Tsuruga International Symposium 2025 November 14, 2025

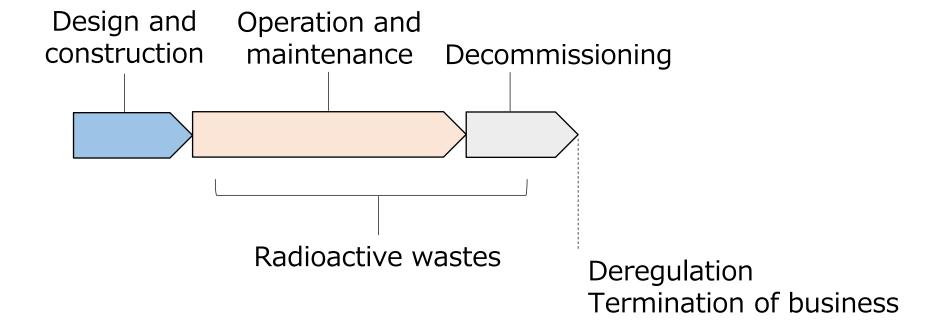
Current Status and Challenges on Decommissioning in Japan

- Future of Local Communities through Decommissioning and Clearance system -

Satoshi Yanagihara University of Fukui (Visiting Professor)

Lecture Contents

- Plant Life Cycle
- Decommissioning Process
- Development of Decommissioning Business



Progress of Nuclear Power Generation in Japan

1953	Atoms for Peace							
	(Beginning of the peaceful use of nuclear energy as advocated by President Eisenhower)							
1954	Start of research on nuclear power (initial nuclear budget: 235 million yen)							
1963	Japan's first success of nuclear power generation (Power demonstration reactor JPDR, 12.5 MW)							
1966	Start of operation at Tokai Nuclear Power Plant (Japan Atomic Power Company's Calder Hall reactor,							
	125 MW)							
1970	Tsuruga Nuclear Power Plant Unit 1 (Japan Atomic Power, BWR, 375 MW)							
1970	Mihama Nuclear Power Plant Unit 1 (Kansai Electric Power, PWR, 340 MW)							
1971	Fukushima Nuclear Power Plant Unit 1 (Tokyo Electric Power, BWR, 460 MW)							
Follo	wed by a construction rush of larger nuclear power plants: 60 nuclear plants built							
	: 1992: Start of operation of Rokkasho Low-Level Radioactive Waste Disposal Center							
	: 1993: Decision made to abandon ocean dumping as a disposal option (Atomic Energy							
	: Commission)							
	: 2005: Amendment of the Nuclear Reactor Regulation Law (clearance system)							
2011	Accidents at Fukushima Daiichi Nuclear Power Plant Units 1-3							
2022	Amendment of the Nuclear Reactor Regulation Law regarding the 40-year rule (extension to 60-							
	year operation at maximum)							

Plant Life Cycle

Current Status of Commercial Nuclear Power Plants in Japan

志賀 102

敦賀 1 2 3 4

60 units of commercial nuclear power reactors have been constructed in Japan.

Operating	14
Passed examination	4
Under examination	8
Application pending	10
Subject to decommissioning	24

Including Monju and Fugen owned by JAEA, 26 reactors are currently being decommissioned.

JPDR, the first demonstration nuclear power plant in Japan, has completed its plant cycle (decommissioning).

東通(東京電力HD) 1 2 美浜 1 2 3 東通(東北電力) 大飯 1 2 3 4 柏崎刈羽 高浜 1 2 3 4 1234567 島根 1023 女川 1023 上関 1 2 福島第一 123456 玄海 1 2 3 4 福島第二 1234 東海 東海第二 浜岡 123456 川内 1 2 3 PWR BWR **▲ GCR** 未申請 審査中 許可

泊 1 2 3

Website of the Federation of Electric Power Companies of Japan (FEPC) (https://www.fepc.or.jp/sp/re-operation/)

As of August 2025

大間

Website of the Agency for Natural Resources and Energy (ANRE) (https://www.enecho.meti.go.jp/about/special/johoteikyo/genshi ryoku saikado.html)

Decommissioning of the JPDR

Outline of the JPDR

Reactor type: Boiling Water Reactor (BWR)

Output: 90 MW (Initially 45 MW)

Operation: 1963-1976

Dismantling

 Purpose: Verification of dismantling technologies, acquisition of data and experience

