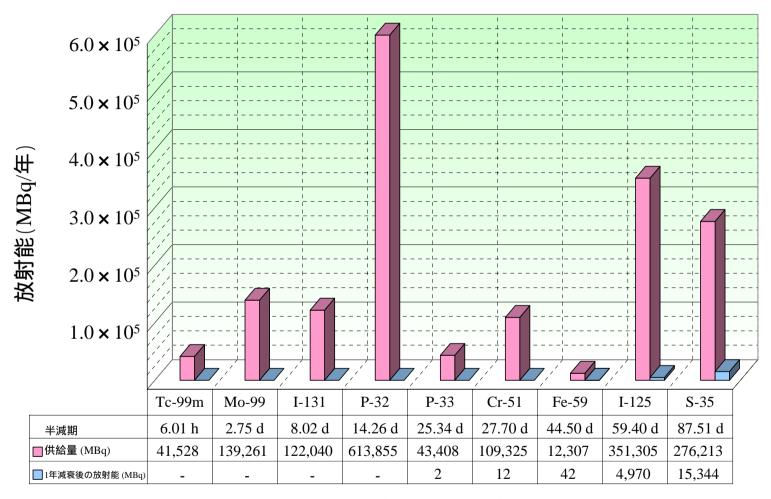
短半減期核種のみを含む廃棄物の クリアランスの可能性

- RI供給量と廃棄物重量によるケーススタディ -

平成17年10月26日 日本アイソトープ協会

■試算条件

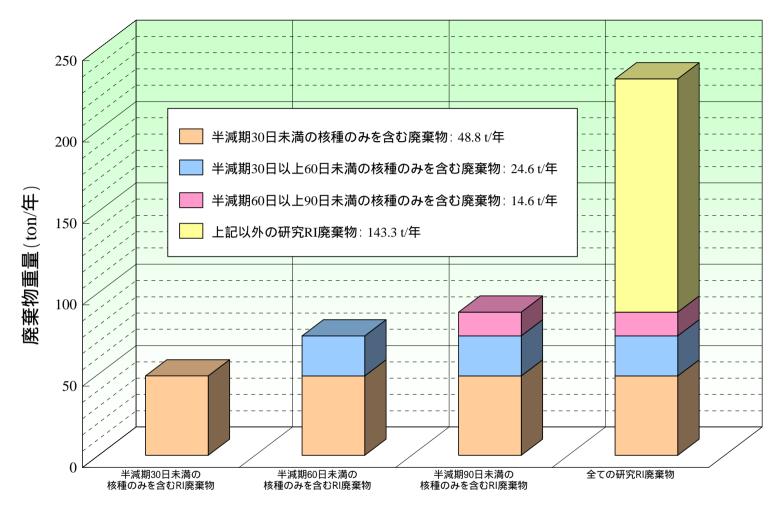
■ 短半減期核種 : 半減期30日未満、60日未満、90日未満の3通りで区分


■放射能・供給量が全量廃棄物に含まれると想定

■ 廃棄物重量 集荷実績より推定

■ クリアランスレベル: IAEA RS-G-1.7の値を使用

■試算方法


■ 1年間減衰後の短半減期核種のみを含む廃棄物の放射能濃度と IAEA RS-G-1.7の値との比較を行った。

注1: 供給量は、RI協会が「障害防止法」の規制対象事業所に平成12~16年度に供給した量の平均値。 注2: 1.0×10-1MBq以下の値は"-"とした。

注2. 1.0×10 MBq以下の値は - とした。

図1. 主な短半減期核種の供給量

注1:集荷量は、RI協会が「障害防止法」の規制対象事業所より平成12~16年度に集荷した量の平均値。

注2: RI廃棄物に含まれる核種は、RI使用事業所が作成した「RI廃棄物記録票」による。 注3: 同一容器に複数の核種が収納されている廃棄物は、廃棄物重量を核種数により按分。

図2. 主な短半減期核種のみを含むRI廃棄物の重量

表. 主な短半減期核種のみを含む廃棄物の放射能濃度とRS-G-1.7の値との比

核種	RS-G-1.7 の値 C (Bq/g)	放射能濃度 D (Bq/g)			D/C		
		30日未満	60日未満	90日未満	30日未満	60日未満	90日未満
Tc-99m	100	ı	1	1	ı	-	1
Mo-99	10	ı	ı	-	ı	-	-
I-131	10	-	-	-	-	-	-
P-32	1000	0.00025	0.00017	0.00014	-	-	-
P-33	1000	0.04112	0.02734	0.02280	0.00004	0.00003	0.00002
Cr-51	100	0.24238	0.16115	0.13441	0.00242	0.00161	0.00134
Fe-59	1		0.56997	0.47541		0.56997	0.47541
I-125	100		67.70451	56.47172		0.67705	0.56472
S-35	100			174.35970			1.74360
合 計		0.28375	68.46314	231.46418	0.00246	1.24866	2.78509

