-04	3.42	1E-04	2.05	1E-04	1.03	1E-04	
20.1	0.184	Rh-103m	8.14	1E-03	5.00	1E-03	2.55	1E-03	1.28	1E-03	8.57	1E-04	5.16	1E-04	2.59	1E-04	
20.2	0.349	Rh-103m	1.58	1E-02	9.75	1E-03	4.97	1E-03	2.50	1E-03	1.67	1E-03	1.01	1E-03	5.06	1E-04	
22.7	0.094	Rh-103m	6.30	1E-03	3.94	1E-03	2.04	1E-03	1.04	1E-03	6.96	1E-04	4.19	1E-04	2.11	1E-04	
25.3	0.410	Sn-117m	3.63	1E-02	2.30	1E-02	1.19	1E-02	6.10	1E-03	4.11	1E-03	2.47	1E-03	1.24	1E-03	
25.6	0.146	Th-231	1.34	1E-02	8.48	1E-03	4.41	1E-03	2.25	1E-03	1.52	1E-03	9.15	1E-04	4.60	1E-04	
26.4	0.156	Sn-126	1.53	1E-02	9.68	1E-03	5.05	1E-03	2.58	1E-03	1.74	1E-03	1.05	1E-03	5.27	1E-04	
27.2	0.103	Te-127m	1.09	1E-02	6.90	1E-03	3.60	1E-03	1.84	1E-03	1.24	1E-03	7.48	1E-04	3.77	1E-04	
27.2	0.127	Te-129m	1.34	1E-02	8.51	1E-03	4.44	1E-03	2.27	1E-03	1.53	1E-03	9.22	1E-04	4.64	1E-04	
27.2	0.327	le-125m	3.44	1E-02	2.18	1E-02	1.14	1E-02	5.83	1E-03	3.93	1E-03	2.37	1E-03	1.19	1E-03	
27.5	0.193	Te 120m	2.07	1E-02	1.32	1E-02	6.88	1E-03	3.52	1E-03	2.37	1E-03	1.43	1E-03	7.19	1E-04	
27.5	0.237	Te-12911	2.00	1E-02	1.02	1E-02	0.40	1E-03	4.00	1E-03	2.92 7.51	1E-03	1.70	1E-03	0.04	1E-04	
27.5	0.011	Te-12011	1 72	1E-02	1.09	1E-02	5.72	1E-02	2.93	1E-02	1 97	1E-03	4.52	1E-03	5.98	1E-03	
29.4	0.152	Np-237	1.88	1E-02	1.00	1E-02	6.29	1E-03	3.22	1E-03	2 17	1E-03	1.10	1E-03	6.59	1E-04	
29.5	0.185	I-129	2.30	1E-02	1.47	1E-02	7.67	1E-03	3.93	1E-03	2.65	1E-03	1.60	1E-03	8.04	1E-04	
29.8	0.343	I-129	4.36	1E-02	2.78	1E-02	1.46	1E-02	7.47	1E-03	5.03	1E-03	3.03	1E-03	1.53	1E-03	
30.6	0.092	Cs-134m	1.24	1E-02	7.96	1E-03	4.19	1E-03	2.16	1E-03	1.46	1E-03	8.78	1E-04	4.42	1E-04	
31.0	0.067	Te-127m	9.26	1E-03	5.96	1E-03	3.15	1E-03	1.62	1E-03	1.10	1E-03	6.62	1E-04	3.33	1E-04	
31.0	0.068	Te-129m	9.45	1E-03	6.08	1E-03	3.21	1E-03	1.66	1E-03	1.12	1E-03	6.75	1E-04	3.40	1E-04	
31.0	0.170	Cs-134m	2.35	1E-02	1.51	1E-02	7.98	1E-03	4.11	1E-03	2.78	1E-03	1.68	1E-03	8.45	1E-04	
31.0	0.212	Te-125m	2.93	1E-02	1.89	1E-02	9.96	1E-03	5.14	1E-03	3.47	1E-03	2.09	1E-03	1.06	1E-03	
31.8	0.021	Ba-137m	3.01	1E-03	1.95	1E-03	1.04	1E-03	5.36	1E-04	3.62	1E-04	2.19	1E-04	1.11	1E-04	
32.2	0.038	Ba-137m	5.68	1E-03	3.68	1E-03	1.96	1E-03	1.02	1E-03	6.88	1E-04	4.17	1E-04	2.10	1E-04	
33.6	0.122	I-129	1.98	1E-02	1.30	1E-02	6.97	1E-03	3.63	1E-03	2.46	1E-03	1.49	1E-03	7.53	1E-04	
35.0	0.050	CS-134M	8.81	1E-03	5.80	1E-03	3.14	1E-03	1.64	1E-03	1.11	1E-03	6.77	1E-04	3.42	1E-04	
30.0 20 7	0.007	10-12000 Nd 147	1.20	1E-02	7.91	1E-03	4.29	1E-03	2.20	1E-03	1.53	1E-03	9.27	1E-04	4.69	1E-04	
30.7	0.225	IL 120	4.09	1E-02	1 10	1E-02	6.04	1E-02	9.00 3.10	1E-03	2 17	1E-03	1 32	1E-03	6.70	1E-03	
43.0	0.073	Fu-155	2 94	1E-02	1.10	1E-02	1 10	1E-03	5.85	1E-03	3.98	1E-03	2.43	1E-03	1 23	1E-04	
59.5	0.345	U-237	1.25	1E-01	8.67	1E-02	4.98	1E-02	2.71	1E-02	1.86	1E-02	1.14	1E-02	5.83	1E-03	
59.5	0.359	Am-241	1.30	1E-01	9.02	1E-02	5.18	1E-02	2.82	1E-02	1.93	1E-02	1.19	1E-02	6.07	1E-03	
64.3	0.096	Sn-126	3.68	1E-02	2.58	1E-02	1.49	1E-02	8.18	1E-03	5.62	1E-03	3.46	1E-03	1.77	1E-03	
74.7	0.674	Am-243	2.85	1E-01	2.02	1E-01	1.19	1E-01	6.57	1E-02	4.54	1E-02	2.81	1E-02	1.44	1E-02	
74.8	0.104	Pb-212	4.42	1E-02	3.14	1E-02	1.85	1E-02	1.02	1E-02	7.05	1E-03	4.36	1E-03	2.24	1E-03	
77.1	0.176	Pb-212	7.53	1E-02	5.36	1E-02	3.16	1E-02	1.75	1E-02	1.21	1E-02	7.49	1E-03	3.84	1E-03	
84.2	0.067	Th-231	2.99	1E-02	2.14	1E-02	1.27	1E-02	7.09	1E-03	4.92	1E-03	3.06	1E-03	1.57	1E-03	
86.5	0.123	Np-237	5.55	1E-02	3.98	1E-02	2.37	1E-02	1.32	1E-02	9.18	1E-03	5.71	1E-03	2.93	1E-03	

エネルギー	放出比				放射性物	勿質の土	_壌中における鉛直分布を表すパラメータ							cm ⁻²)		
(keV)	(s ⁻¹ Bq ⁻¹)	核種	3.	0	5.	0	1(0	2	0	3)	50	C	10	i0
86.5	0.309	Eu-155	1.40	1E-01	1.00	1E-01	5.97	1E-02	3.33	1E-02	2.31	1E-02	1.44	1E-02	7.38	1E-03
86.9	0.089	Sn-126	4.04	1E-02	2.90	1E-02	1.73	1E-02	9.63	1E-03	6.68	1E-03	4.16	1E-03	2.14	1E-03
87.6	0.370	Sn-126	1.68	1E-01	1.21	1E-01	7.20	1E-02	4.01	1E-02	2.79	1E-02	1.73	1E-02	8.91	1E-03
91.1	0.279	Nd-14/	1.29	1E-01	9.30	1E-02	5.57	1E-02	3.11	1E-02	2.16	1E-02	1.35	1E-02	6.93	1E-03
97.1	0.166	U-237 Do 222	7.91	1E-02	5.72	1E-02	3.45	1E-02	1.93	1E-02	1.35	1E-02	8.41	1E-03	4.32	1E-03
98.4 00.6	0.157	Pa-233 Cm-243	7.50 7.11	1E-02	5.47 5.16	1E-02	3.30	1E-02	1.80	1E-02	1.29	1E-02	8.07 7.62	1E-03	4.15	1E-03
99.6	0.147	Nn-239	7.58	1E-02	5 49	1E-02	3.32	1E-02	1.75	1E-02	1.22	1E-02	8.12	1E-03	3.32 4.18	1E-03
99.6	0.185	Cm-245	8.91	1E-02	6.46	1E-02	3.90	1E-02	2.19	1E-02	1.53	1E-02	9.55	1E-03	4.91	1E-03
101.1	0.266	U-237	1.29	1E-01	9.38	1E-02	5.67	1E-02	3.18	1E-02	2.22	1E-02	1.39	1E-02	7.15	1E-03
103.8	0.059	Am-242	2.89	1E-02	2.10	1E-02	1.27	1E-02	7.13	1E-03	4.98	1E-03	3.11	1E-03	1.60	1E-03
103.8	0.236	Cm-243	1.15	1E-01	8.36	1E-02	5.06	1E-02	2.84	1E-02	1.98	1E-02	1.24	1E-02	6.39	1E-03
103.8	0.251	Np-239	1.23	1E-01	8.91	1E-02	5.39	1E-02	3.03	1E-02	2.11	1E-02	1.32	1E-02	6.81	1E-03
103.8	0.295	Cm-245	1.44	1E-01	1.05	1E-01	6.34	1E-02	3.56	1E-02	2.49	1E-02	1.56	1E-02	8.01	1E-03
105.3	0.206	Eu-155	1.01	1E-01	7.33	1E-02	4.44	1E-02	2.50	1E-02	1.74	1E-02	1.09	1E-02	5.62	1E-03
106.1	0.272	Np-239	1.34	1E-01	9.72	1E-02	5.89	1E-02	3.31	1E-02	2.31	1E-02	1.45	1E-02	7.45	1E-03
117.3	0.066	Cm-245	3.31	1E-02	2.41	1E-02	1.47	1E-02	8.30	1E-03	5.81	1E-03	3.64	1E-03	1.88	1E-03
121.1	0.173	Se-75	0.01	1E-02	0.44	1E-02	3.93	1E-02	2.22	1E-02	1.00	1E-02	9.74	1E-03	5.03 2.40	1E-03
122.1	0.855	Co-57 Cs-134m	4.30	1E-01 1E-02	5 33	1E-01	3 25	1E-01 1E-02	1.10	1E-01 1E-02	1 29	1E-02	4.03	1E-02	2.49 4 19	1E-02
133.0	0.419	Hf-181	2.19	1E-01	1.61	1E-01	9.85	1E-02	5.59	1E-02	3.92	1E-02	2.46	1E-02	1.27	1E-02
133.5	0.111	Ce-144	5.81	1E-02	4.26	1E-02	2.61	1E-02	1.48	1E-02	1.04	1E-02	6.52	1E-03	3.38	1E-03
136.0	0.590	Se-75	3.11	1E-01	2.28	1E-01	1.40	1E-01	7.95	1E-02	5.58	1E-02	3.50	1E-02	1.81	1E-02
136.5	0.106	Co-57	5.61	1E-02	4.13	1E-02	2.53	1E-02	1.44	1E-02	1.01	1E-02	6.33	1E-03	3.28	1E-03
140.5	0.890	Tc-99m	4.73	1E-01	3.48	1E-01	2.14	1E-01	1.22	1E-01	8.54	1E-02	5.36	1E-02	2.78	1E-02
143.8	0.110	U-235	5.87	1E-02	4.33	1E-02	2.66	1E-02	1.52	1E-02	1.06	1E-02	6.68	1E-03	3.46	1E-03
145.4	0.484	Ce-141	2.60	1E-01	1.92	1E-01	1.18	1E-01	6.73	1E-02	4.73	1E-02	2.97	1E-02	1.54	1E-02
158.6	0.864	Sn-117m	4.75	1E-01	3.51	1E-01	2.17	1E-01	1.24	1E-01	8.72	1E-02	5.48	1E-02	2.84	1E-02
159.0	0.840	Te-123m	4.62	1E-01	3.42	1E-01	2.11	1E-01	1.21	1E-01	8.49	1E-02	5.33	1E-02	2.77	1E-02
165.0	0.062	Ba-140 Ba-130	3.43 1 32	1E-02	2.54	1E-02	1.57	1E-02	0.90 3.45	1E-03	0.32	1E-03	3.97	1E-03	2.00	1E-03
174.9	0.095	Cm-245	5.33	1E-01	3.96	1E-02	2.45	1E-02	1.41	1E-02	9.93	1E-02	6.24	1E-02	3.24	1E-03
181.1	0.061	Mo-99	3.43	1E-02	2.55	1E-02	1.58	1E-02	9.07	1E-03	6.41	1E-03	4.03	1E-03	2.09	1E-03
185.7	0.572	U-235	3.26	1E-01	2.43	1E-01	1.50	1E-01	8.64	1E-02	6.12	1E-02	3.84	1E-02	2.00	1E-02
186.0	0.033	Ra-226	1.87	1E-02	1.39	1E-02	8.62	1E-03	4.96	1E-03	3.51	1E-03	2.20	1E-03	1.14	1E-03
202.5	0.958	Y-90m	5.57	1E-01	4.16	1E-01	2.59	1E-01	1.49	1E-01	1.06	1E-01	6.65	1E-02	3.45	1E-02
205.3	0.050	U-235	2.92	1E-02	2.18	1E-02	1.36	1E-02	7.83	1E-03	5.55	1E-03	3.49	1E-03	1.81	1E-03
208.0	0.216	U-237	1.26	1E-01	9.43	1E-02	5.87	1E-02	3.39	1E-02	2.40	1E-02	1.51	1E-02	7.86	1E-03
210.5	0.223	Te-134	1.31	1E-01	9.78	1E-02	6.09	1E-02	3.51	1E-02	2.49	1E-02	1.57	1E-02	8.16	1E-03
228.2	0.106	Cm-243	6.30	1E-02	4.72	1E-02	2.95	1E-02	1.71	1E-02	1.21	1E-02	7.65	1E-03	3.98	1E-03
220.2 228.2	0.113	NP-239 To-132	0.7Z	1E-02	5.05 3.04	1E-02	2.10	1E-02	1.02	1E-02	1.29	1E-02	6.38	1E-03	4.24	1E-03
220.2	0.002	Nh-95m	1.56	1E-01	1 17	1E-01	7.34	1E-01	4 25	1E-01	3.02	1E-01	1.91	1E-02	9.91	1E-02
238.6	0.434	Pb-212	2.61	1E-01	1.96	1E-01	1.23	1E-01	7.11	1E-02	5.04	1E-02	3.19	1E-02	1.66	1E-02
241.0	0.040	Ra-224	2.39	1E-02	1.80	1E-02	1.12	1E-02	6.53	1E-03	4.63	1E-03	2.93	1E-03	1.52	1E-03
264.7	0.591	Se-75	3.64	1E-01	2.74	1E-01	1.72	1E-01	1.00	1E-01	7.11	1E-02	4.52	1E-02	2.35	1E-02
266.9	0.068	Y-93	4.20	1E-02	3.16	1E-02	1.99	1E-02	1.16	1E-02	8.21	1E-03	5.22	1E-03	2.71	1E-03
275.2	0.068	Pm-151	4.20	1E-02	3.16	1E-02	1.99	1E-02	1.16	1E-02	8.24	1E-03	5.24	1E-03	2.73	1E-03
277.6	0.140	Cm-243	8.71	1E-02	6.56	1E-02	4.14	1E-02	2.41	1E-02	1.71	1E-02	1.09	1E-02	5.66	1E-03
277.6	0.144	Np-239	8.97	1E-02	6.75	1E-02	4.26	1E-02	2.49	1E-02	1.76	1E-02	1.12	1E-02	5.83	1E-03
278.0	0.209	1e-134	1.30	1E-01	9.81	1E-02	6.19	1E-02	3.61	1E-02	2.56	1E-02	1.63	1E-02	8.47	1E-03
279.0 285.0	0.252	Se-75 Dm-1/0	1.57	1E-01	1.10	1E-01	7.47	1E-02	4.30	1E-02	3.09	1E-02	7.60	1E-02	1.02	1E-02
203.3	0.001	Ce-143	2.66	1E-04	2 00	1E-04	1 27	1E-04	7.41	1E-04	5.25	1E-04	3.35	1E-03	4.00	1E-03
300.1	0.066	Pa-233	4.22	1E-02	3.19	1E-02	2.02	1E-02	1.18	1E-02	8.37	1E-02	5.35	1E-02	2.78	1E-03
306.1	0.051	Rh-105	3.27	1E-02	2.47	1E-02	1.57	1E-02	9.18	1E-03	6.50	1E-03	4.15	1E-03	2.16	1E-03
312.0	0.386	Pa-233	2.47	1E-01	1.87	1E-01	1.19	1E-01	6.95	1E-02	4.93	1E-02	3.15	1E-02	1.64	1E-02
314.1	0.610	Sb-128	3.91	1E-01	2.96	1E-01	1.88	1E-01	1.10	1E-01	7.80	1E-02	4.98	1E-02	2.60	1E-02
318.9	0.192	Rh-105	1.24	1E-01	9.34	1E-02	5.93	1E-02	3.48	1E-02	2.47	1E-02	1.58	1E-02	8.22	1E-03
320.1	0.098	Cr-51	6.33	1E-02	4.79	1E-02	3.04	1E-02	1.78	1E-02	1.27	1E-02	8.08	1E-03	4.22	1E-03
330.9	0.780	Sb-130	5.06	1E-01	3.83	1E-01	2.43	1E-01	1.43	1E-01	1.02	1E-01	6.48	1E-02	3.39	1E-02
340.1	0.225	Pm-151	1.47	1E-01	1.11	1E-01	7.07	1E-02	4.16	1E-02	2.96	1E-02	1.89	1E-02	9.87	1E-03
340.5 342 1	0.422	05-130 Ag-111	2.15 1 26	1E-01	2.09 3.21	1E-01	1.33	1E-01	1.81 1.24	1E-02	5.54 g on	1E-02	3.54 5.60	1E-02	1.85	1E-02
344.1	0.007	r-y-111 Fil-152	4.30	1E-02	3.31 1 32	1E-02	2.10 8 30	1E-02	1.24 <u>1</u> 0/	1E-02	3.51	1E-03	0.0Z 2.24	1E-03	2.94 1 17	1E-03
011.0	0.200	-0 102			1.02		0.00	12 02	7.07	1 02	0.01	1 02	2.27	1 02	1.17	12 02