Duration: December 1986 to March 1996

Expense: Approx. 23 billion yen (including technology development)

Waste volume: 3,770 tons (radioactive)

Exposure dose: 306 person-mSv (maximum individual dose: 8.5 mSv)

Waste management

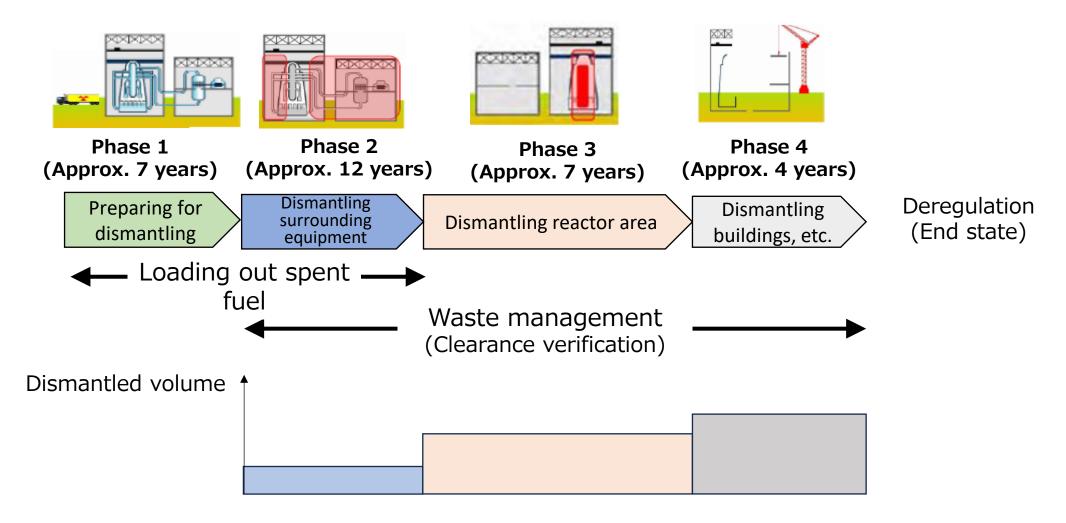
- All radioactive wastes were stored, except for concrete with very low radioactivity.
- Very low radioactive wastes were used for the waste burial field tests.
- Classification of non-radioactive wastes was implemented.

Nuclear Power Plants in Fukui Prefecture

Decommissioning phase

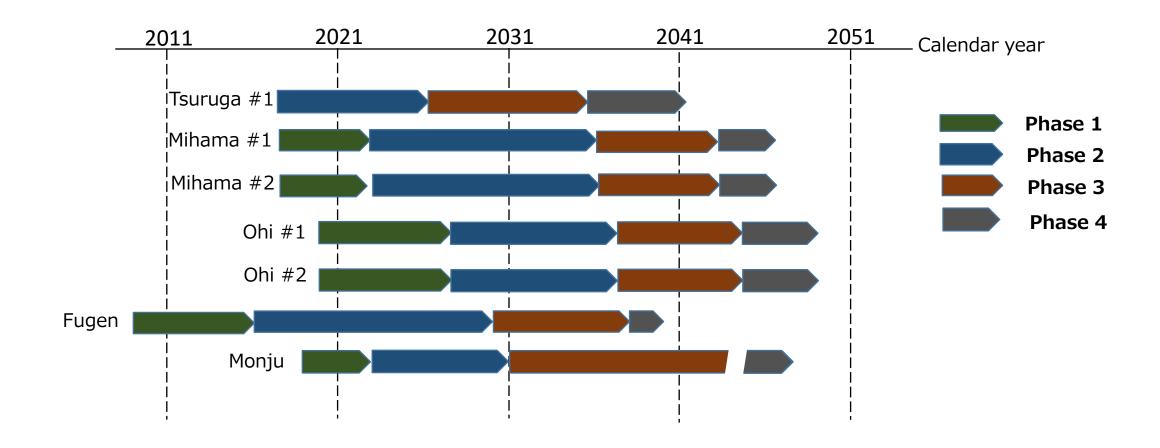
ן				Output	Installation	Commercial	Permanent	Decommis-	Decommis-
	No.	Plant name	Type	(MWe)	approval	operation	shutdown	sioning	sioning period
					(year)	(year)	(year)	(year)	(year)
	1	Tsuruga #1	BWR	357	1966	1969	2011	2017	24
	2	Mihama #1	PWR	340	1966	1970	2010	2017	40
	3	Mihama #2	PWR	500	1968	1972	2011	2017	40
	4	Ohi #1	PWR	1175	1972	1977	2011	2019	31
	5	Ohi #2	PWR	1175	1972	1978	2011	2019	31
	6	Fugen	ATR	165	1970	1978	2003	2008	34
	7	Monju	FBR	280	1983	1995	2010	2018	38