注1: 廃棄物の放射能濃度は、供給量を1年減衰補正させた放射能を廃棄物重量で除した値。

注2: 放射能濃度が1.0×10-6 Bq/g以下及びD/Cの値が1.0×10-6 以下の値は"-"とした。

注3: 対象の半減期からはずれる核種については、"ここここ"とした。

■結果

- ▶ 半減期が30日未満の核種の場合には、供給量が全て廃棄物に含まれる と想定した場合でも、1年間の減衰保管期間を経ることにより、クリアランス レベル以下となる。
- > 子孫核種が放射性同位元素の場合には、子孫核種の放射能濃度にも 留意する必要がある。(参考資料参照)

子孫核種を有する短半減期核種について

(⁹⁹Mo, ^{99m}Tc の使用に伴って発生する廃棄物中の ⁹⁹Tc の放射能濃度試算例)

1. ⁹⁹Mo, ^{99m}Tc **の子孫核種**

99Mo, 99mTc は下記のように壊変し、半減期が 2.11 × 105 年の 99Tc となる。

2. ⁹⁹Mo - ^{99m}Tc ジェネレータによる ^{99m}Tc の溶出

 99m Tc はガラスカラム内のアルミナに吸着させたモリブデン塩酸(99 Mo)へ、生理食塩水を加えることにより、過テクネチウム酸ナトリウム(99m Tc)として溶出される。装置の概要を図 1、 99 Mo からの 99m Tc の生成曲線を図 2 に示す。

図 1. ジェネレータユニット 1)

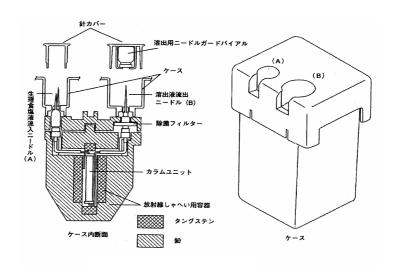



図 2. ⁹⁹Mo の崩壊曲線及び ^{99m}Tc の生成曲線 ²⁾

3. 廃棄物中の ⁹⁹Tc の放射能濃度試算

(1) 試算方法

 99 Mo は海外で製造され輸入後、国内のメーカーによりジェネレータのカラム中のアルミナに分注・吸着される。 99 Mo 99m Tc 99m Tc 99m Tc 99m Tc は 1 日後に使用者へ供給される。従って、 99 Tc の放射能は、 99 Mo, 99m Tc の供給量を各々 5 日、 1 日逆減衰補正した放射能から生成するものとした。

で求めた ⁹⁹Tc の放射能がすべて廃棄物に含まれるとして、集荷廃棄物の重量で除し、廃棄物中の ⁹⁹Tc の放射能濃度を試算した。

(2) ⁹⁹Mo の子孫核種としての ⁹⁹Tc の放射能

平成 $12 \sim 16$ 年度の 99 Mo の平均供給量は 1.39×10^{11} Bq であるため、メーカーでの 溶出作業直後の 99 Mo の放射能は 4.91×10^{11} Bq になる。最終的に、この放射能すべ てが 99 Tc に壊変するので、 99 Mo による 99 Tc の放射能は 1.75×10^4 Bg となる。

(3) 99mTc **の子孫核種としての**99Tc **の放射能**

平成 $12 \sim 16$ 年度の $^{99\text{m}}$ Tc の平均供給量は 4.15×10^{10} Bq であるため、(2)と同様の方法により、 $^{99\text{m}}$ Tc による 99 Tc の放射能は $\underline{2.15 \times 10^3}$ Bq となる。

(4) 廃棄物中の ⁹⁹Tc の放射能濃度

半減期 30 日未満の核種のみを含む廃棄物重量は、平均 48.8 t/年である。従って、 廃棄物中に含まれる ⁹⁹Tc の放射能濃度は、(2)及び(3)より

$$(1.75 \times 10^4 + 2.15 \times 10^3) / 4.88 \times 10^7 = 4.0 \times 10^{-4} \text{ Bq/g}$$

以上の試算結果から、供給される 99 Mo, 99m Tc の全放射能が半減期 30 日末満の核種のみを含む廃棄物に移行したと仮定し試算しても、廃棄物中の 99 Tc の放射能濃度は RS-G-1.7 の値:1 Bq/g を十分下回る。

参考文献

- 1) 日本メジフィジックス株式会社, "医療用医薬品添付文書集 2004 年度版", 51 (2004).
- 2) 株式会社第一ラジオアイソトープ研究所, "放射性医薬品添付文書集", 9 (2004).