エネルギー	放出比			1	放射性物	勿質の土	:壌中における鉛直分布を表すパラメータ						(g·d	cm ⁻²)		
(keV)	(s ⁻¹ Bq ⁻¹)	核種	3.	0	5.	0	10	0	20)	30)	50)	10	0
345.9	0.120	Hf-181	7.85	1E-02	5.96	1E-02	3.79	1E-02	2.23	1E-02	1.59	1E-02	1.01	1E-02	5.30	1E-03
364.5	0.812	I-131	5.37	1E-01	4.09	1E-01	2.61	1E-01	1.54	1E-01	1.09	1E-01	6.99	1E-02	3.66	1E-02
400.7	0.116	Se-75	7.81	1E-02	5.96	1E-02	3.82	1E-02	2.26	1E-02	1.61	1E-02	1.03	1E-02	5.41	1E-03
402.5	0.690	Cm-247	4.67	1E-01	3.56	1E-01	2.28	1E-01	1.35	1E-01	9.65	1E-02	6.16	1E-02	3.24	1E-02
414.8	0.833	Sb-126	5.68	1E-01	4.34	1E-01	2.78	1E-01	1.65	1E-01	1.18	1E-01	7.52	1E-02	3.96	1E-02
417.9	0.010	Te-127	6.76	1E-03	5.17	1E-03	3.31	1E-03	1.97	1E-03	1.40	1E-03	8.96	1E-04	4.72	1E-04
418.0	0.341	1-130 Sh 125	2.33	1E-01	1.78	1E-01	1.14	1E-01	6.78 5.00	1E-02	4.85	1E-02	3.09	1E-02	1.63	1E-02
427.9	0.294	30-123 Te-134	2.02	1E-01	0.80	1E-01 1E-02	9.93	1E-02	3.90	1E-02	4.22	1E-02	2.09	1E-02	0.00	1E-02
438.6	0.100	7n-69m	6.56	1E-01	5.00	1E-02	3.23	1E-02	1 92	1E-02	2.00	1E-02	8.76	1E-02	3.00 4.62	1E-03
459.6	0.074	Te-129	5.14	1E-02	3.95	1E-02	2.54	1E-02	1.52	1E-01	1.09	1E-02	6.92	1E-02	3.66	1E-02
461.0	0.099	Te-134	6.90	1E-02	5.30	1E-02	3.41	1E-02	2.03	1E-02	1.46	1E-02	9.29	1E-03	4.91	1E-03
462.8	0.307	Cs-138	2.15	1E-01	1.65	1E-01	1.06	1E-01	6.35	1E-02	4.55	1E-02	2.90	1E-02	1.53	1E-02
463.4	0.105	Sb-125	7.32	1E-02	5.62	1E-02	3.62	1E-02	2.16	1E-02	1.55	1E-02	9.86	1E-03	5.22	1E-03
469.4	0.175	Ru-105	1.23	1E-01	9.48	1E-02	6.11	1E-02	3.64	1E-02	2.61	1E-02	1.67	1E-02	8.81	1E-03
473.0	0.247	Sb-127	1.74	1E-01	1.34	1E-01	8.64	1E-02	5.15	1E-02	3.70	1E-02	2.36	1E-02	1.25	1E-02
477.6	0.103	Be-7	7.30	1E-02	5.62	1E-02	3.62	1E-02	2.16	1E-02	1.55	1E-02	9.88	1E-03	5.23	1E-03
479.5	0.253	W-187	1.79	1E-01	1.38	1E-01	8.87	1E-02	5.30	1E-02	3.80	1E-02	2.42	1E-02	1.28	1E-02
479.5	0.900	Y-90m	6.36	1E-01	4.89	1E-01	3.16	1E-01	1.88	1E-01	1.35	1E-01	8.62	1E-02	4.56	1E-02
482.0	0.830	Hf-181	5.88	1E-01	4.52	1E-01	2.92	1E-01	1.74	1E-01	1.25	1E-01	7.97	1E-02	4.22	1E-02
487.0	0.459	La-140	3.26	1E-01	2.51	1E-01	1.62	1E-01	9.67	1E-02	6.94	1E-02	4.42	1E-02	2.34	1E-02
497.1	0.889	Ru-103	6.35	1E-01	4.89	1E-01	3.16	1E-01	1.89	1E-01	1.36	1E-01	8.65	1E-02	4.58	1E-02
507.7	0.053	ZF-97	3.80	1E-02	2.93	1E-02	1.90	1E-02	1.14	1E-02	8.16	1E-03	5.20	1E-03	2.76	1E-03
511.0	1.810	C0-56 Na-22	2.10	16-01	1.07	16-01	6.48	1E-01	0.40	1E-02	4.04	1E-02	2.90	1E-02	1.57	1E-02
511.0	0.207	Rh-106	1.00	1E-01	1.00	1E-01	7 41	1E-01	4 44	1E-01	3.19	1E-01	2.04	1E-01	1.08	1E-02
526.5	0.450	Sb-128	3.25	1E-01	2.51	1E-01	1.62	1E-01	9.74	1E-02	7.00	1E-02	4.47	1E-02	2.37	1E-02
529.9	0.863	I-133	6.24	1E-01	4.82	1E-01	3.12	1E-01	1.87	1E-01	1.35	1E-01	8.60	1E-02	4.56	1E-02
531.0	0.131	Nd-147	9.47	1E-02	7.31	1E-02	4.74	1E-02	2.84	1E-02	2.04	1E-02	1.31	1E-02	6.92	1E-03
536.1	0.990	I-130	7.18	1E-01	5.54	1E-01	3.59	1E-01	2.16	1E-01	1.55	1E-01	9.91	1E-02	5.25	1E-02
537.3	0.244	Ba-140	1.77	1E-01	1.37	1E-01	8.85	1E-02	5.31	1E-02	3.82	1E-02	2.44	1E-02	1.29	1E-02
544.7	0.179	Sb-129	1.30	1E-01	1.01	1E-01	6.53	1E-02	3.92	1E-02	2.82	1E-02	1.81	1E-02	9.56	1E-03
550.3	0.220	Pm-148	1.60	1E-01	1.24	1E-01	8.04	1E-02	4.83	1E-02	3.48	1E-02	2.22	1E-02	1.18	1E-02
550.3	0.944	Pm-148m	6.88	1E-01	5.31	1E-01	3.45	1E-01	2.07	1E-01	1.49	1E-01	9.54	1E-02	5.05	1E-02
551.5	0.059	W-187	4.29	1E-02	3.32	1E-02	2.15	1E-02	1.29	1E-02	9.31	1E-03	5.96	1E-03	3.16	1E-03
555.6	0.949	Y-91m	6.93	1E-01	5.35	1E-01	3.48	1E-01	2.09	1E-01	1.50	1E-01	9.63	1E-02	5.10	1E-02
560.0	0.183	Te-134	1.34	1E-01	1.03	1E-01	6.73 E E 2	1E-02	4.05	1E-02	2.91	1E-02	1.87	1E-02	9.88	1E-03
509.5 600.6	0.150	CS-134 Sh-125	1.10	1E-01	0.01	1E-02	5.55	1E-02	3.33	1E-02	2.40	1E-02	1.04	1E-02	0.13	1E-03
602.7	0.979	Sb-123	7.02	1E-01	5.63	1E-01	3.67	1E-02	2.02	1E-02	1.60	1E-02	1.00	1E-02	5 43	1E-03
604.6	0.975	Cs-134	7.25	1E-01	5.61	1E-01	3.66	1E-01	2.21	1E-01	1.59	1E-01	1.02	1E-01	5.41	1E-02
606.6	0.050	Sb-125	3.73	1E-02	2.89	1E-02	1.89	1E-02	1.14	1E-02	8.21	1E-03	5.27	1E-03	2.79	1E-03
610.3	0.056	Ru-103	4.17	1E-02	3.23	1E-02	2.11	1E-02	1.27	1E-02	9.18	1E-03	5.90	1E-03	3.12	1E-03
618.4	0.073	W-187	5.43	1E-02	4.21	1E-02	2.75	1E-02	1.66	1E-02	1.20	1E-02	7.70	1E-03	4.07	1E-03
621.8	0.098	Rh-106	7.34	1E-02	5.69	1E-02	3.71	1E-02	2.24	1E-02	1.62	1E-02	1.04	1E-02	5.51	1E-03
628.7	0.310	Sb-128	2.32	1E-01	1.80	1E-01	1.18	1E-01	7.12	1E-02	5.14	1E-02	3.31	1E-02	1.75	1E-02
630.0	0.886	Pm-148m	6.65	1E-01	5.15	1E-01	3.37	1E-01	2.04	1E-01	1.47	1E-01	9.46	1E-02	5.00	1E-02
635.9	0.113	Sb-125	8.51	1E-02	6.60	1E-02	4.31	1E-02	2.61	1E-02	1.88	1E-02	1.21	1E-02	6.41	1E-03
636.2	0.360	Sb-128	2.71	1E-01	2.10	1E-01	1.37	1E-01	8.30	1E-02	5.99	1E-02	3.86	1E-02	2.04	1E-02
637.0	0.073	1-131	5.47	1E-02	4.24	1E-02	2.77	1E-02	1.68	1E-02	1.21	1E-02	7.79	1E-03	4.12	1E-03
647.5	0.474	La-142 To 122m	3.07	10-01	2.77	10-01	7.44	1E-01	1.10	1E-01	2.25	1E-02	2.10	1E-02	2.09	1E-02
657.7	0.194	Δα-110m	7.40	1E-01	5.57	1E-01	7.44	1E-02	4.50	1E-02	1.60	1E-02	2.09	1E-02	5.44	1E-02
657.9	0.983	Nb-97	7.10	1E-01	5.78	1E-01	379	1E-01	2.21	1E-01	1.66	1E-01	1.00	1E-01	5.65	1E-02
661.6	0.899	Ba-137m	6.82	1E-01	5.30	1E-01	3.47	1E-01	2.10	1E-01	1.52	1E-01	9.80	1E-02	5.18	1E-02
664.5	0.053	Ce-143	3.99	1E-02	3.10	1E-02	2.03	1E-02	1.23	1E-02	8.88	1E-03	5.73	1E-03	3.03	1E-03
666.3	0.997	Sb-126	7.58	1E-01	5.88	1E-01	3.86	1E-01	2.34	1E-01	1.69	1E-01	1.09	1E-01	5.76	1E-02
667.7	0.987	I-132	7.50	1E-01	5.83	1E-01	3.82	1E-01	2.32	1E-01	1.67	1E-01	1.08	1E-01	5.71	1E-02
668.5	0.961	I-130	7.31	1E-01	5.68	1E-01	3.72	1E-01	2.26	1E-01	1.63	1E-01	1.05	1E-01	5.56	1E-02
676.4	0.157	Ru-105	1.19	1E-01	9.27	1E-02	6.08	1E-02	3.69	1E-02	2.67	1E-02	1.72	1E-02	9.10	1E-03
685.7	0.353	Sb-127	2.70	1E-01	2.10	1E-01	1.38	1E-01	8.36	1E-02	6.04	1E-02	3.90	1E-02	2.06	1E-02
685.8	0.316	W-187	2.42	1E-01	1.88	1E-01	1.23	1E-01	7.48	1E-02	5.41	1E-02	3.49	1E-02	1.85	1E-02
695.0	0.997	Sb-126	7.65	1E-01	5.49	1E-01	3.90	1E-01	2.37	1E-01	1.72	1E-01	1.11	1E-01	5.86	1E-02
697.0	0.289	Sb-126	2.22	1E-01	1.72	1E-01	1.13	1E-01	6.88	1E-02	4.98	1E-02	3.21	1E-02	1.70	1E-02
エネルギー	放出比				放射性物	勿質の土	壌中に	おける釒	沿直分布	を表す	パラメ-	-タ	(g·	cm ⁻²)		
------------------	-------------------------------------	-----------------------	--------------	----------------	--------------	----------------	--------------	----------------	--------------	----------------	--------------	----------------	--------------	--------------------	---------------	-------
(keV)	(s ⁻¹ Bq ⁻¹)	核種	3.	0	5.	0	1	0	2	0	3	0	50)	10	i0
720.5	0.538	Sb-126	4.16	1E-01	3.24	1E-01	2.13	1E-01	1.30	1E-01	9.39	1E-02	6.06	1E-02	3.21	1E-02
722.0	0.051	Ce-143	3.96	1E-02	3.08	1E-02	2.03	1E-02	1.23	1E-02	8.94	1E-03	5.78	1E-03	3.06	1E-03
723.3	0.197	Eu-154	1.52	1E-01	1.19	1E-01	7.81	1E-02	4.75	1E-02	3.44	1E-02	2.22	1E-02	1.18	1E-02
724.2	0.444	Zr-95	3.44	1E-01	2.68	1E-01	1.76	1E-01	1.07	1E-01	7.76	1E-02	5.02	1E-02	2.66	1E-02
724.3	0.473	RU-105 Dm 149m	3.66	1E-01	2.85	1E-01	1.88	1E-01	7.14	1E-01	8.20 5.72	1E-02	5.34 2.60	1E-02	2.83	1E-02
723.7	0.327	PIII-140III Bi-212	2.00	1E-01 1E-02	1.97	1E-01 1E-02	2.68	1E-01 1E-02	1.09	1E-02	0.7Z	1E-02	3.09 7.63	1E-02	1.90	1E-02
739.5	0.000	Mo-99	9.48	1E-02	7.38	1E-02	4.86	1E-02	2.96	1E-02	2 15	1E-02	1.00	1E-03	7.36	1E-03
739.5	0.823	I-130	6.40	1E-01	4.98	1E-01	3.28	1E-01	2.00	1E-01	1.45	1E-01	9.36	1E-02	4.97	1E-02
742.6	0.151	Te-134	1.17	1E-01	9.14	1E-02	6.03	1E-02	3.67	1E-02	2.66	1E-02	1.72	1E-02	9.12	1E-03
743.3	1.000	Sb-128	7.78	1E-01	6.06	1E-01	4.00	1E-01	2.43	1E-01	1.76	1E-01	1.14	1E-01	6.05	1E-02
748.3	0.008	Pr-145	5.87	1E-03	4.57	1E-03	3.02	1E-03	1.84	1E-03	1.33	1E-03	8.61	1E-04	4.57	1E-04
754.0	1.000	Sb-128	7.81	1E-01	6.08	1E-01	4.02	1E-01	2.45	1E-01	1.77	1E-01	1.15	1E-01	6.09	1E-02
756.7	0.549	Zr-95	4.29	1E-01	3.34	1E-01	2.21	1E-01	1.34	1E-01	9.75	1E-02	6.30	1E-02	3.35	1E-02
763.9	0.224	Ag-110m	1.75	1E-01	1.36	1E-01	9.02	1E-02	5.50	1E-02	3.99	1E-02	2.58	1E-02	1.37	1E-02
765.8	1.000	Nb-95	7.84	1E-01	6.11	1E-01	4.04	1E-01	2.46	1E-01	1.79	1E-01	1.15	1E-01	6.13	1E-02
707.Z	0.290	10-134	2.27	1E-01	1.77	1E-01	1.17	1E-01	1.14	1E-02	5.18	1E-02	3.35	1E-02	1.78	1E-02
773.7	0.762	1-132 To-131m	5.98 3.00	1E-01	4.07	1E-01	3.08	1E-01	1.00	1E-01 1E-02	6.84	1E-01 1E-02	0.03	1E-02	4.09	1E-02
778.9	0.302	Fu-152	1.02	1E-01	7 95	1E-01	5.26	1E-01	3.42	1E-02	2.33	1E-02	1.51	1E-02	2.55	1E-02
783.7	0.145	Sb-127	1.14	1E-01	8.92	1E-02	5.90	1E-02	3.60	1E-02	2.61	1E-02	1.69	1E-02	8.99	1E-03
793.4	1.000	Sb-130	7.90	1E-01	6.17	1E-01	4.08	1E-01	2.49	1E-01	1.81	1E-01	1.17	1E-01	6.23	1E-02
793.8	0.139	Te-131m	1.09	1E-01	8.54	1E-02	5.65	1E-02	3.45	1E-02	2.51	1E-02	1.62	1E-02	8.64	1E-03
795.8	0.851	Cs-134	6.73	1E-01	5.25	1E-01	3.48	1E-01	2.12	1E-01	1.54	1E-01	9.98	1E-02	5.31	1E-02
810.8	0.994	Co-58	7.90	1E-01	6.17	1E-01	4.09	1E-01	2.50	1E-01	1.82	1E-01	1.18	1E-01	6.26	1E-02
811.8	0.103	Eu-156	8.18	1E-02	6.39	1E-02	4.24	1E-02	2.59	1E-02	1.88	1E-02	1.22	1E-02	6.49	1E-03
812.8	0.430	Sb-129	3.42	1E-01	2.67	1E-01	1.77	1E-01	1.08	1E-01	7.86	1E-02	5.09	1E-02	2.71	1E-02
815.8	0.236	La-140	1.88	1E-01	1.47	1E-01	9.74	1E-02	5.95	1E-02	4.33	1E-02	2.80	1E-02	1.49	1E-02
818.5	0.997	CS-136 Mp 54	7.94	1E-01	6.20	1E-01	4.11	1E-01	2.51	1E-01	1.83	1E-01	1.18	1E-01	6.31	1E-02
034.0 830 1	1.000	Sh-130	0.00 8.01	1E-01	6.25	1E-01	4.15	1E-01	2.54	1E-01	1.00	1E-01	1.20	1E-01	6.30	1E-02
841.6	0.146	Eu-152m	1.17	1E-01	9.14	1E-02	6.07	1E-02	3.72	1E-02	2.71	1E-02	1.75	1E-02	9.35	1E-02
846.8	0.989	Mn-56	7.94	1E-01	6.21	1E-01	4.12	1E-01	2.52	1E-01	1.84	1E-01	1.19	1E-01	6.35	1E-02
846.8	0.999	Co-56	8.02	1E-01	6.27	1E-01	4.17	1E-01	2.55	1E-01	1.86	1E-01	1.20	1E-01	6.42	1E-02
847.0	0.954	I-134	7.66	1E-01	5.99	1E-01	3.98	1E-01	2.44	1E-01	1.77	1E-01	1.15	1E-01	6.13	1E-02
852.2	0.206	Te-131m	1.66	1E-01	1.30	1E-01	8.62	1E-02	5.28	1E-02	3.85	1E-02	2.49	1E-02	1.33	1E-02
856.7	0.176	Sb-126	1.42	1E-01	1.11	1E-01	7.39	1E-02	4.53	1E-02	3.30	1E-02	2.14	1E-02	1.14	1E-02
864.0	0.156	Te-133m	1.26	1E-01	9.85	1E-02	6.55	1E-02	4.01	1E-02	2.93	1E-02	1.90	1E-02	1.01	1E-02
873.2	0.115	Eu-154	9.30	1E-02	7.28	1E-02	4.85	1E-02	2.97	1E-02	2.17	1E-02	1.40	1E-02	7.50	1E-03
881.0 997.1	0.420	BF-84	3.41 5.26	1E-01	2.67	1E-01	1.78	1E-01	1.09	1E-01	1.94	1E-02	5.15	1E-02	2.75	1E-02
884.7	0.049	1-134 Δα-110m	5.20	1E-01	4.12	1E-01	2.75	1E-01	1.00	1E-01	1.23	1E-01	8.95	1E-02	4.20	1E-02
889.3	1.000	Sc-46	8.13	1E-01	6.37	1E-01	4.24	1E-01	2.60	1E-01	1.90	1E-01	1.23	1E-02	6.58	1E-02
911.3	0.290	Ac-228	2.37	1E-01	1.86	1E-01	1.24	1E-01	7.62	1E-02	5.56	1E-02	3.61	1E-02	1.93	1E-02
912.7	0.550	Te-133m	4.50	1E-01	3.53	1E-01	2.36	1E-01	1.45	1E-01	1.06	1E-01	6.85	1E-02	3.67	1E-02
914.6	0.200	Sb-129	1.64	1E-01	1.29	1E-01	8.59	1E-02	5.27	1E-02	3.85	1E-02	2.50	1E-02	1.34	1E-02
914.8	0.109	Te-133m	8.93	1E-02	7.00	1E-02	4.67	1E-02	2.87	1E-02	2.09	1E-02	1.36	1E-02	7.27	1E-03
914.8	0.115	Pm-148	9.38	1E-02	7.36	1E-02	4.91	1E-02	3.01	1E-02	2.20	1E-02	1.43	1E-02	7.64	1E-03
915.3	0.171	Pm-148m	1.40	1E-01	1.10	1E-01	7.33	1E-02	4.50	1E-02	3.29	1E-02	2.13	1E-02	1.14	1E-02
934.5	0.139	Y-92	1.14	1E-01	8.98	1E-02	6.00	1E-02	3.69	1E-02	2.70	1E-02	1.75	1E-02	9.37	1E-03
934.9	0.190	SD-130	1.50	1E-01	1.23	1E-01	8.21	1E-02	5.04	1E-02	3.69	1E-02	2.39	1E-02	1.28	1E-02
957.5 954.5	0.343	Ag-110111 1_132	2.03	1E-01	2.22	1E-01	7.86	1E-01 1E-02	9.12	1E-02	0.07 3.54	1E-02	4.33	1E-02	2.32	1E-02
963.3	0.120	Fu-152m	9.97	1E-01	7.83	1E-01	5.25	1E-02	3.23	1E-02	2.36	1E-02	1.53	1E-02	8.22	1E-02
964.1	0.145	Eu-152	1.20	1E-01	9.45	1E-02	6.33	1E-02	3.90	1E-02	2.85	1E-02	1.85	1E-02	9.93	1E-03
964.8	0.055	Ac-228	4.53	1E-02	3.56	1E-02	2.38	1E-02	1.47	1E-02	1.07	1E-02	6.97	1E-03	3.74	1E-03
966.4	0.077	Sb-129	6.40	1E-02	5.03	1E-02	3.37	1E-02	2.07	1E-02	1.52	1E-02	9.85	1E-03	5.28	1E-03
969.2	0.175	Ac-228	1.45	1E-01	1.14	1E-01	7.64	1E-02	4.70	1E-02	3.44	1E-02	2.24	1E-02	1.20	1E-02
984.5	0.278	Np-238	2.32	1E-01	1.83	1E-01	1.22	1E-01	7.54	1E-02	5.52	1E-02	3.59	1E-02	1.92	1E-02
996.3	0.103	Eu-154	8.63	1E-02	6.79	1E-02	4.56	1E-02	2.81	1E-02	2.06	1E-02	1.34	1E-02	7.18	1E-03
1004.8	0.174	Eu-154	1.46	1E-01	1.15	1E-01	7.27	1E-02	4.76	1E-02	3.49	1E-02	2.27	1E-02	1.22	1E-02
1009.8	0.298	US-138	2.51	1E-01	1.97	1E-01	1.33	1E-01	8.17	1E-02	5.99	1E-02	3.89	1E-02	2.09	1E-02
1013.8 1025.0	0.202	111-140M Nn-228	1.7U 8.00	1E-01	1.34 6.37	1E-01	0.90 1 20	1E-02	0.04 2.64	1E-02	4.00 1 Q/	1E-02	2.04 1.26	1E-02	1.4Z 6.77	1E-02
1020.9	0.090	Nn-238	0.09	1E-02	0.37	1E-02	4.20 9.06	1E-02	2.04 5.60	1E-02	1.94 4 10	1E-02	1.20 2.67	1E-02	0.77 1 4 3	1E-03
	0.200	. ip 200		12 01	1.00		0.00	12 02	0.00		4.10	12 02	2.01	1 02	1.40	12 02