Operation phase

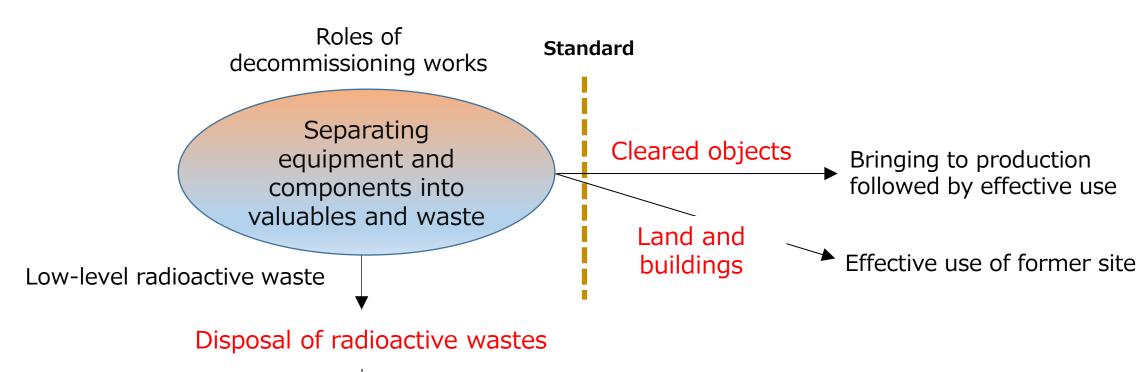

8	Tsuruga #2	PWR	1160	1982	1987
9	Mihama #3	PWR	826	1972	1976
10	Ohi #3	PWR	1180	1987	1991
11	Ohi #4	PWR	1180	1987	1993
12	Takahama #1	PWR	826	1969	1974
13	Takahama #2	PWR	826	1970	1975
14	Takahama #3	PWR	870	1980	1985
15	Takahama #4	PWR	870	1980	1985

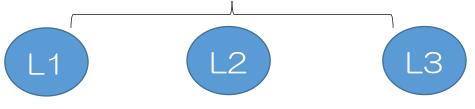
Application pending

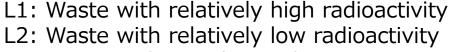
Operating



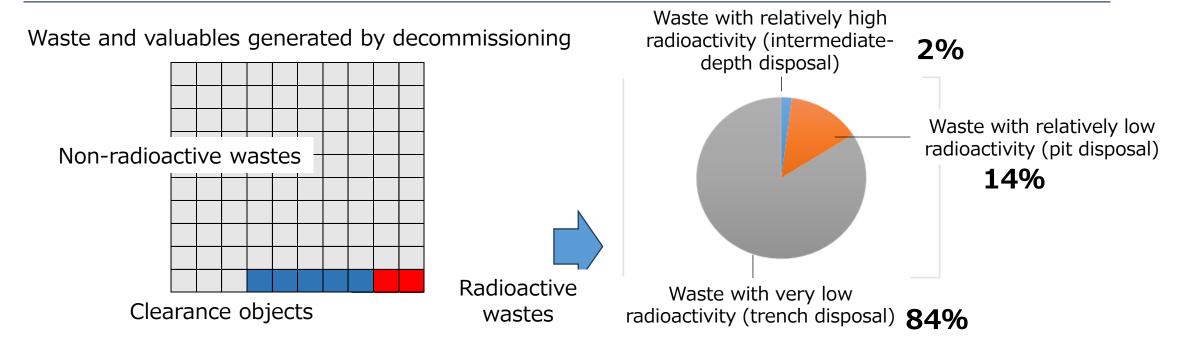
Main Processes in Decommissioning




Decommissioning Process for Nuclear Power Plants in Fukui Prefecture


Decommissioning and Radioactive Waste

Undecided Rokkasho Low-Level Radioactive Waste Disposal Center (Currently dealing with operating waste)