エネルギー	放出比			i	放射性物	勿質の土	壌中に	おける釒	凸直分布	を表す	パラメ-	-タ	(g·	cm ⁻²)		
(keV)	(s ⁻¹ Bq ⁻¹)	核種	3.	0	5.	0	1)	20)	30	0	50)	10	0
1030.1	0.126	Sb-129	1.06	1E-01	8.37	1E-02	5.63	1E-02	3.48	1E-02	2.55	1E-02	1.66	1E-02	8.91	1E-03
1038.8	0.080	I-135	6.78	1E-02	5.34	1E-02	3.59	1E-02	2.22	1E-02	1.63	1E-02	1.06	1E-02	5.69	1E-03
1048.1	0.798	Cs-136	6.76	1E-01	5.32	1E-01	3.58	1E-01	2.21	1E-01	1.62	1E-01	1.06	1E-01	5.68	1E-02
1072.6	0.150	I-134	1.27	1E-01	1.01	1E-01	6.77	1E-02	4.20	1E-02	3.07	1E-02	2.00	1E-02	1.08	1E-02
1076.6	0.088	Rb-86	7.48	1E-02	5.90	1E-02	3.97	1E-02	2.46	1E-02	1.80	1E-02	1.18	1E-02	6.33	1E-03
1085.9	0.099	EU-152	8.46	1E-02	0.68	1E-02	4.50	1E-02	2.79	1E-02	2.04	1E-02	1.33	1E-02	7.18	1E-03
1099.2	0.000	FE-39 Eu 152	4.83	10-01	3.81	1E-01	2.57	1E-01	1.00	1E-01	1.17	1E-01	1.04	1E-02	4.11	1E-02
1112.1	0.130	Eu-152 Ni-65	1.10	1E-01	9.10	1E-02	6.78	1E-02	1 22	1E-02	2.02	1E-02	2.02	1E-02	9.92	1E-03
1115.5	0.507	Zn-65	4.35	1E-01	3 44	1E-01	2.32	1E-02	1 44	1E-02	1.06	1E-02	6.90	1E-02	3.72	1E-02
1120.5	1.000	Sc-46	8.59	1E-01	6.78	1E-01	4.58	1E-01	2.85	1E-01	2.09	1E-01	1.36	1E-01	7.34	1E-02
1121.3	0.349	Ta-182	3.00	1E-01	2.37	1E-01	1.60	1E-01	9.94	1E-02	7.28	1E-02	4.76	1E-02	2.56	1E-02
1125.5	0.114	Te-131m	9.82	1E-02	7.75	1E-02	5.24	1E-02	3.26	1E-02	2.39	1E-02	1.56	1E-02	8.40	1E-03
1131.5	0.228	I-135	1.96	1E-01	1.55	1E-01	1.05	1E-01	6.51	1E-02	4.77	1E-02	3.12	1E-02	1.68	1E-02
1153.5	0.071	Eu-156	6.14	1E-02	4.86	1E-02	3.28	1E-02	2.05	1E-02	1.50	1E-02	9.81	1E-03	5.28	1E-03
1157.5	0.113	I-130	9.79	1E-02	7.74	1E-02	5.23	1E-02	3.26	1E-02	2.39	1E-02	1.56	1E-02	8.42	1E-03
1173.2	0.999	Co-60	8.67	1E-01	6.86	1E-01	4.64	1E-01	2.90	1E-01	2.12	1E-01	1.39	1E-01	7.49	1E-02
1189.0	0.164	Ta-182	1.43	1E-01	1.13	1E-01	7.65	1E-02	4.78	1E-02	3.50	1E-02	2.29	1E-02	1.24	1E-02
1204.9	0.003	Y-91	2.62	1E-03	2.07	1E-03	1.41	1E-03	8.79	1E-04	6.44	1E-04	4.22	1E-04	2.28	1E-04
1206.6	0.098	Te-131m	8.52	1E-02	6.74	1E-02	4.57	1E-02	2.86	1E-02	2.09	1E-02	1.37	1E-02	7.41	1E-03
1221.4	0.273	Ta-162	2.39	1E-01	1.90 6.16	1E-01	1.29	1E-01	8.05 2.62	1E-02	5.90	1E-02	3.87	1E-02	2.09	1E-02
1230.7	0.009	Eu-100 Ta-182	1.11	1E-02	8.03	1E-02	4.10 5.45	1E-02	2.02	1E-02	2.50	1E-02	1.20	1E-02	0.79	1E-03
1231.0	0.110	Cs-136	1.01	1E-01	1.39	1E-02	946	1E-02	5.41	1E-02	4.35	1E-02	2.85	1E-02	1.54	1E-03
1238.3	0.670	Co-56	5.88	1E-01	4.66	1E-01	3.16	1E-01	1.98	1E-01	1.45	1E-01	9.53	1E-02	5.15	1E-02
1242.4	0.067	Eu-156	5.89	1E-02	4.67	1E-02	3.17	1E-02	1.99	1E-02	1.46	1E-02	9.55	1E-03	5.16	1E-03
1260.4	0.289	I-135	2.55	1E-01	2.02	1E-01	1.38	1E-01	8.64	1E-02	6.33	1E-02	4.15	1E-02	2.24	1E-02
1274.4	0.355	Eu-154	3.14	1E-01	2.49	1E-01	1.69	1E-01	1.06	1E-01	7.80	1E-02	5.12	1E-02	2.77	1E-02
1274.5	0.999	Na-22	8.84	1E-01	7.01	1E-01	4.77	1E-01	3.00	1E-01	2.20	1E-01	1.44	1E-01	7.79	1E-02
1291.6	0.432	Fe-59	3.83	1E-01	3.04	1E-01	2.07	1E-01	1.30	1E-01	9.54	1E-02	6.27	1E-02	3.39	1E-02
1332.5	1.000	Co-60	8.94	1E-01	7.10	1E-01	4.84	1E-01	3.05	1E-01	2.24	1E-01	1.47	1E-01	7.97	1E-02
1354.5	0.026	La-141	2.36	1E-02	1.88	1E-02	1.28	1E-02	8.09	1E-03	5.93	1E-03	3.90	1E-03	2.11	1E-03
1368.6	1.000	Na-24	9.01	1E-01	7.16	1E-01	4.89	1E-01	3.09	1E-01	2.26	1E-01	1.49	1E-01	8.08	1E-02
1383.9	0.900	SF-92	8.13	1E-01	0.40 1.75	1E-01	4.41	1E-01	2.79	1E-01	2.05	1E-01	1.35	1E-01	1.31	1E-02
1/08 0	0.243	Ay-11011 Fu-152	2.20	1E-01	1.75	1E-01	1.19	1E-01	6.52	1E-02	4 78	1E-02	3.05	1E-02	1.90	1E-02
1435.9	0.203	Cs-138	6.96	1E-01	5.54	1E-01	3.79	1E-01	2 41	1E-02	1.76	1E-02	1 17	1E-02	6.31	1E-02
1457.6	0.087	I-135	8.00	1E-02	6.38	1E-02	4.37	1E-02	2.78	1E-02	2.03	1E-02	1.34	1E-02	7.29	1E-03
1460.8	0.107	K-40	9.80	1E-02	7.81	1E-02	5.35	1E-02	3.40	1E-02	2.49	1E-02	1.65	1E-02	8.93	1E-03
1465.1	0.222	Pm-148	2.03	1E-01	1.62	1E-01	1.11	1E-01	7.07	1E-02	5.18	1E-02	3.42	1E-02	1.86	1E-02
1481.8	0.235	Ni-65	2.16	1E-01	1.72	1E-01	1.18	1E-01	7.51	1E-02	5.51	1E-02	3.64	1E-02	1.97	1E-02
1505.0	0.131	Ag-110m	1.21	1E-01	9.64	1E-02	6.61	1E-02	4.21	1E-02	3.09	1E-02	2.04	1E-02	1.11	1E-02
1524.6	0.189	K-42	1.75	1E-01	1.39	1E-01	9.57	1E-02	6.10	1E-02	4.48	1E-02	2.96	1E-02	1.61	1E-02
1596.2	0.954	La-140	8.91	1E-01	7.12	1E-01	4.90	1E-01	3.13	1E-01	2.30	1E-01	1.52	1E-01	8.29	1E-02
1678.0	0.096	I-135	9.10	1E-02	7.28	1E-02	5.03	1E-02	3.22	1E-02	2.37	1E-02	1.57	1E-02	8.57	1E-03
1091.0	0.488	SD-124	4.61	1E-01	3.69	1E-01	2.55	1E-01	1.63	1E-01	1.20	1E-01	7.99	1E-02	4.35	1E-02
1736.5	0.060	SD-129 Sh-120	5.69	1E-02	4.00	1E-02	3.10	1E-02	2.02	1E-02	1.49	1E-02	9.91	1E-03	5.40	1E-03
1730.3	0.000	Co-56	1 48	1E-02	4.50	1E-02	8 25	1E-02	5.02	1E-02	3.91	1E-02	2 59	1E-03	1 42	1E-03
1791.2	0.078	I-135	7.47	1E-02	5.99	1E-02	4.15	1E-02	2.66	1E-02	1.97	1E-02	1.31	1E-02	7.14	1E-02
1810.7	0.272	Mn-56	2.62	1E-01	2.10	1E-01	1.46	1E-01	9.33	1E-02	6.92	1E-02	4.59	1E-02	2.51	1E-02
1897.6	0.147	Br-84	1.43	1E-01	1.15	1E-01	8.00	1E-02	5.14	1E-02	3.82	1E-02	2.54	1E-02	1.39	1E-02
1901.3	0.072	La-142	6.97	1E-02	5.60	1E-02	3.90	1E-02	2.50	1E-02	1.86	1E-02	1.24	1E-02	6.77	1E-03
2091.0	0.056	Sb-124	5.56	1E-02	4.48	1E-02	3.13	1E-02	2.02	1E-02	1.51	1E-02	1.01	1E-02	5.52	1E-03
2113.0	0.143	Mn-56	1.43	1E-01	1.15	1E-01	8.07	1E-02	5.21	1E-02	3.89	1E-02	2.59	1E-02	1.42	1E-02
2218.0	0.152	Cs-138	1.53	1E-01	1.23	1E-01	8.67	1E-02	5.61	1E-02	4.19	1E-02	2.80	1E-02	1.54	1E-02
2397.8	0.133	La-142	1.36	1E-01	1.10	1E-01	7.75	1E-02	5.04	1E-02	3.78	1E-02	2.53	1E-02	1.39	1E-02
2484.1	0.067	Br-84	6.94	1E-02	5.62	1E-02	3.97	1E-02	2.58	1E-02	1.94	1E-02	1.30	1E-02	1.17	1E-03
2042.1 2509 6	0.100	La-142	1.04	1E-01	0.41 1.40	1E-02	0.95 1 00	1E-02	3.88 6 5 5	1E-02	Z.92	1E-02	1.95	1E-02	1.08	1E-02
2090.0 2630 r	0.107	Cs-138	7 08	1E-01	1.42 6.48	1E-01	1.00	1E-01	0.00 3 00	1E-02	4.92 2.26	1E-02	3.30 1.52	1E-02	।.୦∠ ନ	1E-02
2754.0	0.999	Na-24	1.06	12 02	8.59	1E-01	6.10	1E-01	4.00	1E-01	3.01	1E-01	2.03	1E-02	1.12	1E-01
3253.5	0.074	Co-56	8.10	1E-02	6.62	1E-02	4.73	1E-02	3.13	1E-02	2.37	1E-02	1.60	1E-02	8.92	1E-03
3927.5	0.068	Br-84	7.77	1E-02	6.38	1E-02	4.61	1E-02	3.07	1E-02	2.34	1E-02	1.59	1E-02	8.93	1E-03

付録 2 土壌中に指数分布する放射性核種による地上高 1m での線量率と 線フルエンス率の関係

付表-2(つづき)

単位 : (cm⁻²・s⁻¹)/(µGy/h)

エネルギー	放出比		放射性物質の土壌中における鉛直分布を表すパラ						ペラメ-	-タ	(g·o	cm ⁻²)				
(keV)	(s ⁻¹ Bq ⁻¹)	核種	3.0)	5.	0	1()	20	0	30	0	50)	10	0
11.2	0.255	Pb-210	2.27	1E+01	2.12	1E+01	1.98	1E+01	1.90	1E+01	1.87	1E+01	1.85	1E+01	1.83	1E+01
12.7	0.081	Th-232	4.91	1E+01	4.71	1E+01	4.46	1E+01	4.29	1E+01	4.21	1E+01	4.14	1E+01	4.09	1E+01
12.7	0.089	Th-228	1.65	1E+01	1.35	1E+01	1.07	1E+01	9.03		8.47		7.98		7.57	
13.4	0.079	U-236	6.37	1E+01	6.27	1E+01	6.13	1E+01	6.03	1E+01	5.99	1E+01	5.97	1E+01	5.92	1E+01
13.4	0.084	U-238	6.39	1E+01	6.29	1E+01	6.16	1E+01	6.04	1E+01	6.02	1E+01	6.01	1E+01	5.94	1E+01
13.4	0.094	0-234	6.11 E E E	1E+01	5.97	1E+01	5.80	1E+01	5.67	1E+01	5.58	1E+01	5.54	1E+01	5.51	1E+01
13.4	0.102	U-232 Th 224	0.00 0.07	1E+01	5.31	1E+01	4.98	16+01	4.73	16+01	4.03	1E+01	4.55	1E+01	4.47	1E+01
13.7	0.094	Nn-237	0.27	1E±01	1 17	1E±01	0.59		8 20		4.30		7 37		3.90 7.07	
13.7	0.302	Th-231	2.73	1E+01	2.40	1E+01	9.50 2.07	1E+01	1.85	1E+01	1 77	1F+01	1 71	1E+01	1.07	1E+01
14.1	0.040	Pu-239	6.51	1E+01	6.28	1E+01	5.93	1E+01	5.66	1E+01	5.55	1E+01	5.39	1E+01	5.29	1E+01
14.1	0.082	Pu-242	7.48	1E+01	7.50	1E+01	7.48	1E+01	7.47	1E+01	7.44	1E+01	7.43	1E+01	7.43	1E+01
14.1	0.089	Pu-240	7.44	1E+01	7.45	1E+01	7.39	1E+01	7.35	1E+01	7.37	1E+01	7.31	1E+01	7.30	1E+01
14.1	0.102	Pu-238	7.46	1E+01	7.47	1E+01	7.44	1E+01	7.40	1E+01	7.40	1E+01	7.41	1E+01	7.38	1E+01
14.1	0.103	Pu-236	7.30	1E+01	7.24	1E+01	7.13	1E+01	7.06	1E+01	7.00	1E+01	6.98	1E+01	6.93	1E+01
14.4	0.365	Am-241	1.37	1E+01	1.18	1E+01	1.02	1E+01	9.18		8.87		8.57		8.39	
14.4	0.575	U-237	3.49		2.71		2.05		1.68		1.55		1.44		1.36	
14.8	0.081	Cm-244	8.25	1E+01	8.25	1E+01	8.23	1E+01	8.20	1E+01	8.19	1E+01	8.17	1E+01	8.14	1E+01
14.8	0.085	Cm-242	8.18	1E+01	8.21	1E+01	8.17	1E+01	8.13	1E+01	8.13	1E+01	8.06	1E+01	8.06	1E+01
14.8	0.098	Am-242	5.82		4.70		3.69		3.13		2.95		2.76		2.64	
14.8	0.461	Cm-243	3.05		2.33		1.71		1.37		1.26		1.16		1.08	
14.8	0.471	Cm-245	4.78	45.04	3.75	45.04	2.83	45.04	2.34	45.04	2.17	45.04	2.02	45.04	1.91	45.04
15.Z	0.273	Am-242m	1.10	1E+01	1.57	1E+01	7.28	1E+01	7.06	1E+01	6.98 E 92	1E+01	6.87 5.40	1E+01	6.81 5.26	1E+01
15.5	0.101	Am-242 Mo-93	3 15	1E+01 1E±01	9.30	1E±01	7.52	1E±01	3.14	1E±01	0.00 3.14	1E±01	0.49 3.15	1 F ±01	5.20 3.16	1 E ±01
16.6	0.060	Nb-93m	6.17	1E+01	6.16	1E+01	6.18	1E+01	616	1E+01	616	1E+01	616	1E+01	6 1 9	1E+01
16.6	0.350	Mo-93	6.12	1E+01	6.14	1E+01	6.15	1E+01	6.12	1E+01	6.12	1E+01	6.12	1E+01	6.15	1E+01
18.6	0.090	Mo-93	2.19	1E+01	2.20	1E+01	2.22	1E+01	2.20	1E+01	2.21	1E+01	2.21	1E+01	2.22	1E+01
20.1	0.184	Rh-103m	4.31	1E+01	4.31	1E+01	4.30	1E+01	4.25	1E+01	4.29	1E+01	4.26	1E+01	4.29	1E+01
20.2	0.349	Rh-103m	8.36	1E+01	8.41	1E+01	8.38	1E+01	8.31	1E+01	8.35	1E+01	8.35	1E+01	8.38	1E+01
22.7	0.094	Rh-103m	3.33	1E+01	3.40	1E+01	3.44	1E+01	3.46	1E+01	3.48	1E+01	3.46	1E+01	3.49	1E+01
25.3	0.410	Sn-117m	1.19	1E+01	9.54		7.30		6.04		5.61		5.20		4.90	
25.6	0.146	Th-231	3.55	1E+01	3.26	1E+01	2.90	1E+01	2.65	1E+01	2.57	1E+01	2.47	1E+01	2.41	1E+01
26.4	0.156	Sn-126	1.68	1E+01	1.42	1E+01	1.18	1E+01	1.04	1E+01	9.89		9.46		9.10	4= 44
27.2	0.103	Te-12/m	6.77	1E+01	6.70	1E+01	6.57	1E+01	6.46	1E+01	6.46	1E+01	6.39	1E+01	6.38	1E+01
27.2	0.127	Te-129m	1.67	1E+01	1.35	1E+01	1.03	1E+01	8.22	45.04	7.40	15.01	6.73	45.04	6.20	45.04
27.2	0.327	Te-125m	0.79	1E+01	0.73	101	0.07	1E+01	0.00	101	0.03	1E+01	0.00	1E+01	0.07	1E+01 1E+02
27.5	0.133	Te-127m	3.18	1E+02	2.58	1E+02	1.20	1E+02 1E+01	1.24	1E+02	1.23	1E+02	1.22	1E+02	1.22	1E+02
27.5	0.611	Te-125m	1.29	1E+02	1.29	1E+02	1.00	1E+01	1.26	1E+02	1.27	1E+02	1.26	1E+02	1.10	1E+02
27.8	0.156	Te-129	1.40	1E+01	1.09	1E+01	8.03	12:02	6.31	12102	5.69	12:02	5.15	12:02	4.71	12:02
29.4	0.152	Np-237	3.55	1E+01	3.11	1E+01	2.63	1E+01	2.32	1E+01	2.22	1E+01	2.11	1E+01	2.03	1E+01
29.5	0.185	I-129	6.95	1E+01	6.87	1E+01	6.73	1E+01	6.65	1E+01	6.68	1E+01	6.64	1E+01	6.59	1E+01
29.8	0.343	I-129	1.32	1E+02	1.30	1E+02	1.28	1E+02	1.26	1E+02	1.27	1E+02	1.26	1E+02	1.25	1E+02
30.6	0.092	Cs-134m	2.55	1E+01	2.18	1E+01	1.79	1E+01	1.55	1E+01	1.47	1E+01	1.38	1E+01	1.33	1E+01
31.0	0.067	Te-127m	5.75	1E+01	5.79	1E+01	5.75	1E+01	5.68	1E+01	5.73	1E+01	5.66	1E+01	5.63	1E+01
31.0	0.068	Te-129m	1.18	1E+01	9.67		7.45		6.01		5.46		4.93		4.55	
31.0	0.170	Cs-134m	4.83	1E+01	4.14	1E+01	3.41	1E+01	2.96	1E+01	2.80	1E+01	2.65	1E+01	2.54	1E+01
31.0	0.212	le-125m	5.78	1E+01	5.83	1E+01	5.82	1E+01	5.82	1E+01	5.85	1E+01	5.81	1E+01	5.86	1E+01
31.8	0.021	Ba-13/m	2.37	1E-01	1.86	1E-01	1.38	1E-01	1.08	1E-01	9.71	1E-02	8.73	1E-02	8.04	1E-02
32.2	0.038	Ba-137m	4.47	1E-01	3.50	1E-01	2.60	1E-01	2.06	1E-01	1.84	1E-01	1.66	1E-01	1.52	1E-01
35.0	0.122	Cs-134m	1.90	1E+01	1 50	1E+01	134	1E+01	1 18	1E+01 1E+01	1 1 2	1E+01	1.07	1E+01	1.03	1E+01 1E+01
35.5	0.050	Te-125m	2 37	1E+01	2 44	1E+01	2.51	1E+01 1E+01	2 55	1E+01	2.58	1E+01	2.58	1E+01	2.59	1E+01
38.7	0.223	Nd-147	1.70	1E+01	1.42	1E+01	1.12	1E+01	9.26	12101	8.51	12101	7.83	12101	7.28	12101
39.6	0.075	I-129	4.95	1E+01	5.14	1E+01	5.30	1E+01	5.40	1E+01	5.47	1E+01	5.48	1E+01	5.49	1E+01
43.0	0.118	Eu-155	2.91	1E+01	2.58	1E+01	2.23	1E+01	2.00	1E+01	1.92	1E+01	1.84	1E+01	1.79	1E+01
59.5	0.345	U-237	4.83	1E+01	4.27	1E+01	3.69	1E+01	3.27	1E+01	3.11	1E+01	2.95	1E+01	2.84	1E+01
59.5	0.359	Am-241	3.12	1E+02	3.06	1E+02	2.99	1E+02	2.94	1E+02	2.91	1E+02	2.89	1E+02	2.88	1E+02
64.3	0.096	Sn-126	4.04	1E+01	3.79	1E+01	3.48	1E+01	3.29	1E+01	3.19	1E+01	3.12	1E+01	3.06	1E+01
74.7	0.674	Am-243	3.15	1E+02	2.98	1E+02	2.81	1E+02	2.68	1E+02	2.62	1E+02	2.58	1E+02	2.55	1E+02
74.8	0.104	Pb-212	1.53	1E+01	1.35	1E+01	1.15	1E+01	1.00	1E+01	9.46		8.93		8.52	
77.1	0.176	Pb-212	2.61	1E+01	2.30	1E+01	1.96	1E+01	1.72	1E+01	1.62	1E+01	1.53	1E+01	1.46	1E+01
84.2	0.067	1h-231	7.93	1E+01	8.23	1E+01	8.36	1E+01	8.34	1E+01	8.31	1E+01	8.27	1E+01	8.22	1E+01
C.00	0.123	1NP-231	1.05	10+02	1.03	10+02	9.92	10+01	9.00	10+01	9.30	10+01	9.21	10+01	9.04	10+01

付表-2(つづき)

単位 : (cm⁻²・s⁻¹)/(µGy/h)

エネルギー	放出比		放射性物質の土壌中における鉛直分布を表すパラメータ						-タ	(g·d	cm ⁻²)					
(keV)	(s ⁻¹ Bq ⁻¹)	核種	3.	0	5.	0	1()	20)	30)	50)	10	0
86.5	0.309	Eu-155	1.39	1E+02	1.30	1E+02	1.21	1E+02	1.14	1E+02	1.12	1E+02	1.09	1E+02	1.07	1E+02
86.9	0.089	Sn-126	4.43	1E+01	4.26	1E+01	4.04	1E+01	3.87	1E+01	3.80	1E+01	3.75	1E+01	3.70	1E+01
87.6	0.370	Sn-126	1.84	1E+02	1.78	1E+02	1.68	1E+02	1.61	1E+02	1.59	1E+02	1.56	1E+02	1.54	1E+02
91.1	0.279	Nd-14/	4.67	1E+01	4.21	1E+01	3.62	1E+01	3.17	1E+01	2.98	1E+01	2.81	1E+01	2.66	1E+01
97.1	0.166	U-237	3.05	1E+01	2.82	1E+01	2.50	1E+01	2.33	1E+01	2.20	1E+01	2.17	1E+01	2.11	1E+01
98.4	0.157	Pa-233	1.71	1E+01	1.53	101	1.31	101	1.10	101	1.09	1E+01	1.04	101	9.00	15,01
99.0 99.6	0.147	Nn-239	2.70	1E+01	2.55	1E+01	1 75	1E+01	2.00	1E+01	1.92	1E+01	1.05	1E+01	1.70	1E+01
99.6	0.185	Cm-245	5.34	1E+01	4 97	1E+01	4.51	1E+01	4 16	1E+01	4.05	1E+01	3.93	1E+01	3.81	1E+01
101.1	0.266	U-237	4.98	1E+01	4.62	1E+01	4.20	1E+01	3.84	1E+01	3.71	1E+01	3.59	1E+01	3.49	1E+01
103.8	0.059	Am-242	1.01	1E+02	9.77	1E+01	9.20	1E+01	8.74	1E+01	8.59	1E+01	8.41	1E+01	8.25	1E+01
103.8	0.236	Cm-243	4.49	1E+01	4.10	1E+01	3.61	1E+01	3.25	1E+01	3.11	1E+01	2.98	1E+01	2.87	1E+01
103.8	0.251	Np-239	3.53	1E+01	3.21	1E+01	2.84	1E+01	2.57	1E+01	2.45	1E+01	2.35	1E+01	2.26	1E+01
103.8	0.295	Cm-245	8.62	1E+01	8.08	1E+01	7.33	1E+01	6.77	1E+01	6.59	1E+01	6.42	1E+01	6.21	1E+01
105.3	0.206	Eu-155	1.00	1E+02	9.54	1E+01	9.01	1E+01	8.56	1E+01	8.41	1E+01	8.26	1E+01	8.17	1E+01
106.1	0.272	Np-239	3.85	1E+01	3.50	1E+01	3.10	1E+01	2.81	1E+01	2.68	1E+01	2.58	1E+01	2.48	1E+01
117.3	0.066	Cm-245	1.98	1E+01	1.85	1E+01	1.70	1E+01	1.58	1E+01	1.54	1E+01	1.50	1E+01	1.46	1E+01
121.1	0.173	Se-75	1.10	1E+01	9.91		8.62	.=	7.68		7.32		6.96		6.65	
122.1	0.855	Co-57	1.92	1E+02	1.77	1E+02	1.60	1E+02	1.47	1E+02	1.43	1E+02	1.38	1E+02	1.35	1E+02
127.5	0.141	CS-134M	1.49	1E+02	1.46	1E+02	1.39	1E+02	1.32	1E+02	1.30	1E+02	1.28	1E+02	1.26	1E+02
133.0	0.419		1.94	1E+01 1E+02	1.75	1E+01 1E±02	1.01	1E+01 1E+02	1.32	1E+01 1E+02	1.20	1E+01 1E±02	1.10	1E+01 1E+02	1.11	1E+01 1E+02
136.0	0.111	Se-75	3.87	1E+02	3.51	1E+02	3.07	1E+02	2 75	1E+02	2.62	1E+02	2.50	1E+02	2 39	1E+02
136.5	0.106	Co-57	2.47	1E+01	2.29	1E+01	2.07	1E+01	1.93	1E+01	1.87	1E+01	1.81	1E+01	1.77	1E+01
140.5	0.890	Tc-99m	1.96	1E+02	1.80	1E+02	1.62	1E+02	1.49	1E+02	1.44	1E+02	1.39	1E+02	1.36	1E+02
143.8	0.110	U-235	1.78	1E+01	1.63	1E+01	1.46	1E+01	1.33	1E+01	1.27	1E+01	1.23	1E+01	1.19	1E+01
145.4	0.484	Ce-141	1.79	1E+02	1.67	1E+02	1.51	1E+02	1.39	1E+02	1.35	1E+02	1.31	1E+02	1.27	1E+02
158.6	0.864	Sn-117m	1.56	1E+02	1.46	1E+02	1.33	1E+02	1.23	1E+02	1.19	1E+02	1.15	1E+02	1.12	1E+02
159.0	0.840	Te-123m	1.63	1E+02	1.52	1E+02	1.38	1E+02	1.27	1E+02	1.23	1E+02	1.19	1E+02	1.16	1E+02
162.6	0.062	Ba-140	8.86		8.04		6.98		6.11		5.75		5.43		5.15	
165.9	0.238	Ba-139	1.48	1E+02	1.36	1E+02	1.21	1E+02	1.10	1E+02	1.06	1E+02	1.01	1E+02	9.77	1E+01
174.9	0.095	Cm-245	3.19	1E+01	3.05	1E+01	2.83	1E+01	2.68	1E+01	2.63	1E+01	2.57	1E+01	2.51	1E+01
181.1	0.061	Mo-99	1.10	1E+01	9.96	45.04	8.59	15.01	7.50	45.04	7.04	45.04	6.58	45.04	6.20	1E-02
185.7	0.072	U-230 Ra-226	9.88	1E+01 1E+02	9.17	1E+01 1E±02	0.24 1.15	1E+01 1E+02	1.58	1E+01 1E+02	1.33	1E+01 1E±02	7.00 0.78	1E+01	0.87	1E+01
202.5	0.033	Y-90m	4 16	1E+02	3.78	1E+02	3 32	1E+02	2.95	1E+02	2.82	1E+02	2.67	1E+01	9.50 2.54	1E+01
205.3	0.050	U-235	8.85	12.01	8.23	12:01	7.47	12101	6.87	12:01	6.65	12.01	6.42	12:01	6.22	12:01
208.0	0.216	U-237	4.86	1E+01	4.65	1E+01	4.35	1E+01	4.09	1E+01	4.01	1E+01	3.90	1E+01	3.83	1E+01
210.5	0.223	Te-134	7.28		6.65		5.75		5.09		4.83		4.55		4.32	
228.2	0.106	Cm-243	2.46	1E+01	2.31	1E+01	2.11	1E+01	1.96	1E+01	1.90	1E+01	1.84	1E+01	1.78	1E+01
228.2	0.113	Np-239	1.93	1E+01	1.81	1E+01	1.66	1E+01	1.54	1E+01	1.50	1E+01	1.45	1E+01	1.41	1E+01
228.2	0.882	Te-132	1.12	1E+02	1.05	1E+02	9.50	1E+01	8.71	1E+01	8.42	1E+01	8.15	1E+01	7.87	1E+01
234.7	0.261	Nb-95m	1.15	1E+02	1.07	1E+02	9.67	1E+01	8.85	1E+01	8.56	1E+01	8.23	1E+01	7.93	1E+01
238.6	0.434	Pb-212	9.03	1E+01	8.41	1E+01	7.64	1E+01	6.97	1E+01	6.77	1E+01	6.54	1E+01	6.31	1E+01
241.0	0.040	Ra-224	1.14	1E+02	1.06	1E+02	9.33	1E+01	8.59	1E+01	8.25	1E+01	7.94	1E+01	7.64	1E+01
204.7	0.091	Se-75	4.53	1E+01	4.ZZ	101	3.77	101	3.40	101	3.34	1E+01	3.23	101	3.11	101
200.9 275.2	0.000	1-90 Pm-151	2.41 6.15		5.68		5.05		1.04 1.57		1.03	10+01	1.43 1 1 A		3 08	
277.6	0.000	Cm-243	3.40	1E+01	3.22	1E+01	2.96	1F+01	2.76	1E+01	2.68	1E+01	2.62	1E+01	2.54	1E+01
277.6	0.144	Np-239	2.58	1E+01	2.43	1E+01	2.24	1E+01	2.11	1E+01	2.04	1E+01	1.99	1E+01	1.94	1E+01
278.0	0.209	Te-134	7.22		6.67		5.84		5.24		4.96		4.72		4.48	
279.5	0.252	Se-75	1.96	1E+01	1.82	1E+01	1.64	1E+01	1.51	1E+01	1.45	1E+01	1.41	1E+01	1.35	1E+01
285.9	0.001	Pm-149	7.88	1E+01	7.28	1E+01	6.46	1E+01	5.84	1E+01	5.60	1E+01	5.34	1E+01	5.12	1E+01
293.3	0.420	Ce-143	4.76	1E+01	4.42	1E+01	3.97	1E+01	3.61	1E+01	3.43	1E+01	3.28	1E+01	3.15	1E+01
300.1	0.066	Pa-233	9.53		8.94		8.05		7.38		7.09		6.89		6.62	
306.1	0.051	Rh-105	1.96	1E+01	1.82	1E+01	1.62	1E+01	1.47	1E+01	1.41	1E+01	1.36	1E+01	1.30	1E+01
312.0	0.386	Pa-233	5.58	1E+01	5.24	1E+01	4.74	1E+01	4.34	1E+01	4.18	1E+01	4.06	1E+01	3.90	1E+01
314.1	0.610	Sb-128	6.02	45.01	5.51	45.01	4.86	45.01	4.30	45.01	4.06	45.04	3.83	45.01	3.64	45.04
318.9	0.192	KN-105	7.43	1E+01	6.87	1E+01	6.11 7 70	1E+01	5.58	1E+01	5.35	1E+01	5.16	1E+01	4.95	1E+01
ა∠∪.1 ვვე ე	0.098	01-01 Sh-130	9.30 7.50	10+01	0.03	1=+01	1.10	10-01	7.01 5.26	15+01	0./b 5.07	10+01	0.40 170	10+01	0.23	15+01
330.9 340 1	0.700	DD-100 Pm-151	1.0Z 2.15	1F±01	2 00	1F±01	0.04 1 70	1F±01	0.30 1.64	1F±01	0.07 1.57	1F±∩1	4.70 1.50	1F±01	4.01 1/1/	1F±01
340.5	0.422	Cs-136	6.32	12101	5.81		5.10	12.01	4 4 9		4.20		3.98		3.75	
342.1	0.067	Ag-111	7.69	1E+01	7.15	1E+01	6.36	1E+01	5.85	1E+01	5.61	1E+01	5.40	1E+01	5.18	1E+01
344.3	0.266	Eu-152	7.63		6.98		6.12		5.40		5.06		4.78		4.50	

付表-2(つづき)

											単	位:	(cm ⁻²	• s ⁻¹)	/ (µ	Gy / h)
エネルギー	放出比			1	放射性物	勿質の土	:壌中に	おける鉛	百分布	を表す	パラメ-	-タ	(g•	cm ⁻²)		
(keV)	(s ⁻¹ Bq ⁻¹)	核種	3.0	0	5.	0	1(0	20	C	30	D	5	0	10	0
345.9	0.120	Hf-181	6.95		6.49		5.81		5.27		5.06		4.83		4.65	
364.5	0.812	I-131	6.56	1E+01	6.10	1E+01	5.45	1E+01	4.97	1E+01	4.72	1E+01	4.54	1E+01	4.37	1E+01
400.7	0.116	Se-75	9.73		9.17		8.38		7.82		7.56		7.36		7.16	
402.5	0.690	Cm-247	7.17	1E+01	6.69	1E+01	6.00	1E+01	5.49	1E+01	5.27	1E+01	5.05	1E+01	4.87	1E+01
414.8	0.833	Sb-126	9.76		9.02		8.01		7.24		6.86		6.48		6.22	
417.9	0.010	Te-127	6.44	1E+01	6.03	1E+01	5.41	1E+01	4.96	1E+01	4.73	1E+01	4.55	1E+01	4.41	1E+01
418.0	0.341	I-130	5.14		4.76		4.24		3.83		3.65		3.44		3.29	
427.9	0.294	Sb-125	2.20	1E+01	2.06	1E+01	1.85	1E+01	1.69	1E+01	1.62	1E+01	1.54	1E+01	1.48	1E+01
435.1	0.186	Te-134	7.11		6.67		5.93		5.43		5.19		4.96		4.76	
438.6	0.949	Zn-69m	7.28	1E+01	6.80	1E+01	6.12	1E+01	5.57	1E+01	5.33	1E+01	5.12	1E+01	4.93	1E+01
459.6	0.074	Te-129	4.18	1E+01	3.95	1E+01	3.57	1E+01	3.28	1E+01	3.15	1E+01	3.00	1E+01	2.88	1E+01
461.0	0.099	Te-134	3.83		3.61		3.22		2.95		2.83		2.69		2.60	
402.8	0.307	CS-138	4.74		4.37		3.83		3.38		3.10		2.90		2.18	
403.4	0.105	SD-125	7.97		7.47		0.74		0.17 5.07		5.94		5.03 5.40		5.45 5.40	
409.4	0.175	RU-100 Sh 107	1.00	15,01	1.55	15,01	0.00	15,01	0.97		0.70		0.42		0.10	
473.0	0.247	SD-127	1.20	101	6.41	101	5.76	101	9.30	15,01	0.90 5.05	15,01	0.02	15,01	0.22	15,01
477.0	0.103	DE-7	1.66	101	1 56		1.40	101	1.20	101	1.00	101	4.02	101	4.07	15,01
479.5	0.253	VV-187	1.00	1E+01	1.00	101	1.40	1E+01	1.20	1E+01	1.23	1E+01	1.10	1E+01	1.12	101
479.0	0.900	1-9011 Llf 101	4.75	101	4.40	101	4.00	101	3.7Z	101	3.09	101	2 91	101	3.30	101
402.0	0.050	10-140	7.20	IL+UI	4.92	IL+UI	4.40 5.90	IL+UI	5.22	IL+UI	3.90	IE+01	J.01	16401	3.70	IETUI
407.0	0.459	La- 140 Ru- 103	6.05	1E±01	5.60	1E±01	5.09	1E±01	1.68	1E±01	4.92	1E±01	4.59	1E±01	4.55	1E±01
507.7	0.003	$7r_{-}07$	0.03	IL+UI	0.03		8.00	IL+UI	7.26		6.86	12701	4.20 6.47	12+01	6 10	ILTUI
511.0	0.000	Co-58	9.72	1E±01	9.07		8.85		8.00		7.61		7 1 8		6.02	
511.0	1 810	Na-22	2.80	1E+01	2.60	1E±01	2.40	1 F ±01	2.16	1E±01	2.05	1E±01	1 03	1E±01	1.85	1E±01
511.0	0.207	Rh-106	2.09	1E+01	2.03 1 31	1E+01	2.40	1E+01	2.10	1E+01	2.05	1E±01	2 33	1E±01	2 25	1E±01
526.5	0.207	Sh-128	5.00		4.67		4 19		3.80		3.65		3 44	12101	3 31	
520.0	0.400	L-133	4.84	1E±01	4.55	1E±01	4.13	1 F ±01	3 71	1E±01	3.56	1E±01	3 30	1E±01	3.26	1E±01
531.0	0.000	Nd-147	3 / 3	1E+01	3 31	1E+01	3.08	1E+01	2 90	1E+01	2.81	1E+01	2 73	1E+01	2.65	1E+01
536.1	0.101	I-130	1 58	1E+01	1 48	1E+01	1 33	1E+01	1 22	1E+01	1 17	1E+01	1 10	1E+01	1.06	1E+01
537.3	0.000	Ba-140	4.57	1E+01	4.34	1E+01	3.93	1E+01	3.61	1E+01	3.47	1E+01	3.34	1E+01	3.23	1E+01
544 7	0.179	Sh-129	4.39	12101	4 12	12101	3.67	12101	3.29	12101	3.12	12101	2.95	12101	2.80	12101
550.3	0.220	Pm-148	1.39	1E+01	1.30	1E+01	1 16	1F+01	1.03	1E+01	9.80		9.21		8.81	
550.3	0.944	Pm-148m	1.64	1E+01	1.53	1E+01	1.38	1E+01	1.26	1E+01	1.21	1F+01	1.15	1E+01	1.11	1F+01
551.5	0.059	W-187	3.97		3.76		3.40		3.12		3.00		2.87		2.77	
555.6	0.949	Y-91m	6.13	1E+01	5.73	1E+01	5.19	1E+01	4.75	1E+01	4.56	1E+01	4.36	1E+01	4.21	1E+01
566.0	0.183	Te-134	7.44		7.01		6.35		5.88		5.64		5.42		5.23	
569.3	0.150	Cs-134	3.36		3.15		2.84		2.58		2.47		2.35		2.25	
600.6	0.178	Sb-125	1.44	1E+01	1.36	1E+01	1.24	1E+01	1.15	1E+01	1.11	1E+01	1.06	1E+01	1.03	1E+01
602.7	0.979	Sb-124	1.98	1E+01	1.85	1E+01	1.65	1E+01	1.48	1E+01	1.40	1E+01	1.33	1E+01	1.25	1E+01
604.6	0.975	Cs-134	2.22	1E+01	2.08	1E+01	1.88	1E+01	1.71	1E+01	1.64	1E+01	1.56	1E+01	1.50	1E+01
606.6	0.050	Sb-125	4.06		3.84		3.52		3.26		3.15		3.01		2.91	
610.3	0.056	Ru-103	3.97		3.76		3.43		3.14		3.04		2.92		2.84	
618.4	0.073	W-187	5.03		4.76		4.34		4.01		3.87		3.70		3.57	
621.8	0.098	Rh-106	1.66	1E+01	2.15	1E+01	1.41	1E+01	1.29	1E+01	1.25	1E+01	1.19	1E+01	1.15	1E+01
628.7	0.310	Sb-128	3.57		3.35		3.05		2.78		2.68		2.55		2.45	
630.0	0.886	Pm-148m	1.58	1E+01	1.48	1E+01	1.35	1E+01	1.24	1E+01	1.20	1E+01	1.14	1E+01	1.09	1E+01
635.9	0.113	Sb-125	9.26		8.78		8.03		7.46		7.20		6.91		6.69	
636.2	0.360	Sb-128	4.17		3.91		3.54		3.24		3.12		2.97		2.85	
637.0	0.073	I-131	6.69		6.33		5.78		5.42		5.24		5.06		4.92	
641.3	0.474	La-142	8.28		7.67		6.78		6.04		5.65		5.27		4.92	
647.5	0.194	Te-133m	3.91		3.69		3.32		3.02		2.88		2.72		2.61	
657.7	0.947	Ag-110m	1.27	1E+01	1.19	1E+01	1.07	1E+01	9.78		9.36		8.88		8.46	
657.9	0.983	Nb-97	5.25	1E+01	4.94	1E+01	4.49	1E+01	4.15	1E+01	3.98	1E+01	3.81	1E+01	3.65	1E+01
661.6	0.899	Ba-137m	5.37	1E+01	5.05	1E+01	4.60	1E+01	4.23	1E+01	4.08	1E+01	3.90	1E+01	3.75	1E+01
664.5	0.053	Ce-143	7.14		6.84		6.34		6.00		5.80		5.62		5.48	
666.3	0.997	Sb-126	1.30	1E+01	1.22	1E+01	1.11	1E+01	1.03	1E+01	9.83		9.40		9.04	
667.7	0.987	I-132	1.59	1E+01	1.49	1E+01	1.35	1E+01	1.23	1E+01	1.18	1E+01	1.13	1E+01	1.08	1E+01
668.5	0.961	I-130	1.61	1E+01	1.52	1E+01	1.38	1E+01	1.28	1E+01	1.23	1E+01	1.17	1E+01	1.12	1E+01
676.4	0.157	Ru-105	7.63		7.19		6.55		6.05		5.83		5.58		5.35	
685.7	0.353	Sb-127	1.91	1E+01	1.81	1E+01	1.65	1E+01	1.52	1E+01	1.47	1E+01	1.41	1E+01	1.36	1E+01
685.8	0.316	W-187	2.24	1E+01	2.13	1E+01	1.94	1E+01	1.81	1E+01	1.75	1E+01	1.68	1E+01	1.62	1E+01
695.0	0.997	Sb-126	1.31	1E+01	1.14	1E+01	1.12	1E+01	1.04	1E+01	1.00	1E+01	9.57		9.20	
697.0	0.289	Sb-126	3.81		3.58		3.26		3.02		2.90		2.77		2.67	