Undecided Approx. 50 years of management

L3: Waste with very low radioactivity

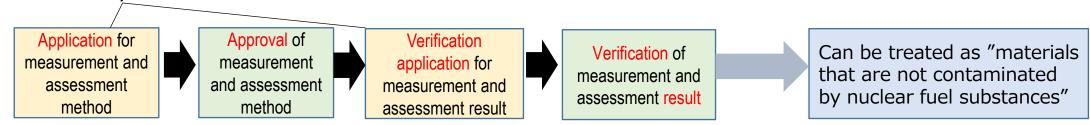
Generated Amount of Radioactive Waste (by Decommissioning)

Nuclear Power Plants in Fukui Prefecture (Decommissioning phase)

Level	Tsuruga #1	Mihama #1	Mihama #2	Ohi #1	Ohi #2	Fugen	Monju*
L1	80	80	80	200	200	500	
L2	760	620	790	1,420	1,430	4,400	
L3	5,530	2,380	2,510	10,080	10,160	5,200	
CL	9,710	6,400	7,500	6,600	6,600	40,800	
NR	130,620	15,750	15,750	319,000	319,000	138,500	
Total	146,700	25,230	26,630	337,300	337,390	189,400	

^{*}not open

unit: ton


Clearance System

What is clearance?

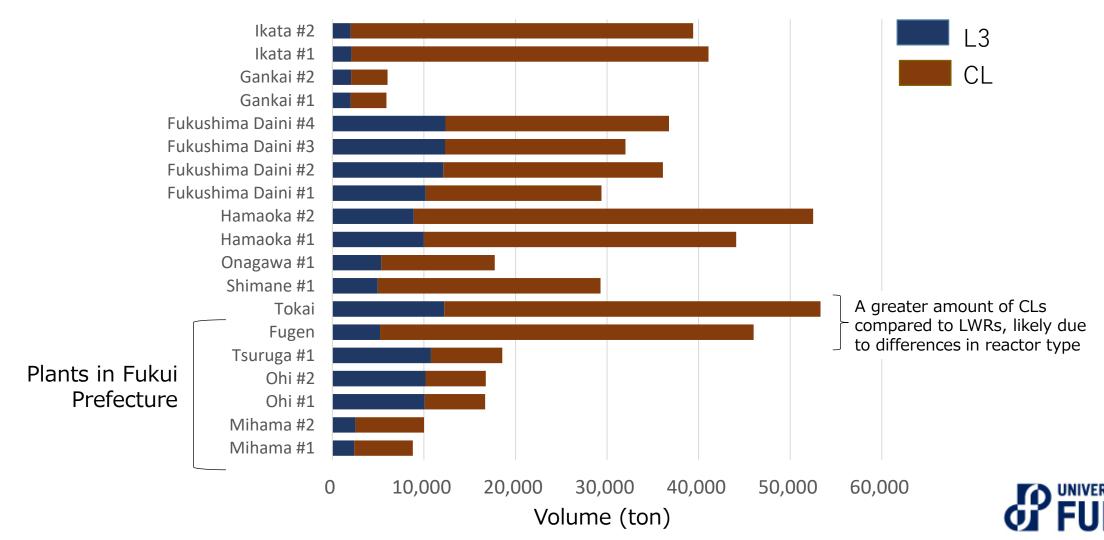
Materials with very low levels of radioactivity that pose negligible impact on the human body, and that have been approved and confirmed by the Nuclear Regulation Authority, shall be treated as "materials that are not contaminated by nuclear fuel materials" and be allowed to be reused (introduced by the 2005 amendment to the Nuclear Reactor Regulation Law).

Verification of clearance

Regulatory authorities conduct approval and verification in the following two stages (clearance verification).

Government's effort to establish social acceptance of the clearance system

- Phase 1: Reuse of non-consumable products in supportive communities
- Phase 2: Reuse of non-consumable products / lifting ban on non-consumable products
- Phase 3: Free release / lifting ban on all products