付表-2 (つづき)

							単位 :	(cm ⁻² • s ⁻¹)	/ (µGy/h)
エネルギー	·放出比			放射性物質の土	□壌中における釒	沿直分布を表す <i>。</i>	パラメータ	(g • cm ⁻²)	
(keV)	(s ⁻¹ Bq ⁻¹)	核種	3.0	5.0	10	20	30	50	100
720.5	0.538	Sb-126	7.15	6.74	6.14	5.70	5.46	5.22	5.04
722.0	0.051	Ce-143	7.08	6.80	6.34	6.00	5.84	5.67	5.53
723.3	0.197	Eu-154	6.15	5.83	5.28	4.81	4.60	4.38	4.20
724.2	0.444	Zr-95	2.22 1E+01	2.09 1E+01	1.90 1E+01	1.75 1E+01	1.68 1E+01	1.61 1E+01	1.55 1E+01
724.3	0.473	Ru-105	2.35 1E+01	2.21 1E+01	2.03 1E+01	1.87 1E+01	1.80 1E+01	1.73 1E+01	1.66 1E+01
725.7	0.327	Pm-148m	6.02	5.68	5.20	4.81	4.65	4.45	4.29
727.2	0.068	Bi-212	2.42 1E+01	2.29 1E+01	2.06 1E+01	1.89 1E+01	1.80 1E+01	1.72 1E+01	1.64 1E+01
739.5	0.122	Mo-99	3.05 1E+01	2.88 1E+01	2.64 1E+01	2.45 1E+01	2.36 1E+01	2.27 1E+01	2.18 1E-01
739.5	0.823	I-130	1.41 1E+01	1.33 1E+01	1.22 1E+01	1.13 1E+01	1.09 1E+01	1.04 1E+01	1.00 1E+01
742.6	0.151	Te-134	6.50	6.22	5.69	5.33	5.16	4.99	4.83
743.3	1.000	Sb-128	1.20 1E+01	1.13 1E+01	1.03 1E+01	9.49	9.17	8.77	8.46
748.3	0.008	Pr-145	1.11 1E+01	1.05 1E+01	9.56	8.76	8.36	8.05	7.71
754.0	1.000	Sb-128	1.20 1E+01	1.13 1E+01	1.04 1F+01	9.57	9.22	8.85	8.52
756 7	0.549	Zr-95	2 77 1E+01	2.61 1E+01	2.39 1E+01	2.19 1F+01	2.11 1F+01	2.03 1F+01	1.95 1F+01
763.9	0.224	Ag-110m	310	2.01 12.01	2.65	2.43	233	2.00 12.01	213
765.8	1 000	Nb-95	4 90 1F+01	4.63 1F+01	4.21 1F+01	3.87 1F+01	3.74 1F+01	2.22 3.55 1F+01	3.42 1F+01
767.2	0.200	Te-13/	1.26 1E+01	1.00 1E+01	4.21 1E+01	1.04 1E+01	1.00 1E+01	0.71	0.42
7726	0.230	10-104	1.20 12+01	1.20 12+01	1.10 12+01	1.04 12+01	0.65	0.20	0.42
772.0	0.702	1-132 To 101m	1.20 1E+01	1.19 12+01	1.00 IE+01	1.00 1E+01	9.00	9.20	0.03
770.0	0.382	Te-131m	1.03 IE+01	9.75	0.00	8.12	7.82	7.47	7.10
770.9	0.130	EU-102	4.47	4.21	3.84	3.51	3.30	3.22	3.08
783.7	0.145	SD-127	8.09	7.69	1.07	0.50	0.33	6.10	5.91
793.4	1.000	SD-130	1.17 1E+01	1.11 1E+01	1.01 1E+01	9.33	9.00	8.60	8.30
793.8	0.139	le-131m	3.76	3.56	3.25	2.97	2.87	2.74	2.63
795.8	0.851	Cs-134	2.06 1E+01	1.94 1E+01	1.78 1E+01	1.64 1E+01	1.59 1E+01	1.52 1E+01	1.47 1E+01
810.8	0.994	Co-58	3.87 1E+01	3.65 1E+01	3.35 1E+01	3.09 1E+01	2.98 1E+01	2.86 1E+01	2.76 1E+01
811.8	0.103	Eu-156	3.16	2.97	2.68	2.42	2.31	2.19	2.08
812.8	0.430	Sb-129	1.16 1E+01	1.09 1E+01	9.94	9.08	8.69	8.29	7.95
815.8	0.236	La-140	4.17	3.92	3.54	3.22	3.07	2.90	2.76
818.5	0.997	Cs-136	1.83 1E+01	1.72 1E+01	1.57 1E+01	1.44 1E+01	1.39 1E+01	1.33 1E+01	1.28 1E+01
834.8	1.000	Mn-54	4.62 1E+01	4.37 1E+01	3.99 1E+01	3.68 1E+01	3.54 1E+01	3.39 1E+01	3.26 1E+01
839.4	1.000	Sb-130	1.19 1E+01	1.13 1E+01	1.03 1E+01	9.51	9.20	8.82	8.52
841.6	0.146	Eu-152m	1.96 1E+01	1.86 1E+01	1.71 1E+01	1.59 1E+01	1.53 1E+01	1.46 1E+01	1.41 1E+01
846.8	0.989	Mn-56	2.41 1E+01	2.27 1E+01	2.06 1E+01	1.87 1E+01	1.79 1E+01	1.69 1E+01	1.60 1E+01
846.8	0.999	Co-56	1.25 1E+01	1.17 1E+01	1.06 1E+01	9.51	9.07	8.51	8.13
847.0	0.954	I-134	1.44 1E+01	1.36 1E+01	1.24 1E+01	1.14 1E+01	1.09 1E+01	1.05 1E+01	1.00 1E+01
852.2	0.206	Te-131m	5.72	5.42	4.95	4.55	4.40	4.21	4.05
856.7	0.176	Sb-126	2.44	2.31	2.13	1.99	1.92	1.84	1.79
864.0	0.156	Te-133m	3.38	3.19	2.92	2.69	2.59	2.48	2.37
873.2	0.115	Eu-154	3.77	3.57	3.28	3.01	2.90	2.76	2.67
881.6	0.420	Br-84	1.06 1E+01	9.93	8.94	8.01	7.56	7.12	6.72
884.1	0.649	I-134	9.87	9.34	8.57	7.85	7.59	7.25	6.98
884 7	0.729	Ag-110m	1.05 1E+01	9.89	9.09	8 36	8.07	7.72	7 43
880 3	1 000	Sc-46	1.00 1E+01	1.88 1F±01	1.72 1E±01	1.58 1E±01	1.52 1E±01	1.12 1.45 1E±01	130 1F±01
0113	0.200	Ac-228	1.00 TE+01	1.00 1E+01	1.72 1E+01	9.76	0.30	9.00	8.60
0127	0.250	Te-133m	1.22 1E+01	1.10 1E+01	1.00 1E+01	0.73	0.38	8.00	8.62
01/6	0.000	Sh-120	5.54	5.27	1.03	5.75 1 13	3.30 1.26	0.95 4 07	3.02
014.0	0.200	30-123	2.04	0.27	2.00	4.40	4.20	4.07	1 71
914.0	0.109	Dm 140	2.39	2.21	2.00	1.95	0.1	1.77	1.7 I E 70
914.8	0.115	PIII-148	0.10	1.11	7.05	0.40	0.20	0.93	5.70
915.3	0.171	Pm-148m	3.33	3.17	2.93	2.74	2.07	2.57	2.49
934.5	0.139	Y-92	2.23 TE+01	2.12 1E+01	1.94 1E+01	1.78 1E+01	1.72 TE+01	1.64 1E+01	1.58 TE+01
934.9	0.190	Sb-130	2.32	2.21	2.04	1.89	1.84	1.76	1.70
937.5	0.343	Ag-110m	5.01	4.74	4.35	4.04	3.90	3.73	3.61
954.5	0.181	I-132	3.17	2.98	2.77	2.57	2.49	2.40	2.32
963.3	0.120	Eu-152m	1.67 1E+01	1.59 1E+01	1.48 1E+01	1.38 1E+01	1.33 1E+01	1.28 1E+01	1.24 1E+01
964.1	0.145	Eu-152	5.26	5.00	4.62	4.27	4.11	3.94	3.82
964.8	0.055	Ac-228	2.32	2.20	2.03	1.88	1.81	1.74	1.68
966.4	0.077	Sb-129	2.16	2.05	1.89	1.74	1.68	1.60	1.55
969.2	0.175	Ac-228	7.44	7.04	6.53	6.02	5.81	5.59	5.41
984.5	0.278	Np-238	1.77 1E+01	1.69 1E+01	1.55 1E+01	1.43 1E+01	1.38 1E+01	1.32 1E+01	1.27 1E+01
996.3	0.103	Eu-154	3.49	3.33	3.08	2.85	2.75	2.64	2.56
1004.8	0.174	Eu-154	5.91	5.64	4.91	4.82	4.67	4.48	4.34
1009.8	0.298	Cs-138	5.53	5.21	4.80	4.35	4.16	3.97	3.79
1013.8	0.202	Pm-148m	4.05	3.86	3.59	3.38	3.30	3.18	3.11
1025.9	0.096	Np-238	6.18	5.90	5.43	5.00	4.84	4.63	4.48
1028 5	0.000	Nn-238	1 31 1F±01	1.25 1F±01	115 1F±01	106 1F±01	102 1F±01	9.82	9.47
1020.0	0.200	11p-200	IJI IETUI	1.20 IETUI	1.13 16701	1.00 IETUI	I.VZ IETVI	0.02	J.TI

付表-2 (つづき)

							単位 :	$(cm^{-2} \cdot s^{-1})$	/ (µGy/h)
エネルギー	• 放出比			放射性物質の土	壊中における釒	凸直分布を表す	パラメータ	(g • cm ⁻²)	
(keV)	(s ⁻¹ Bq ⁻¹)	核種	3.0	5.0	10	20	30	50	100
1030.1	0.126	Sb-129	3.58	3.42	3.16	2.92	2.82	2.70	2.61
1038.8	0.080	I-135	2.18	2.06	1.89	1.73	1.67	1.59	1.52
1048.1	0.798	Cs-136	1.55 1E+01	1.48 1E+01	1.37 1E+01	1.27 1E+01	1.23 1E+01	1.19 1E+01	1.15 1E+01
1072.6	0.150	I-134	2.38	2.29	2.11	1.96	1.90	1.82	1.77
1076.6	0.088	Rb-86	3.94 1E+01	3.73 1E+01	3.45 1E+01	3.18 1E+01	3.06 1E+01	2.95 1E+01	2.84 1E+01
1085.9	0.099	Eu-152	3.71	3.53	3.28	3.05	2.94	2.84	2.76
1099.2	0.565	Fe-59	2.05 1E+01	1.94 1E+01	1.80 1E+01	1.66 1E+01	1.59 1E+01	1.52 1E+01	1.47 1E+01
1112.1	0.136	Eu-152	5.09	4.86	4.53	4.21	4.07	3.92	3.82
1115.5	0.148	NI-65	1.19 1E+01	1.12 1E+01	1.04 1E+01	9.55	9.14	8.78	8.45
1115.5	0.507	Zn-65	3.72 1E+01	3.55 1E+01	3.28 1E+01	3.03 1E+01	2.93 1E+01	2.80 1E+01	2.72 1E+01
1120.0	0.240	30-40 To 192	2.11 1E+01	2.01 IE+01	1.00 IE+01	1.73 IE+01	0.25	1.00 IE+01	1.30 IE+01 9.71
1121.5	0.349	Ta-102 To 121m	2.20	1.12 IETUI	2.01	9.00	9.33	9.02	2.56
1123.5	0.114	I_135	630	5.08	5.53	5.09	2.75	2.04 4.68	2.30
1153.5	0.220	Fu-156	2 37	2.26	2.08	1 92	1.84	1.76	1.69
1157.5	0.113	I-130	2.16	2.07	1.94	1.84	1.80	1.74	1.70
1173.2	0.999	Co-60	1.76 1E+01	1.67 1E+01	1.55 1E+01	1.43 1E+01	1.37 1E+01	1.32 1E+01	1.27 1E+01
1189.0	0.164	Ta-182	5.59	5.36	5.00	4.64	4.49	4.34	4.22
1204.9	0.003	Y-91	3.66 1E+01	3.48 1E+01	3.24 1E+01	3.00 1E+01	2.88 1E+01	2.78 1E+01	2.68 1E+01
1206.6	0.098	Te-131m	2.94	2.81	2.63	2.47	2.39	2.31	2.26
1221.4	0.273	Ta-182	9.34	9.00	8.43	7.82	7.57	7.33	7.11
1230.7	0.089	Eu-156	3.00	2.87	2.65	2.45	2.36	2.26	2.18
1231.0	0.116	Ta-182	3.95	3.81	3.56	3.31	3.21	3.11	3.01
1235.4	0.200	Cs-136	4.05	3.86	3.62	3.41	3.30	3.20	3.12
1238.3	0.670	Co-56	9.14	8.69	8.00	7.39	7.07	6.76	6.52
1242.4	0.067	Eu-156	2.27	2.17	2.01	1.86	1.79	1.71	1.65
1260.4	0.289	I-135	8.20	7.80	7.26	6.75	6.47	6.22	5.99
1274.4	0.355	Eu-154	1.27 1E+01	1.22 1E+01	1.14 1E+01	1.07 1E+01	1.04 1E+01	1.01 1E+01	9.86
1274.5	0.999	Na-22	1.96 1E+01	1.88 1E+01	1.77 1E+01	1.67 1E+01	1.62 1E+01	1.56 1E+01	1.52 1E+01
1291.6	0.432	Fe-59	1.62 1E+01	1.55 1E+01	1.45 1E+01	1.35 1E+01	1.30 1E+01	1.25 1E+01	1.21 1E+01
1332.5	1.000	Co-60	1.81 1E+01	1.73 1E+01	1.61 1E+01	1.50 1E+01	1.45 1E+01	1.40 1E+01	1.35 1E+01
1354.5	0.026	La-141	2.85 1E+01	2.72 1E+01	2.52 1E+01	2.35 1E+01	2.25 1E+01	2.17 1E+01	2.09 1E+01
1368.6	1.000	Na-24	1.24 1E+01	1.17 1E+01	1.08 1E+01	9.87	9.34	8.92	8.50
1383.9	0.900	Sr-92	3.11 1E+01	2.98 1E+01	2.77 1E+01	2.58 1E+01	2.49 1E+01	2.40 1E+01	2.32 1E+01
1384.3	0.243	Ag-110m	3.89	3.74	3.50	3.35	3.24	3.15	3.08
1400.0	0.209	Eu-152	0.29	7.99 1.47 1E+01	1.02	1.13	0.90 1.00 1E+01	0.72 1.10 1E+01	0.00
1450.9	0.703	US-130	1.55 TE+01 2.57	1.47 IE+01 2.46	1.37 IE+01 2.30	1.20 IE+01 2.17	1.22 IE+01 2.08	2.01	1.15 16+01
1460.8	0.007	K-40	2.37 3.26 1E±01	2.40 3.11 1E±01	2.30 2.91 1F±01	2.17 2.72 1E±01	2.00 2.60 1E±01	2.01 2.52 1E±01	1.95 2.43 1E±01
1465.1	0.222	Pm-148	1 77 1E+01	1 70 1E+01	1.59 1E+01	1.51 1E+01	1.46 1E+01	1.42 1E+01	1.39 1E+01
1481.8	0.235	Ni-65	2.02 1E+01	1.93 1E+01	1.80 1E+01	1.70 1E+01	1.63 1E+01	1.58 1E+01	1.53 1E+01
1505.0	0.131	Aa-110m	2.14	2.06	1.94	1.86	1.81	1.76	1.73
1524.6	0.189	K-42	3.14 1E+01	3.00 1E+01	2.80 1E+01	2.63 1E+01	2.52 1E+01	2.43 1E+01	2.35 1E+01
1596.2	0.954	La-140	1.98 1E+01	1.90 1E+01	1.78 1E+01	1.69 1E+01	1.63 1E+01	1.58 1E+01	1.54 1E+01
1678.0	0.096	I-135	2.93	2.81	2.65	2.52	2.42	2.35	2.29
1691.0	0.488	Sb-124	1.25 1E+01	1.21 1E+01	1.14 1E+01	1.09 1E+01	1.05 1E+01	1.03 1E+01	1.00 1E+01
1736.5	0.060	Sb-129	1.92	1.86	1.78	1.70	1.65	1.61	1.58
1736.5	0.060	Sb-129	1.92	1.86	1.78	1.70	1.65	1.61	1.58
1771.4	0.155	Co-56	2.30	2.22	2.09	1.97	1.91	1.84	1.80
1791.2	0.078	I-135	2.40	2.31	2.18	2.08	2.01	1.96	1.91
1810.7	0.272	Mn-56	7.96	7.69	7.30	6.91	6.72	6.50	6.34
1897.6	0.147	Br-84	4.44	4.28	4.02	3.78	3.64	3.51	3.40
1901.3	0.072	La-142	1.62	1.55	1.46	1.37	1.33	1.28	1.24
2091.0	0.056	Sb-124	1.51	1.47	1.40	1.35	1.32	1.30	1.27
2113.0	0.143	MN-56	4.35	4.21	4.04	3.86	3.78	3.67	3.59
2218.0	0.152	US-138	3.37	3.25 2.05	3.13	2.98 0.77	2.91	2.85	2.19
2391.8 2101 1	0.133	La-142 Dr 04	3.10 2.46	3.U5 2.00	2.9U	2.11	2.7U 1.9E	2.02	∠.04 1 7E
2404.1 2542 7	0.007	DI-04	2.10 2.41	∠.∪9 2.22	1.55 2.22	1.90	CO.I	1.00	1.73
2042.1	0.100	La- 142	∠.41 2.72	2.33 2.65	2.20 2.52	2.13	2.09 2.40	2.02 2.31	1.97 2.30
2630.0	0.107	Cs-138	1 76	2.00	2.00	<u></u> 1 60	2. - 0 1.57	2.0 4 1.55	2.50
2754.0	0.070	Na-24	1.46 1F+01	1.41 1F+01	1.34 1F+01	1.00 1.28 1F+01	1.37 1.24 1F+∩1	1.00 1.22 1F+01	1.02 1.18 1F+01
3253.5	0.074	Co-56	1,26	1.24	1.20	1.17	1.16	1.13	1.13
3927.5	0.068	Br-84	2.41	2.37	2.32	2.26	2.23	2.20	2.18
				-	-	-	-	-	-

付録 3 放射性核種濃度と地上高 1m での線量率との関係

付表-3 放射性核種濃度と地上高1mでの線量率との関係 (土壌中指数分布の場合) _{単位}

単位 : (µGy/h)/(kBq/m²)

_		7	放射性物	物質の土	壌中に	おける鉛	直分布	を表す	パラメ-	-タ	(g·o	cm ⁻²)		
	0.	0	0.	1	0.	2	0.	3	0.	5	1.	0	2.	0
Be-7	2.26	1E-04	2.04	1E-04	1.90	1E-04	1.81	1E-04	1.67	1E-04	1.46	1E-04	1.22	1E-04
Na-22	9.36	1E-03	8.47	1E-03	7.93	1E-03	7.53	1E-03	6.97	1E-03	6.09	1E-03	5.10	1E-03
Na-24	1.47	1E-02	1.33	1E-02	1.25	1E-02	1.19	1E-02	1.10	1E-02	9.70	1E-03	8.19	1E-03
K-40	6.19	1E-04	5.59	1E-04	5.24	1E-04	4.97	1E-04	4.62	1E-04	4.04	1E-04	3.41	1E-04
K-42	1.14	1E-03	1.03	1E-03	9.66	1E-04	9.17	1E-04	8.53	1E-04	7.46	1E-04	6.28	1E-04
Sc-46	8.46	1E-03	7.67	1E-03	7.17	1E-03	6.82	1E-03	6.31	1E-03	5.51	1E-03	4.62	1E-03
Cr-51	2.18	1E-04	1.47	1E-04	1.29	1E-04	1.20	1E-04	1.09	1E-04	9.39	1E-05	7.77	1E-05
Mn-54	3.71	1E-03	3.30	1E-03	3.07	1E-03	2.92	1E-03	2.69	1E-03	2.35	1E-03	1.97	1E-03
Mn-56	6.74	1E-03	6.11	1E-03	5.73	1E-03	5.45	1E-03	5.05	1E-03	4.41	1E-03	3.71	1E-03
Fe-59	4.87	1E-03	4.42	1E-03	4.13	1E-03	3.93	1E-03	3.64	1E-03	3.18	1E-03	2.67	1E-03
Co-56	1.33	1E-02	1.20	1E-02	1.12	1E-02	1.06	1E-02	9.86	1E-03	8.64	1E-03	7.27	1E-03
0-57	8.09	1E-04	5.51	1E-04	4.74	1E-04	4.35	1E-04	3.88	1E-04	3.28	1E-04	2.65	1E-04
Co-58	4.38	1E-03	3.89	1E-03	3.03	1E-03	3.44	1E-03	3.17	1E-03	2.11	1E-03	2.32	1E-03
C0-60	1.02	1E-02	9.20	1E-03	0.01	1E-03	0.10	1E-03	1.59	1E-03	0.04	1E-03	0.00 1.01	1E-03
7n 65	2.20	10-03	2.00	1003	1.07	100	1.70	1E-03	1.00	10-03	1.44	1E-03	1.21	10-03
Zn-69m	1 01	1E-03	1 72	1E-03	2.03	1E-03	1.57	1E-03	1.02	1E-03	1.30	1E-03	1.55	1E-03
Se-75	2 10	1E-03	1.69	1E-03	1.01	1E-03	1.02	1E-03	1.41	1E-03	1.20	1E-03	9.22	1E-04
Br-84	6.54	1E-03	5.93	1E-03	5.56	1E-03	5 29	1E-03	4 90	1E-03	4.30	1E-03	3.63	1E-03
Rb-86	3.95	1E-04	3.58	1E-04	3.35	1E-04	3.18	1E-04	2.94	1E-04	2.57	1E-04	2.16	1E-04
Sr-92	5.36	1E-03	4.86	1E-03	4.55	1E-03	4.32	1E-03	4.01	1E-03	3.51	1E-03	2.95	1E-03
Y-90m	2.88	1E-03	2.58	1E-03	2.41	1E-03	2.28	1E-03	2.10	1E-03	1.83	1E-03	1.53	1E-03
Y-91	1.48	1E-05	1.34	1E-05	1.25	1E-05	1.19	1E-05	1.10	1E-05	9.64	1E-06	8.10	1E-06
Y-91m	2.41	1E-03	2.16	1E-03	2.02	1E-03	1.92	1E-03	1.77	1E-03	1.54	1E-03	1.29	1E-03
Y-92	1.06	1E-03	9.61	1E-04	8.99	1E-04	8.54	1E-04	7.91	1E-04	6.91	1E-04	5.79	1E-04
Y-93	3.60	1E-04	3.62	1E-04	3.05	1E-04	2.90	1E-04	2.69	1E-04	2.35	1E-04	1.97	1E-04
Zr-95	3.23	1E-03	2.93	1E-03	2.74	1E-03	2.60	1E-03	2.40	1E-03	2.10	1E-03	1.76	1E-03
Zr-97	8.21	1E-04	7.39	1E-04	6.91	1E-04	6.55	1E-04	6.06	1E-04	5.92	1E-04	4.43	1E-04
Nb-93m	8.53	1E-05	3.93	1E-05	2.58	1E-05	1.93	1E-05	1.29	1E-05	7.05	1E-06	3.73	1E-06
Nb-95	3.35	1E-03	3.03	1E-03	2.84	1E-03	2.69	1E-03	2.49	1E-03	2.17	1E-03	1.82	1E-03
Nb-95m	5.15	1E-04	3.26	1E-04	3.07	1E-04	2.76	1E-04	2.40	1E-04	1.97	1E-04	1.58	1E-04
Nb-97	2.97	1E-03	2.68	1E-03	2.51	1E-03	2.39	1E-03	2.21	1E-03	1.92	1E-03	1.61	1E-03
Mo-93	4.88	1E-04	2.31	1E-04	1.52	1E-04	1.13	1E-04	7.58	1E-05	4.15	1E-05	2.19	1E-05
Mo-99	6.54	1E-04	5.29	1E-04	5.53	1E-04	5.26	1E-04	4.85	1E-04	4.23	1E-04	3.54	1E-04
IC-99m	5.66	1E-04	4.93	1E-04	4.55	1E-04	4.30	1E-04	3.93	1E-04	3.40	1E-04	2.79	1E-04
Ru-105	2.21	10-03	2.00	1E-03	1.07	1E-03	1.77	1E-03	2.45	10-03	1.40	1E-03	1.19	100
Ru-103 Rh-103m	3.33 1 1 3	1E-03	2 35	1E-03	2.00	1E-03	2.05	1E-03	2.40	1E-03	5.05	1E-05	2 75	1E-03
Rh-105	3.53	1E-04	3.19	1E-04	2.98	1E-04	2.83	1E-04	2.62	1E-03	2.00	1E-03	1.90	1E-04
Rh-106	9.30	1E-04	8.40	1E-04	7.86	1E-04	7.46	1E-04	6.90	1E-04	6.02	1E-04	5.03	1E-04
Ag-110m	1.18	1F-02	1.06	1E-02	9.96	1E-03	9.46	1E-03	8.76	1E-03	7.64	1E-03	6.41	1E-03
Ag-111	1.21	1E-04	1.09	1E-04	1.02	1E-04	9.63	1E-05	8.91	1E-05	7.76	1E-05	6.46	1E-05
Sn-117m	1.03	1E-03	7.91	1E-04	6.90	1E-04	6.30	1E-04	5.52	1E-04	4.54	1E-04	3.58	1E-04
Sn-126	4.17	1E-04	2.99	1E-04	2.52	1E-04	2.25	1E-04	1.92	1E-04	1.50	1E-04	1.11	1E-04
Sb-124	7.58	1E-03	6.86	1E-03	6.43	1E-03	6.12	1E-03	5.67	1E-03	4.95	1E-03	4.16	1E-03
Sb-125	2.15	1E-03	1.87	1E-03	1.72	1E-03	1.62	1E-03	1.48	1E-03	1.27	1E-03	1.05	1E-03
Sb-126	1.22	1E-02	1.10	1E-02	1.03	1E-02	9.81	1E-03	9.07	1E-03	7.91	1E-03	6.62	1E-03
Sb-127	2.97	1E-03	2.68	1E-03	2.51	1E-03	2.38	1E-03	2.20	1E-03	1.92	1E-03	1.60	1E-03
Sb-128	1.36	1E-02	1.23	1E-02	1.15	1E-02	1.09	1E-02	1.01	1E-02	8.82	1E-03	7.39	1E-03
Sb-129	6.14	1E-03	5.56	1E-03	5.20	1E-03	4.94	1E-03	4.58	1E-03	4.00	1E-03	3.35	1E-03
Sb-130	1.41	1E-02	1.27	1E-02	1.19	1E-02	1.13	1E-02	1.04	1E-02	9.12	1E-03	7.64	1E-03
Te-123m	8.36	1E-04	6.74	1E-04	6.01	1E-04	5.56	1E-04	4.96	1E-04	4.15	1E-04	3.32	1E-04
10-125M	6.40	16-04	3.93	1E-04	2.99	1E-04	2.47	1E-04	1.87	1E-04	1.19	1E-04	7.08	1E-05
10-121 To-127m	2.20	100	2.03	1E-05	1.89	10-05	1.19		1.05 5.04	1E-05	1.44 2.70	1E-05	1.20 2.25	1E-U5
$T_{0} = 12/111$	2.09 215	10-04	1.20 0.77	10-04	9.41 210	10-00	1.00	1E-00	0.91 2.07	100	3.10 175	1E-00	2.20 1 / 0	10-00
Te-123	3.40 2 71	1E-04	2.11	1E-04	∠.40 2.20	1E-04	2.30 1.05	1E-04	2.07	1E-04	1.70	1E-04	0.62	1E-04
Te-131m	5.7 T 6.08	1E-04	2.03 5.50	1E-04	514	1E-04	1.90 1 88	1E-04	1.00	1E-04	3 03	1E-04	3.0∠ 3.30	1E-03
Te-132	1 29	1E-03	1 07	1E-03	9.66	1E-04	8.97	1F-04	7.01 8.05	1E-04	6 75	1E-03	5 44	1E-03
Te-133m	7.84	1E-03	7.07	1E-03	6.60	1E-03	6.27	1E-03	5.79	1E-03	5.05	1E-03	4.23	1E-03
Te-134	3.90	1E-03	3.49	1E-03	3.25	1E-03	3.08	1E-03	2.84	1E-03	2.46	1E-03	2.05	1E-03
I-129	3.43	1E-04	2.24	1E-04	1.75	1E-04	1.48	1E-04	1.14	1E-04	7.53	1E-05	4.57	1E-05
I-130	9.48	1E-03	8.58	1E-03	8.03	1E-03	7.63	1E-03	7.05	1E-03	6.15	1E-03	5.15	1E-03
I-131	1.74	1E-03	1.57	1E-03	1.47	1E-03	1.39	1E-03	1.29	1E-03	1.12	1E-03	9.32	1E-04
I-132	9.88	1E-03	8.94	1E-03	8.37	1E-03	7.95	1E-03	7.35	1E-03	6.42	1E-03	5.38	1E-03

付表-3(つづき)

_		放射性物質の土	壌中における鉛	査分布を表す /	ペラメータ	(g • cm ⁻²)	
	0.0	0.1	0.2	0.3	0.5	1.0	2.0
I-133	2.72 1E-03	2.46 1E-03	2.30 1E-03	2.18 1E-03	2.01 1E-03	1.76 1E-03	1.47 1E-03
I-134	1.11 1E-02	1.00 1E-02	9.39 1E-03	8.93 1E-03	8.26 1E-03	7.21 1E-03	6.05 1E-03
I-135	6.40 1E-03	5.80 1E-03	5.43 1E-03	5.16 1E-03	4.79 1E-03	4.19 1E-03	3.52 1E-03
Cs-134	6.85 1E-03	6.19 1E-03	5.80 1E-03	5.50 1E-03	5.09 1E-03	4.44 1E-03	3.72 1E-03
Cs-134m	2.86 1E-04	1.80 1E-04	1.46 1E-04	1.29 1E-04	1.08 1E-04	8.20 1E-05	5.98 1E-05
Cs-136	9.08 1E-03	8.22 1E-03	7.69 1E-03	7.30 1E-03	6.75 1E-03	5.90 1E-03	4.94 1E-03
CS-138	9.30 1E-03	8.43 1E-03	7.90 1E-03	7.51 1E-03	6.96 1E-03	6.10 1E-03	5.13 1E-03
Da-13/11	2.08 IE-03	2.42 IE-03	2.20 IE-03	2.15 IE-03	1.98 IE-03	1.73 IE-03	1.44 IE-03
Ba-139 Ba-140	2.05 IE-04	7.86 1E-04	7.00 IE-04	1.50 IE-04 670 1E-04	1.45 IE-04 6.21 1E-04	1.25 IE-04	1.03 1E-04
La-140	9.32 1E-04 9.27 1E-03	839 1E-04	7.22 1E-04	7.47 1E-04	693 1E-04	6.06 1E-04	4.42 1E-04 5.10 1E-03
La-141	1.70 1E-04	1.54 1E-04	1.44 1E-04	1.37 1E-04	1.27 1E-04	1.11 1E-04	9.36 1E-05
La-142	8.75 1E-03	7.93 1E-03	7.44 1E-03	7.09 1E-03	6.57 1E-03	5.76 1E-03	4.86 1E-03
Ce-141	3.67 1E-04	3.13 1E-04	2.87 1E-04	2.69 1E-04	2.44 1E-04	2.09 1E-04	1.68 1E-04
Ce-143	1.39 1E-03	1.19 1E-03	1.09 1E-03	1.02 1E-03	9.28 1E-04	7.90 1E-04	6.45 1E-04
Ce-144	1.08 1E-04	8.70 1E-05	7.76 1E-05	7.17 1E-05	6.37 1E-05	5.27 1E-05	4.13 1E-05
Pr-145	1.14 1E-04	1.02 1E-04	9.52 1E-05	9.03 1E-05	8.32 1E-05	7.23 1E-05	6.03 1E-05
Nd-147	7.36 1E-04	6.16 1E-04	5.59 1E-04	5.22 1E-04	4.71 1E-04	3.97 1E-04	3.21 1E-04
Pm-148	2.38 1E-03	2.15 1E-03	2.02 1E-03	1.92 1E-03	1.78 1E-03	1.55 1E-03	1.30 1E-03
Pm-148m	8.83 1E-03	7.98 1E-03	7.46 1E-03	7.09 1E-03	6.55 1E-03	5.71 1E-03	4.78 1E-03
Pm-149	1.68 1E-06	1.51 1E-06	1.40 1E-06	1.33 1E-06	1.23 1E-06	1.07 1E-06	8.87 1E-07
Pm-151	1.54 1E-03	1.36 1E-03	1.26 1E-03	1.19 1E-03	1.09 1E-03	9.46 1E-04	7.83 1E-04
Eu-152 Eu-152m	4.74 IE-03	4.29 IE-03	4.02 IE-03	3.01 1E-03	3.55 IE-03	3.09 IE-03	2.59 IE-03
Eu-152m	5.24 1E-03	4.71 1E-03	4.40 1E-03	4 17 1E-03	3.85 1E-03	3.36 1E-04	2.81 1E-04
Eu-155	3.16 1E-04	2.54 1E-04	2.27 1E-04	2.10 1E-04	1.88 1E-04	1.55 1E-04	1.20 1E-04
Eu-156	5.36 1E-03	4.84 1E-03	4.53 1E-03	4.30 1E-03	3.98 1E-03	3.48 1E-03	2.92 1E-03
Hf-181	2.50 1E-03	2.21 1E-03	2.05 1E-03	1.94 1E-03	1.79 1E-03	1.55 1E-03	1.29 1E-03
Ta-182	5.51 1E-03	4.91 1E-03	4.57 1E-03	4.33 1E-03	4.00 1E-03	3.48 1E-03	2.91 1E-03
W-187	2.35 1E-03	2.09 1E-03	1.95 1E-03	1.84 1E-03	1.70 1E-03	1.48 1E-03	1.23 1E-03
Pb-210	2.07 1E-04	8.54 1E-05	5.34 1E-05	3.97 1E-05	2.71 1E-05	1.58 1E-05	9.15 1E-06
Pb-212	7.37 1E-04	6.08 1E-04	5.54 1E-04	5.19 1E-04	4.74 1E-04	4.07 1E-04	3.34 1E-04
Bi-212	5.01 1E-04	4.25 1E-04	3.91 1E-04	3.68 1E-04	3.38 1E-04	2.93 1E-04	2.45 1E-04
Ra-224	4.71 1E-05	4.12 1E-05	3.82 1E-05	3.61 1E-05	3.33 1E-05	2.89 1E-05	2.40 1E-05
Ra-226	3.46 1E-05	2.82 1E-05	2.57 1E-05	2.41 1E-05	2.19 1E-05	1.88 1E-05	1.55 1E-05
AC-228	4.33 IE-03 8.20 IE-05	3.79 IE-03	3.50 IE-03	3.31 IE-03	3.05 IE-03	2.05 IE-03	2.22 IE-03
Th-220	7.85 1E-03	3.63 1E-03	2.49 1E-03	1.95 1E-03	1.43 TE-03	9.39 TE-00 8.11 1E-05	5.02 1E-05
Th-232	6.80 1E-05	2.77 1E-05	1.68 1E-05	1.22 1E-05	7.89 1E-06	4.28 1E-06	2.31 1E-06
Th-234	1.14 1E-04	6.34 1E-05	4.82 1E-05	4.09 1E-05	3.33 1E-05	2.50 1E-05	1.84 1E-05
Pa-233	1.33 1E-03	1.01 1E-03	8.87 1E-04	8.19 1E-04	7.37 1E-04	6.24 1E-04	5.09 1E-04
U-232	8.70 1E-05	3.62 1E-05	2.23 1E-05	1.62 1E-05	1.06 1E-05	5.81 1E-06	3.16 1E-06
U-234	7.98 1E-05	3.30 1E-05	2.02 1E-05	1.46 1E-05	9.47 1E-06	5.08 1E-06	2.69 1E-06
U-235	1.06 1E-03	7.75 1E-04	6.77 1E-04	6.22 1E-04	5.55 1E-04	4.69 1E-04	3.82 1E-04
U-236	6.71 1E-05	2.78 1E-05	1.69 1E-05	1.22 1E-05	7.90 1E-06	4.21 1E-06	2.21 1E-06
U-237	1.09 1E-03	7.36 1E-04	6.17 1E-04	5.53 1E-04	4.80 1E-04	3.90 1E-04	3.07 1E-04
U-238	7.07 1E-05	2.93 1E-05	1.79 1E-05	1.29 1E-05	8.33 1E-06	4.44 1E-06	2.32 1E-06
Np-237	6.36 1E-04	3.23 1E-04	2.30 1E-04	1.86 1E-04	1.42 1E-04	9.77 1E-05	6.68 1E-05
Np-230	2.95 IE-03	2.30 IE-03	2.30 IE-03	2.23 IE-03 678 1E-04	2.05 TE-03	1.70 IE-03	1.49 IE-03
Pu-236	8.81 1E-05	3.72 1E-04	230 1E-04	1.66 1E-04	1.02 1E-04	5.05 1E-04	4.05 1E-04 3.00 1E-06
Pu-238	8.67 1E-05	3.66 1E-05	2.26 1E-05	1.63 1E-05	1.06 1E-05	5.60 1E-06	2.91 1E-06
Pu-239	3.73 1E-05	1.52 1E-05	9.28 1E-06	6.72 1E-06	4.38 1E-06	2.37 1E-06	1.27 1E-06
Pu-240	7.61 1E-05	3.21 1E-05	1.98 1E-05	1.43 1E-05	9.25 1E-06	4.91 1E-06	2.55 1E-06
Pu-242	7.03 1E-05	2.97 1E-05	1.83 1E-05	1.32 1E-05	8.56 1E-06	4.53 1E-06	2.35 1E-06
Am-241	4.35 1E-04	2.36 1E-04	1.74 1E-04	1.43 1E-04	1.12 1E-04	7.86 1E-05	5.35 1E-05
Am-242	2.77 1E-04	1.45 1E-04	1.05 1E-04	8.65 1E-05	6.76 1E-05	4.87 1E-05	3.50 1E-05
Am-242m	2.47 1E-04	1.07 1E-04	6.75 1E-05	4.94 1E-05	3.25 1E-05	1.77 1E-05	9.44 1E-06
Am-243	3.89 1E-04	2.74 1E-04	2.32 1E-04	2.09 1E-04	1.81 1E-04	1.45 1E-04	1.10 1E-04
Cm-242	7.41 1E-05	3.19 1E-05	1.99 1E-05	1.44 1E-05	9.38 1E-06	4.99 1E-06	2.60 1E-06
Cm-243	9.48 1E-04	6.59 1E-04	5.61 1E-04	5.08 1E-04	4.4/ 1E-04	3.71 1E-04	2.98 1E-04
Cm-245	0.90 TE-05	3.02 TE-05	1.00 1E-05	1.37 TE-05	0.0/ TE-U0 3.10 1E 04	4.72 TE-00	2.40 TE-U0
Cm-247	1.45 1F-04	1.27 1F-03	1.18 1F-03	1.11 1E-04	1.03 1F-03	8.92 1F-04	7.41 1F-04