Activities to gain understanding in Fukui Prefecture

Estimated Generation of L3 Wastes and Clearance Objects

Plants in the decommissioning phase

13

Recycling Confirmation Tests of Clearance Objects

Procurement

10 tons of clearance metals procured from Tokai plant and Fugen

Upper: Procurement Lower: Transport

Pretreatment, temporary storage

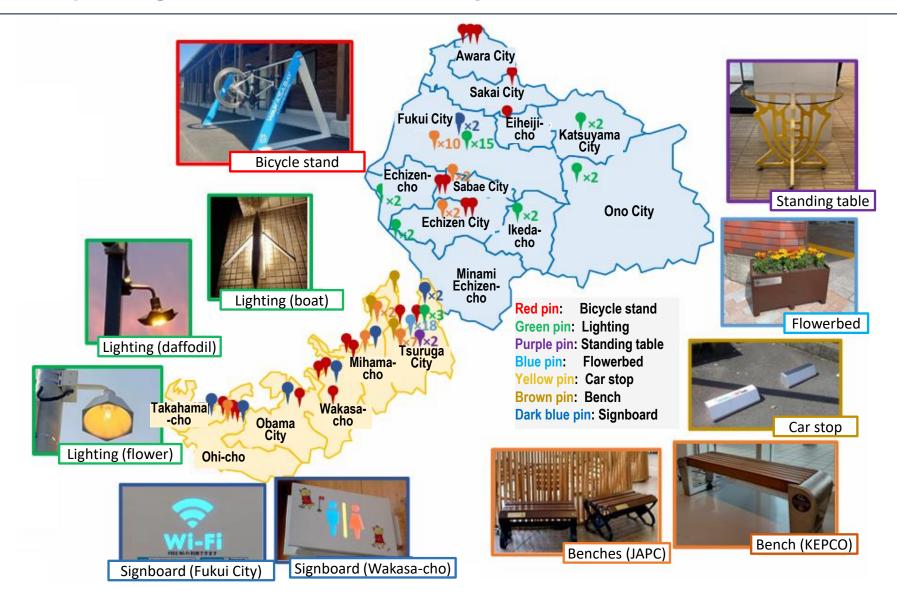
Before cutting

Cutting

After cutting

Primary processing and storage

102 ingots (FC300) (100kg each) manufactured from clearance metal (carbon steel: SS400)


Top left: Melting Top center: Tapping Top right: Pouring
Middle left: Casting Middle center: Unmolding Middle right: After
shot blasting

Bottom left: Storage

Main activities: Ensuring traceability, sorting and management, safety confirmation including doserate measurement, and providing explanations to local governments and surrounding areas to promote understanding

Recycling of Clearance Objects in Fukui Prefecture

Source: Fukui Prefecture's initiatives for reusing clearance metals, Website of Fukui Prefecture (https://www.pref.fukui.lg.jp/doc/dengen/ecoast/250402_rb_03-1.html)

Initiatives in Fukui Prefecture — Reinan E-Coast

Basic Strategy I: Promotion of nuclear-related research and development of human resources

Basic Strategy II: Cultivation of decommissioning business

Basic Strategy III: Regional development through the

utilization of diverse energy sources

Basic Strategy IV: Promotion of diverse local industries

Promoting participation of local companies in decommissioning and related projects, and expansion of products and technology supply

Aiming to utilize the new test reactor, conduct publicity campaigns to identify needs and support its use

Promotion of the reuse of demolition waste and its commercialization

To establish a business model for reusing materials below the clearance level, encourage reuse and understanding among governments and businesses

Development of Decommissioning Business

Centralized Treatment Facility

Centralized treatment facility

Realization of a Recycling-Oriented Society

What is a recycling-oriented society?

A society in which finite resources are used efficiently and reproduced while circulating them in a sustainable manner.

Major issues facing modern society

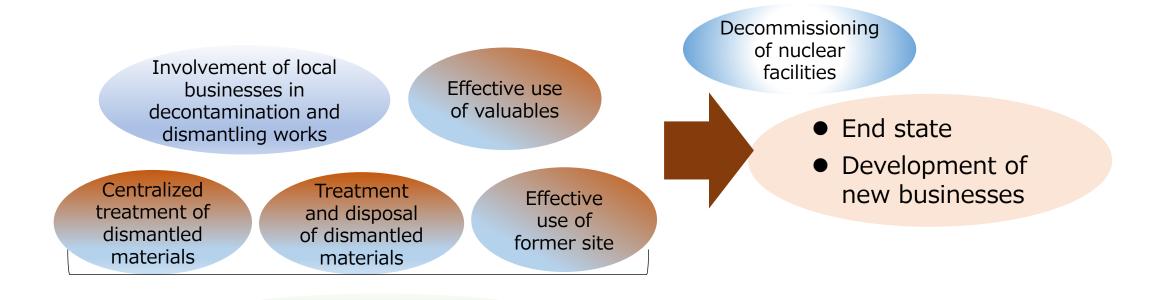
- Environmental issue
- Population growth and decline
- Depletion of resources
- Waste generation
- Final disposal sites

Basic Act for the Promotion of the Recycling-Oriented Society: Established on June 2, 2000.