付表-3(つづき)

_			放射性物	勿質の土	壌中に	おける釒	百 百百万百万万万万万万万万万万万万万万万万万万万万万万万万万万万万万万万万万万	を表す	パラメ-	-タ	(g•	cm ⁻²)		
核種	3.0)	5.	0	10)	20)	30	C	50	D	10	0
Be-7	1.07	1E-04	8.77	1E-05	6.28	1E-05	4.11	1E-05	3.07	1E-05	2.05	1E-05	1.12	1E-05
Na-22	4.50	1E-03	3.72	1E-03	2.70	1E-03	1.80	1E-03	1.36	1E-03	9.22	1E-04	5.11	1E-04
Na-24	7.27	1E-03	6.11	1E-03	4.54	1E-03	3.13	1E-03	2.42	1E-03	1.67	1E-03	9.51	1E-04
K-40	3.01	1E-04	2.51	1E-04	1.84	1E-04	1.25	1E-04	9.59	1E-05	6.55	1E-05	3.68	1E-05
K-42	5.57	1E-04	4.64	1E-04	3.42	1E-04	2.32	1E-04	1.78	1E-04	1.22	1E-04	6.85	1E-05
Sc-46	4.08	1E-03	3.38	1E-03	2.46	1E-03	1.65	1E-03	1.25	1E-03	8.51	1E-04	4.72	1E-04
Ur-51 Mp 54	0.81	1E-05	5.55	1E-05	3.95	1E-03	2.54	1E-05	1.88	1E-05	1.25	1E-05	6.// 1.06	1E-06
Mn-56	3.20	1E-03	2 73	1E-03	2.00	1E-03	1 35	1E-04	1.03	1E-04	7.06	1E-04	3.96	1E-04
Fe-59	2.36	1E-03	1.96	1E-03	143	1E-03	9.65	1E-03	7.36	1E-03	5.01	1E-04	2.80	1E-04
Co-56	6.43	1E-03	5.36	1E-03	3.95	1E-03	2.68	1E-03	2.05	1E-03	1.41	1E-03	7.90	1E-04
Co-57	2.27	1E-04	1.80	1E-04	1.22	1E-04	7.47	1E-05	5.40	1E-05	3.49	1E-05	1.85	1E-05
Co-58	2.04	1E-03	1.69	1E-03	1.22	1E-03	8.08	1E-04	6.10	1E-04	4.12	1E-04	2.27	1E-04
Co-60	4.93	1E-03	4.10	1E-03	3.00	1E-03	2.03	1E-03	1.55	1E-03	1.05	1E-03	5.90	1E-04
Ni-65	1.07	1E-03	8.91	1E-04	6.54	1E-04	4.42	1E-04	3.38	1E-04	2.30	1E-04	1.29	1E-04
Zn-65	1.17	1E-03	9.70	1E-04	7.07	1E-04	4.75	1E-04	3.62	1E-04	2.46	1E-04	1.37	1E-04
Zn-69m	9.01	1E-04	7.38	1E-04	5.28	1E-04	3.45	1E-04	2.57	1E-04	1.71	1E-04	9.37	1E-05
Se-75	8.03	1E-04	6.50	1E-04	4.56	1E-04	2.89	1E-04	2.13	1E-04	1.40	1E-04	7.56	1E-05
Br-84	3.22	1E-03	2.69	1E-03	1.99	1E-03	1.36	1E-03	1.05	1E-03	7.23	1E-04	4.09	1E-04
Rb-86	1.90	1E-04	1.58	1E-04	1.15	1E-04	7.74	1E-05	5.89	1E-05	4.00	1E-05	2.23	1E-05
Sr-92	2.61	1E-03	2.17	1E-03	1.59	1E-03	1.08	1E-03	8.24	1E-04	5.62	1E-04	3.15	1E-04
Y-90m	1.34	1E-03	1.10	1E-03	1.19	1E-04	5.05	1E-04	3.76	1E-04	2.49	1E-04	1.30	1E-04
1-91 V-91m	1 13	1E-00	0.33	1E-00	4.35	1E-00	2.93	1E-00	2.24	1E-00	1.52	1E-00	0.01 1.21	1E-07
Y-92	5 11	1E-03	9.55	1E-04 1E-04	3.09	1E-04 1E-04	4.40 2.07	1E-04	1.57	1E-04 1E-04	1.07	1E-04 1E-04	5.92	1E-04
Y-93	1 74	1E-04	1 44	1E-04	1.05	1E-04	7.06	1E-04	5.36	1E-04	3.65	1E-04	2.03	1E-05
Zr-95	1.55	1E-03	1.28	1E-03	9.25	1E-04	6.11	1E-04	4.61	1E-04	3.11	1E-04	1.72	1E-04
Zr-97	3.91	1E-04	3.23	1E-04	2.35	1E-04	1.57	1E-04	1.19	1E-04	8.04	1E-05	4.46	1E-05
Nb-93m	2.53	1E-06	1.55	1E-06	7.82	1E-07	3.93	1E-07	2.63	1E-07	1.58	1E-07	7.90	1E-08
Nb-95	1.60	1E-03	1.32	1E-03	9.59	1E-04	6.35	1E-04	4.79	1E-04	3.24	1E-04	1.79	1E-04
Nb-95m	1.36	1E-04	1.09	1E-04	7.59	1E-05	4.80	1E-05	3.53	1E-05	2.32	1E-05	1.25	1E-05
Nb-97	1.42	1E-03	1.17	1E-03	8.44	1E-04	5.54	1E-04	4.17	1E-04	2.81	1E-04	1.55	1E-04
Mo-93	1.49	1E-05	9.09	1E-06	4.60	1E-06	2.32	1E-06	1.55	1E-06	9.29	1E-07	4.65	1E-07
Mo-99	3.11	1E-04	2.56	1E-04	1.84	1E-04	1.21	1E-04	9.10	1E-05	6.12	1E-05	3.37	1E-03
Tc-99m	2.41	1E-04	1.93	1E-04	1.32	1E-04	8.18	1E-05	5.94	1E-05	3.85	1E-05	2.05	1E-05
Ru-103	1.05	1E-03	8.59	1E-04	6.16	1E-04	4.04	1E-04	3.02	1E-04	2.02	1E-04	1.10	1E-04
Ru-105	1.56	1E-03	1.29	1E-03	9.28	1E-04	6.10	1E-04	4.58	1E-04	3.08	1E-04	1.70	1E-04
Rh-103m	1.89	1E-05	1.10	1E-05	5.93	1E-06	3.01	1E-06	2.00	1E-06	1.21	1E-06	6.04 1.66	1E-07
Rh-106	1.07	1E-04	2.65	1E-04	263	1E-03	0.24	1E-03	4.02	1E-03	3.00 8.74	1E-05	4.81	1E-05
Ag-110m	5.65	1E-04	2.00 4.68	1E-04	3.40	1E-04	2.26	1E-04	1.00	1E-04	1 16	1E-03	6.43	1E-03
Ag-111	5.67	1E-05	4.63	1E-05	3.30	1E-05	2.12	1E-05	1.57	1E-05	1.04	1E-05	5.68	1E-06
Sn-117m	3.04	1E-04	2.41	1E-04	1.63	1E-04	1.01	1E-04	7.32	1E-05	4.75	1E-05	2.53	1E-05
Sn-126	9.12	1E-05	6.81	1E-05	4.28	1E-05	2.49	1E-05	1.76	1E-05	1.11	1E-05	5.79	1E-06
Sb-124	3.68	1E-03	3.05	1E-03	2.23	1E-03	1.50	1E-03	1.14	1E-03	7.76	1E-04	4.33	1E-04
Sb-125	9.19	1E-04	7.52	1E-04	5.37	1E-04	3.50	1E-04	2.61	1E-04	1.75	1E-04	9.58	1E-05
Sb-126	5.82	1E-03	4.81	1E-03	3.47	1E-03	2.28	1E-03	1.72	1E-03	1.16	1E-03	6.37	1E-04
Sb-127	1.41	1E-03	1.16	1E-03	8.35	1E-04	5.49	1E-04	4.12	1E-04	2.77	1E-04	1.52	1E-04
Sb-128	6.50	1E-03	5.37	1E-03	3.87	1E-03	2.56	1E-03	1.92	1E-03	1.30	1E-03	7.15	1E-04
Sb-129	2.96	1E-03	2.45	1E-03	1.78	1E-03	1.19	1E-03	9.04	1E-04	6.14	1E-04	3.41	1E-04
Sb-130	6.73	1E-03	5.56	1E-03	4.02	1E-03	2.67	1E-03	2.01	1E-03	1.36	1E-03	7.51	1E-04
Te-123m	2.84	1E-04	2.25	1E-04	1.53	1E-04	9.51	1E-05	6.91	1E-05	4.49	1E-05	2.39	1E-05
Te-125m	5.07	1E-05	3.24	1E-05	1.71	1E-00	0.03	1E-00	2.93	1E-00	3.00	1E-00	1.01	1E-00
Te-127	1.05	1E-05	1.03	1E-00	5.48	1E-00	2.97	1E-00	2.90	1E-00	1.97	1E-00	5.91	1E-00
Te-129	1.23	1F-04	1.03	1E-03	7 1 2	1E-05	2.00 4.64	1E-05	3.46	1E-05	2.31	1E-05	1 27	1E-07
Te-129m	8.03	1E-05	6.29	1E-05	4.31	1E-05	2.76	1E-05	2.05	1E-05	1.37	1E-05	7.48	1E-06
Te-131m	2,90	1E-03	2.40	1E-03	1.74	1E-03	1.16	1E-03	8.75	1E-04	5.92	1E-04	3.28	1E-04
Te-132	4.67	1E-04	3.75	1E-04	2.59	1E-04	1.63	1E-04	1.20	1E-04	7.83	1E-05	4.22	1E-05
Te-133m	3.73	1E-03	3.09	1E-03	2.24	1E-03	1.49	1E-03	1.13	1E-03	7.67	1E-04	4.26	1E-04
Te-134	1.80	1E-03	1.47	1E-03	1.06	1E-03	6.89	1E-04	5.16	1E-04	3.45	1E-04	1.89	1E-04
I-129	3.31	1E-05	2.14	1E-05	1.14	1E-05	5.91	1E-06	3.97	1E-06	2.41	1E-06	1.22	1E-06
I-130	4.53	1E-03	3.74	1E-03	2.69	1E-03	1.77	1E-03	1.33	1E-03	8.98	1E-04	4.95	1E-04
I-131	8.18	1E-04	6.70	1E-04	4.79	1E-04	3.10	1E-04	2.31	1E-04	1.54	1E-04	8.38	1E-05
I-132	4.73	1E-03	3.92	1E-03	2.84	1E-03	1.88	1E-03	1.42	1E-03	9.60	1E-04	5.31	1E-04

付表-3(つづき)

_		放射性物質の土	壌中における鉛	直分布を表す/	ペラメータ	(g ⋅ cm ⁻²)	
	3.0	5.0	10	20	30	50	100
I-133	1.29 1E-03	1.06 1E-03	7.66 1E-04	5.04 1E-04	3.79 1E-04	2.54 1E-04	1.40 1E-04
I-134	5.33 1E-03	4.41 1E-03	3.21 1E-03	2.14 1E-03	1.62 1E-03	1.10 1E-03	6.10 1E-04
I-135	3.11 1E-03	2.59 1E-03	1.90 1E-03	1.28 1E-03	9.78 1E-04	6.67 1E-04	3.74 1E-04
Cs-134	3.27 1E-03	2.70 1E-03	1.95 1E-03	1.29 1E-03	9.71 1E-04	6.55 1E-04	3.61 1E-04
Cs-134m	4.87 1E-05	3.65 1E-05	2.34 1E-05	1.39 1E-05	9.92 1E-06	6.35 1E-06	3.33 1E-06
Cs-136	4.35 1E-03	3.60 1E-03	2.61 1E-03	1.74 1E-03	1.32 1E-03	8.90 1E-04	4.93 1E-04
Cs-138	4.54 1E-03	3.78 1E-03	2.77 1E-03	1.88 1E-03	1.44 1E-03	9.81 1E-04	5.51 1E-04
Ba-137m	1.27 1E-03	1.05 1E-03	7.55 1E-04	4.96 1E-04	3.73 1E-04	2.51 1E-04	1.38 1E-04
Ba-139	8.93 1E-05	7.21 1E-05	4.99 1E-05	3.14 1E-05	2.31 1E-05	1.51 1E-05	8.13 1E-06
Ba-140	3.87 1E-04	3.16 1E-04	2.25 1E-04	1.47 1E-04	1.10 1E-04	7.31 1E-05	4.00 1E-05
La-140	4.51 IE-03	3.75 IE-03	2.75 IE-03	1.85 IE-03	1.41 IE-03	9.04 IE-04	5.40 IE-04
La-141	0.20 IE-00	0.90 IE-00	3.07 IE-03	3.44 IE-03	2.03 IE-03	1.00 IE-03	1.01 1E-03
Co-1/1	4.31 1E-03	1 15 1E-03	2.07 TE-03	1.82 1E-05	1.40 TE-03	9.07 1E-04	1.21 1E-04
Ce-143	5.59 1E-04	4.53 1E-04	3.20 1E-03	4.05 1E-05	1.53 1E-03	1.02 1F-04	5.53 1E-05
Ce-144	3.49 1E-05	272 1E-05	1.80 1E-05	1 10 1E-05	7.89 1E-06	5.08 1E-06	2.69 1E-06
Pr-145	5.30 1E-05	4.37 1E-05	3.16 1E-05	2.10 1E-05	1.59 1E-05	1.07 1E-05	5.93 1E-06
Nd-147	2.76 1E-04	2.21 1E-04	1.54 1E-04	9.81 1E-05	7.25 1E-05	4.80 1E-05	2.61 1E-05
Pm-148	1.15 1E-03	9.54 1E-04	6.96 1E-04	4.67 1E-04	3.55 1E-04	2.41 1E-04	1.34 1E-04
Pm-148m	4.20 1E-03	3.47 1E-03	2.50 1E-03	1.64 1E-03	1.23 1E-03	8.30 1E-04	4.57 1E-04
Pm-149	7.77 1E-07	6.35 1E-07	4.52 1E-07	2.91 1E-07	2.16 1E-07	1.44 1E-07	7.82 1E-08
Pm-151	6.83 1E-04	5.56 1E-04	3.94 1E-04	2.54 1E-04	1.89 1E-04	1.26 1E-04	6.86 1E-05
Eu-152	2.28 1E-03	1.89 1E-03	1.37 1E-03	9.14 1E-04	6.93 1E-04	4.69 1E-04	2.60 1E-04
Eu-152m	5.97 1E-04	4.91 1E-04	3.54 1E-04	2.34 1E-04	1.77 1E-04	1.20 1E-04	6.61 1E-05
Eu-154	2.47 1E-03	2.04 1E-03	1.48 1E-03	9.87 1E-04	7.48 1E-04	5.07 1E-04	2.81 1E-04
Eu-155	1.01 1E-04	7.68 1E-05	4.93 1E-05	2.92 1E-05	2.07 1E-05	1.32 1E-05	6.88 1E-06
Eu-156	2.59 1E-03	2.15 1E-03	1.58 1E-03	1.07 1E-03	8.14 1E-04	5.57 1E-04	3.12 1E-04
Ht-181	1.13 1E-03	9.19 1E-04	6.52 1E-04	4.23 1E-04	3.14 1E-04	2.09 1E-04	1.14 1E-04
1a-182	2.56 1E-03	2.11 1E-03	1.53 1E-03	1.03 1E-03	7.79 1E-04	5.28 1E-04	2.94 1E-04
Ph-210	1.00 IE-03	0.04 IE-04	0.33 IE-04	4.14 1E-04	3.10 1E-04 8.08 1E-07	2.00 IE-04	1.14 1E-04 2.48 1E-07
Ph-212	2.89 1E-04	233 1E-00	1.61 1E-04	1.19 1E-00	7.45 1E-05	4.91 1E-07	2.40 1E-07
Bi-212	2.05 1E 04	178 1E-04	1.30 1E-04	8.64 1E-05	6.55 1E-05	4.44 1E-05	2.00 1E 00
Ra-224	2.09 1E-05	1.70 1E-05	1.20 1E-05	7.60 1E-06	5.61 1E-06	3.69 1E-06	1.99 1E-06
Ra-226	1.34 1E-05	1.09 1E-05	7.50 1E-06	4.70 1E-06	3.44 1E-06	2.25 1E-06	1.20 1E-06
Ac-228	1.95 1E-03	1.62 1E-03	1.17 1E-03	7.81 1E-04	5.92 1E-04	4.01 1E-04	2.22 1E-04
Th-228	5.20 1E-06	3.84 1E-06	2.43 1E-06	1.44 1E-06	1.03 1E-06	6.57 1E-07	3.46 1E-07
Th-231	3.77 1E-05	2.60 1E-05	1.52 1E-05	8.50 1E-06	5.92 1E-06	3.70 1E-06	1.91 1E-06
Th-232	1.60 1E-06	1.01 1E-06	5.36 1E-07	2.80 1E-07	1.90 1E-07	1.16 1E-07	5.87 1E-08
Th-234	1.50 1E-05	1.12 1E-05	7.05 1E-06	4.12 1E-06	2.91 1E-06	1.84 1E-06	9.59 1E-07
Pa-233	4.43 1E-04	3.57 1E-04	2.51 1E-04	1.60 1E-04	1.18 1E-04	7.76 1E-05	4.20 1E-05
U-232	2.20 1E-06	1.40 1E-06	7.51 1E-07	3.95 1E-07	2.70 1E-07	1.65 1E-07	8.42 1E-08
U-234	1.85 1E-06	1.15 1E-06	5.95 1E-07	3.05 1E-07	2.06 1E-07	1.25 1E-07	6.30 1E-08
U-235	3.30 1E-04	2.65 1E-04	1.82 1E-04	1.14 1E-04	8.35 1E-05	5.44 1E-05	2.91 1E-05
U-230	1.50 1E-06	9.26 1E-07	4.76 1E-07	2.42 1E-07	1.63 1E-07	9.82 1E-08	4.95 1E-08
11-238	2.09 IE-04	2.03 IE-04 9.74 1E-07	5.00 1E-04	0.20 IE-00 255 1E-07	J.90 IE-03 171 1E-07	103 1E-03	2.00 IE-00 5.20 IE-09
0-230 Nn-237	5.29 1E-05	3.86 1E-07	239 1E-05	2.33 TE-07	9.79 1E-06	6.20 1E-07	3.20 TE-08
Np-238	1.31 1F-03	1.08 1F-03	7.88 1F-04	5.28 1F-04	4.01 1F-04	2.72 1F-04	1.51 1F-04
Np-239	3.48 1E-04	2.78 1E-04	1.90 1E-04	1.18 1E-04	8.62 1E-05	5.62 1E-05	3.01 1E-05
Pu-236	2.04 1E-06	1.25 1E-06	6.38 1E-07	3.23 1E-07	2.17 1E-07	1.31 1E-07	6.59 1E-08
Pu-238	1.97 1E-06	1.20 1E-06	6.05 1E-07	3.04 1E-07	2.04 1E-07	1.22 1E-07	6.14 1E-08
Pu-239	8.80 1E-07	5.56 1E-07	2.95 1E-07	1.55 1E-07	1.06 1E-07	6.53 1E-08	3.33 1E-08
Pu-240	1.72 1E-06	1.05 1E-06	5.32 1E-07	2.68 1E-07	1.79 1E-07	1.08 1E-07	5.41 1E-08
Pu-242	1.59 1E-06	9.67 1E-07	4.88 1E-07	2.45 1E-07	1.64 1E-07	9.85 1E-08	4.94 1E-08
Am-241	4.17 1E-05	2.95 1E-05	1.73 1E-05	9.59 1E-06	6.64 1E-06	4.12 1E-06	2.11 1E-06
Am-242	2.85 1E-05	2.15 1E-05	1.38 1E-05	8.16 1E-06	5.80 1E-06	3.70 1E-06	1.94 1E-06
Am-242m	6.51 1E-06	4.07 1E-06	2.13 1E-06	1.10 1E-06	7.45 1E-07	4.53 1E-07	2.29 1E-07
Am-243	9.05 1E-05	6.78 1E-05	4.23 1E-05	2.45 1E-05	1.73 1E-05	1.09 1E-05	5.64 1E-06
Cm-242	1.76 1E-06	1.07 1E-06	5.41 1E-07	2.12 1E-01	1.82 1E-07	1.10 1E-07	0.01 1E-08
Cm^{243}	2.00 TE-04	2.04 TE-04	1.40 TE-04	0.13 TE-UD	0.3/ TE-U5	4.10 1E-U5	2.23 1E-U5
Cm-244	1.00 IE-00	1.01 1E-00	3.03 12-07 8.65 1E-05	2.00 IE-07	1.71 1E-07 3.78 1E-05	1.03 IE-07 2/3 1E-05	J.17 1E-U0 1.20 1E-05
Cm-247	6.51 1E-04	5.32 1E-04	3.80 1E-04	2.46 1E-04	1.83 1E-04	1.22 1E-04	6.65 1E-05
	,.						

- (1) 「In Situ Ge(Li) and Nal(TI) Gamma-ray Spectrometry」
 H.L.Beck, J.DeCampo and C.Gogolak: Report HASL-258 (1972)
- (2) ^rGamma-Ray Spectrometry in the Environment International Commission on Radiation Units and Measurements: ICRU Report 53(1994)
- (3)「可搬型 Ge(Li)検出器を用いた環境ガンマ線の in-situ 測定」
 阪井英次、寺田博海、片桐政樹: JAERI-M6498 (1976)
- (4) 「Field Gamma-Ray Spectrometry」K.M.Miller:
 EML Procedures Manual, HASL-300, Section3.3 (1997)

「ゲルマニウム半導体検出器を用いた in-situ 測定法(案)」誤記一覧

3.5.2 ピーク探査、核種同定及びピーク面積算出

ピーク探査、核種同定及びピーク面積算出については、通常の 線スペクトロメトリー と同様であるため、<u>文部科学省</u>放射能測定法シリーズ<u>No.7「ゲルマニウム半導体検出器に</u> よるガンマ線スペクトロメトリー」を参考に実施する。

平常時に一般的に検出される核種を表 3.1 に示す。

	人工放射性核種		
ウラン系列	トリウム系列	その他	
²¹⁴ Pb ²¹⁴ Bi	²⁰⁸ TI ²¹² Pb ²¹² Bi ²²⁸ Ac	⁴⁰ K ⁷ Be	¹³⁷ Cs

3.5.3 エネルギー校正

エネルギー校正については、野外での測定であり、温度変化の影響や電源投入後比較的 短時間の内に測定を開始しなければならないことなどから、in-situ 測定特有の注意が必 要である。実験室等での 線源を用いたエネルギー校正時から、温度変化等によってピー クがシフトしてしまう可能性があるため、in-situ 測定したスペクトルについて、その中 に検出されたエネルギー既知のピークを用いてエネルギー校正を再度実施する。in-situ 測定では、大抵の場合自然に存在する放射性核種が検出されるため、それらのピークを利 用することができる。放射性核種と放出 線エネルギーの一例を表 3.2 に示す。

表3.2 エネルギー校正に利用できる自然に存在する放射性核種と 線エネルギー

核種	線エネルギー (keV)	放出率 (%)
²¹² Pb	239	43.4
²¹⁴ Pb	352	36.9
²⁰⁸ T I	583	30.6
²¹⁴ Bi	609	46.9
²²⁸ Ac	911	29.0
⁴⁰ K	1461	10.7
²⁰⁸ TI	2615	35.9

(ICRU Rep.53 より引用)

第5章 測定結果の補正

in-situ 測定法は、周囲の地形、検出器設置高さ等を仮定して解析を行うため、解析の条件と実際の条件が異なった場合の解析結果への影響を把握しておく必要がある。

in-situ 測定で放射能濃度を算出する際に必要な係数(式 4.4 の /A、付表-1 及び表 4.4 の値)は、 線を減衰させるような障害物が周囲になく、無限に開かれた地形(無限平面) を仮定しての計算値である。しかし、実際の測定では完全な無限平面地形はあり得ないため、 無限平面を仮定して放射能濃度を解析すると過小評価となる(解説 <u>BD</u>-1)。この過小評価に ついては、周辺の広がりを把握することで補正することができる。なお、定点での変動監視 を目的として in-situ 測定を行う場合には、必ずしも補正の必要はない。

検出器の設置高さについては、通常 1m の高さに設置するので補正する必要はなく、土壌中の水分については、土壌中における放射性物質の鉛直分布(解説 AC)の影響に含まれるので これについても補正する必要はない。

なお、検出器設置高さの放射能濃度測定値への影響は解説 BD-2 に、土壌中水分の影響は解 説 BD-3 に記載した。

また、空間放射線量率の測定値については、十分に開かれていない場所で測定したスペク トルを無限平面として解析すると、直接線と散乱線の寄与割合が異なるため、線量率の解 析結果は過大評価となる。しかし、その影響はわずかであるため、空間放射線量率の測定値 については補正する必要はない。

5.1 周辺地形の広がりに対する補正

セシウム 137 が土壌中に指数分布(:4.85 g/cm²)している場合の地上 1m 位置の 線 フルエンス率について、周囲からの寄与割合を図 5.1 に示す。周囲が半径 10m 開けている 場合の測定値は、無限平面の場合の測定値の 85%となる。無限平面でないことに伴う過小 評価の程度は、放射性物質の土壌中における鉛直分布によって異なり、厳密には 線エネ ルギーにも依存する。詳細は解説 BD-1 に記載した。

補正方法としては、検出器を中心として開かれた範囲(平均的な半径)をメジャーやテ ープを用いて算出し、放射能濃度の測定値に表 5.1の補正係数を乗ずる。表 5.1 は、600keV の線を対象とした場合の補正係数であるが、エネルギーの違いによる補正係数の差異は 大きくないため、他のエネルギーに対しても適用することができる。なお、基本的に、空 間放射線量率の測定値を補正する必要はない。

また、補正には、開かれた範囲を特定する必要がある。人工放射性物質がフォールアウ トとして地表に沈着した場合において、アスファルトや建造物への沈着が少ないと考えら れる場合には、土が露出している範囲を開かれた範囲とする。沈着が少ないかどうかの判 断には、サーベイメータによる測定結果や放射性物質が降下してからの経過時間等を参考 にする。

 表図 E.1 ピーク効率の角度依存性の例

 (検出器:p型、L/D;0.9、不感層;1mm、相対効率;40%)

表図E.2 ピーク効率の角度依存性の例 (検出器:n型、L/D; 1.0、不感層; 0.1µm、相対効率; 25%)

付表-1 放射性核種濃度と地上高1mでの 線フルエンス率との関係 (/ A) (土壌中指数分布の場合)

				(土壌	中指数分布	の場合)	単位:	$(s^{-1} \cdot cm^{-2})$	/ (Bq/cm ²)	
 エネルギー 放出比				放射性物質の	土壌中における釒	鉛直分布を表す	パラメータ	(g • cm ⁻²)		
(keV)	(keV) (s ⁻¹ Bq ⁻¹) 核種		0.0	.0 0.1 0.2		0.3 0.5		1.0	2.0	
11.2	0.255	Pb-210	7.90 1E-	02 3.13 1E-02	1.86 1E-02	1.32 1E-02	8.35 1E-03	4.34 1E-03	2.22 1E-03	
12.7	0.081	Th-232	3.58 1E-	02 1.52 1E-02	9.27 1E-03	6.67 1E-03	4.29 1E-03	2.26 1E-03	1.16 1E-03	
12.7	0.089	Th-228	3.91 1E-	02 1.65 1E-02	1.01 1E-02	7.27 1E-03	4.68 1E-03	2.46 1E-03	1.27 1E-03	
13.4	0.079	U-236	4.10 1E-	02 1.78 1E-02	1.10 1E-02	7.99 1E-03	5.18 1E-03	2.74 1E-03	1.42 1E-03	
13.4	0.084	U-238	4.33 1E-	02 1.88 1E-02	1.17 1E-02	8.43 1E-03	5.46 1E-03	2.89 1E-03	1.50 1E-03	
13.4	0.094	U-234	4.85 1E-	02 2.11 1E-02	1.31 1E-02	9.44 1E-03	6.12 1E-03	3.24 1E-03	1.68 1E-03	
13.4	0.102	U-232	5.25 1E-	02 2.29 1E-02	1.42 1E-02	1.02 1E-02	6.63 1E-03	3.51 1E-03	1.82 1E-03	

13.4	0.084	U-238	4.33	1E-02	1.88	1E-02	1.17	1E-02	8.43	1E-03	5.46	1E-03	2.89	1E-03	1.50	1E-03
13.4	0.094	11-234	4 85	1E-02	2 1 1	1E-02	1 31	1E-02	9 4 4	1E-03	6.12	1E-03	3.24	1E-03	1.68	1E-03
13.4	0.004	U_232	5.25	1E 02	2.11	1E 02	1 / 2	1E-02	1.02	1E_02	6.63	1E_03	3.51	1E-03	1.00	1E_03
10.4	0.102	U-232	5.20	10-02	2.29	10-02	1.42	10-02	1.02	10-02	0.00	10-00	0.01	10-00	1.02	10-00
13.7	0.094	111-234	5.20	10-02	2.29	10-02	1.42	10-02	1.05	10-02	0.70	12-03	3.00	12-03	1.04	1E-03
13.7	0.562	Np-237	3.12	1E-01	1.37	1E-01	8.54	1E-02	6.19	1E-02	4.02	1E-02	2.13	1E-02	1.10	1E-02
13.7	0.776	Th-231	4.31	1E-01	1.89	1E-01	1.18	1E-01	8.54	1E-02	5.55	1E-02	2.94	1E-02	1.53	1E-02
14.1	0.040	Pu-239	2.35	1E-02	1.05	1E-02	6.53	1E-03	4.74	1E-03	3.09	1E-03	1.64	1E-03	8.51	1E-04
14.1	0.082	Pu-242	4.89	1E-02	2.17	1E-02	1.36	1E-02	9.85	1E-03	6.41	1E-03	3.41	1E-03	1.77	1E-03
14.1	0.089	Pu-240	5.27	1E-02	2.34	1E-02	1.46	1E-02	1.06	1E-02	6.91	1E-03	3.68	1E-03	1.91	1E-03
14.1	0.102	Pu-238	6.04	1E-02	2.68	1E-02	1.68	1E-02	1.22	1E-02	7.92	1E-03	4.21	1E-03	2.18	1E-03
14.1	0.103	Pu-236	6.10	1E-02	2.71	1E-02	1.69	1E-02	1.23	1E-02	8.00	1E-03	4.26	1E-03	2.21	1E-03
14.4	0.365	Am-241	2.31	1E-01	1.04	1E-01	6.49	1E-02	4.72	1E-02	3.08	1E-02	1.64	1E-02	8.52	1E-03
14.4	0.575	U-237	3.64	1E-01	1.63	1E-01	1.02	1E-01	7.44	1E-02	4.85	1E-02	2.59	1E-02	1.34	1E-02
14.8	0.081	Cm-244	5 42	1E-02	2 45	1E-02	1.54	1F-02	1 12	1E-02	7.32	1E-03	3.91	1E-03	2 03	1E-03
14.8	0.001	Cm-242	5.72	1E-02	2.40	1E-02	1.67	1E-02	1.12	1E-02	7.72	1E-03	4 12	1E-03	2.00	1E-03
14.0	0.000	Am 242	6.60	1 02	2.00	1 02	1.02	1 02	1.10	1E 02	9.01	1 02	4.12	1 = 02	2.14	1 02
14.0	0.090	Am-242	0.00	10-02	2.90	10-02	1.07	10-02	0.44	10-02	0.91	100	4.75	10-03	2.47	10-00
14.8	0.401	CIII-243	3.10	1E-01	1.40	1E-01	0.80	1E-02	0.41	1E-02	4.19	1E-02	2.23	1E-02	1.10	1E-02
14.8	0.471	Cm-245	3.17	1E-01	1.43	1E-01	9.00	1E-02	6.55	1E-02	4.28	1E-02	2.28	1E-02	1.19	1E-02
15.2	0.273	Am-242m	1.93	1E-01	8.84	1E-02	5.59	1E-02	4.09	1E-02	2.68	1E-02	1.44	1E-02	7.49	1E-03
15.5	0.161	Am-242	1.18	1E-01	5.50	1E-02	3.52	1E-02	2.59	1E-02	1.71	1E-02	9.25	1E-03	4.85	1E-03
16.5	0.183	Mo-93	1.48	1E-01	7.23	1E-02	4.74	1E-02	3.54	1E-02	2.38	1E-02	1.30	1E-02	6.92	1E-03
16.6	0.060	Nb-93m	4.88	1E-02	2.39	1E-02	1.57	1E-02	1.17	1E-02	7.89	1E-03	4.34	1E-03	2.30	1E-03
16.6	0.350	Mo-93	2.85	1E-01	1.40	1E-01	9.17	1E-02	6.86	1E-02	4.61	1E-02	2.53	1E-02	1.35	1E-02
18.6	0.090	Mo-93	8.60	1E-02	4.49	1E-02	3.05	1E-02	2.33	1E-02	1.59	1E-02	8.91	1E-03	4.79	1E-03
20.1	0.184	Rh-103m	1.96	1E-01	1.06	1E-01	7.32	1E-02	5.63	1E-02	3.89	1E-02	2.20	1E-02	1.19	1E-02
20.2	0.349	Rh-103m	3.73	1F-01	2.03	1F-01	1.40	1F-01	1.08	1F-01	7.51	1F-02	4.27	1F-02	2.32	1F-02
22.7	0.094	Rh-103m	1 1 1	1E-01	6 4 4	1E-02	4 66	1E-02	3 71	1E-02	2.67	1E-02	1.60	1E-02	9.05	1E-03
25.3	0.001	Sn-117m	5.25	1E-01	3.23	1E_01	2 4 1	1E_01	1 96	1E_01	1.45	1E_01	8.96	1E-02	5 17	1E-02
25.5	0.416	Th 221	1 90	1 01	1 17	1 01	0 70	1 02	7.15	1 02	5.20	1 02	2 20	1 02	1 00	1 02
25.0	0.140	0- 400	1.09		1.17		0.70	10-02	7.10	10-02	5.50	10-02	3.30	10-02	1.90	10-02
20.4	0.150	511-120	2.07	1E-01	1.30	1E-01	9.80	1E-02	8.01	1E-02	5.97	1E-02	3.74	1E-02	2.17	1E-02
27.2	0.103	Te-12/m	1.41	1E-01	8.95	1E-02	6.82	1E-02	5.60	1E-02	4.19	1E-02	2.64	1E-02	1.54	1E-02
27.2	0.127	le-129m	1.74	1E-01	1.10	1E-01	8.40	1E-02	6.90	1E-02	5.17	1E-02	3.26	1E-02	1.90	1E-02
27.2	0.327	Te-125m	4.46	1E-01	2.83	1E-01	2.16	1E-01	1.77	1E-01	1.33	1E-01	8.37	1E-02	4.88	1E-02
27.5	0.193	Te-127m	2.65	1E-01	1.69	1E-01	1.29	1E-01	1.06	1E-01	7.97	1E-02	5.03	1E-02	2.93	1E-02
27.5	0.237	Te-129m	3.26	1E-01	2.08	1E-01	1.59	1E-01	1.31	1E-01	9.80	1E-02	6.19	1E-02	3.61	1E-02
27.5	0.611	Te-125m	8.39	1E-01	5.36	1E-01	4.09	1E-01	3.36	1E-01	2.52	1E-01	1.59	1E-01	9.29	1E-02
27.8	0.156	Te-129	2.17	1E-01	1.39	1E-01	1.06	1E-01	8.76	1E-02	6.59	1E-02	4.17	1E-02	2.44	1E-02
29.4	0.152	Np-237	2.22	1E-01	1.45	1E-01	1.13	1E-01	9.35	1E-02	7.09	1E-02	4.53	1E-02	2.66	1E-02
29.5	0.185	I-129	2.69	1E-01	1.77	1E-01	1.37	1E-01	1.14	1E-01	8.64	1E-02	5.52	1E-02	3.25	1E-02
29.8	0.343	1-129	5.05	1F-01	3.33	1F-01	2.59	1F-01	2.15	1E-01	1.63	1E-01	1.05	1E-01	6.15	1E-02
30.6	0.092	Cs-134m	1.37	1E-01	9.12	1E-02	7 12	1E-02	5 94	1E-02	4 54	1E-02	2.93	1E-02	1 74	1E-02
31.0	0.067	Te-127m	9.98	1E-02	6.68	1E-02	5.23	1E-02	4 37	1E-02	3 35	1E-02	2.00	1E-02	1 30	1E-02
21.0	0.069	To 120m	1.02	1 01	6.91	1 02	5.20	1 02	4.07	1 02	2 4 2	1E 02	2.17	1 02	1.00	1 02
31.0	0.000	Co 124m	2.54	1 01	1 70	102	1 22	102	4.40	1E 01	0.42	1E 02	Z.22 E E 1	1E 02	2.20	1E 02
31.0	0.170	CS-134111	2.04		1.70		1.55		1.11		0.00	10-02	0.01	10-02	3.29	10-02
31.0	0.212	Te-125m	3.16	1E-01	2.11	1E-01	1.65	1E-01	1.38	1E-01	1.06	1E-01	6.87	1E-02	4.11	1E-02
31.8	0.021	Ba-137m	3.09	1E-02	2.09	1E-02	1.64	1E-02	1.38	1E-02	1.06	1E-02	6.95	1E-03	4.19	1E-03
32.2	0.038	Ba-137m	5.71	1E-02	3.87	1E-02	3.05	1E-02	2.56	1E-02	1.98	1E-02	1.30	1E-02	7.89	1E-03
33.6	0.122	I-129	1.85	1E-01	1.27	1E-01	1.01	1E-01	8.54	1E-02	6.66	1E-02	4.44	1E-02	2.73	1E-02
35.0	0.050	Cs-134m	7.69	1E-02	5.35	1E-02	4.29	1E-02	3.64	1E-02	2.86	1E-02	1.93	1E-02	1.21	1E-02
35.5	0.067	Te-125m	1.03	1E-01	7.16	1E-02	5.75	1E-02	4.90	1E-02	3.86	1E-02	2.62	1E-02	1.64	1E-02
38.7	0.223	Nd-147	3.51	1E-01	2.52	1E-01	2.06	1E-01	1.77	1E-01	1.42	1E-01	9.86	1E-02	6.33	1E-02
39.6	0.075	I-129	1.19	1E-01	8.59	1E-02	7.05	1E-02	6.08	1E-02	4.90	1E-02	3.42	1E-02	2.21	1E-02
43.0	0.118	Eu-155	1.90	1E-01	1.41	1E-01	1.18	1E-01	1.03	1E-01	8.38	1E-02	5.96	1E-02	3.92	1E-02
59.5	0.345	U-237	5.85	1E-01	4.69	1E-01	4.06	1E-01	3.65	1E-01	3.09	1E-01	2.32	1E-01	1.61	1E-01
59.5	0.359	Am-241	6.08	1E-01	4 88	1E-01	4 23	1E-01	3.80	1E-01	3.22	1E-01	2 4 1	1E-01	1 67	1E-01
643	0.096	Sn-126	1 63	1E-01	1 32	1E-01	1 15	1E-01	1 04	1E-01	8.86	1E-02	673	1E-02	4 70	1E-02
747	0.674	Am-243	1 15		9.40	1E-01	8 36	1E-01	7.62	1E-01	6.56.6.55	1E_01	5.06	1E-01	3 60	1E-01
7/ 9	0.07	Dh_212	1 70	1E.01	1 47	15.01	1 20	1E 01	1 1 0 2	15.01	1 00	1E 01	7 9/	1E 00	5.00	15.02
774.0	0.104	Dh 212	1.70	10-01	1.47	10-01	1.30	10-01	1.10	10 01	1.02	10 04	1.04	10-02	0.00	16-02
04.0	0.170	Th 004	2.99		2.40		2.19		2.00		1.72		1.33		9.49	10-02
04.Z	0.067	111-231 No. 007	1.15		9.55	10-02	0.48	10-02	1.14	10-02	0.70	10-02	5.Z1	10-02	3.70	10-02
80.5	0.123	NP-23/	2.10	1E-01	1.76	1E-01	1.56	1E-01	1.42	1E-01	1.23	1E-01	9.63	TE-02	6.96	TE-02