This law provides the basic framework for promoting the development of a recycling-oriented society. Its objective is to establish a foundation of waste and recycle policies.

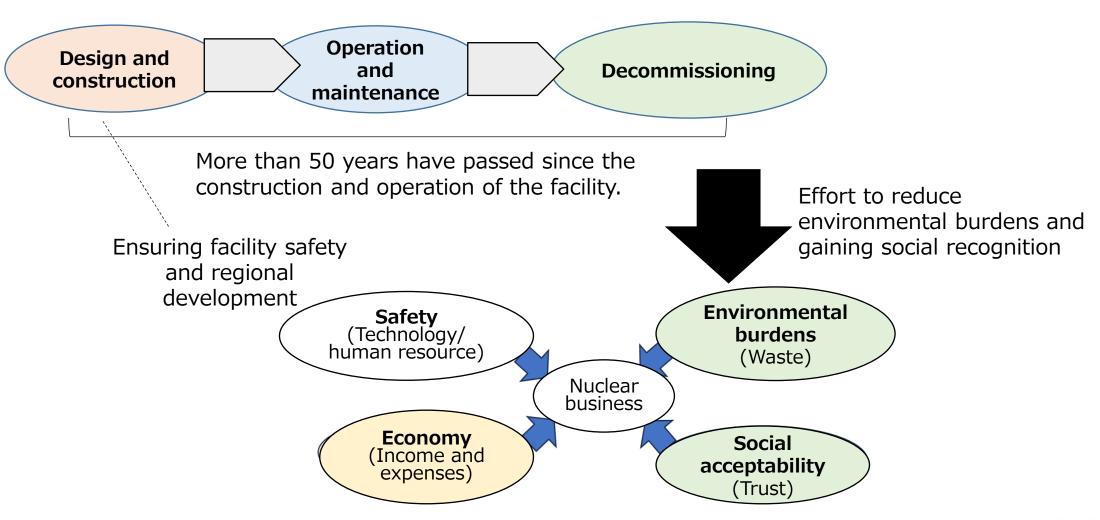
Waste hierarchy (IAEA)

¹⁾ IAEA, Management of Project Risks in Decommissioning, IAEA Safety Series No.97, 2019

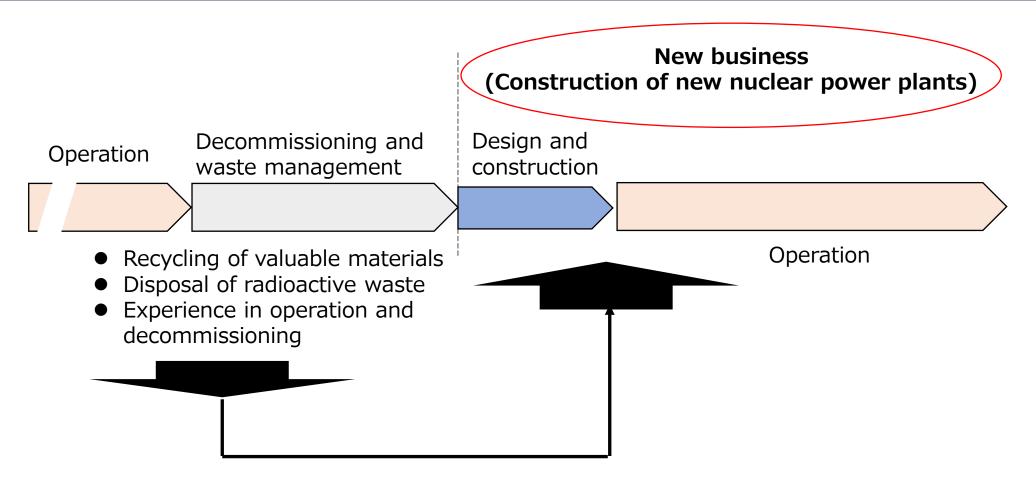

²⁾ IAEA, Nuclear Decommissioning, IAEA Bulletin, April 2023

Efforts to Revitalize Local Communities

Key perspectives (lessons learned from decommissioning and environmental remediation activities)


- Information disclosure
- Citizen involvement and cooperation

Information disclosure from operators Citizen participation (Activating discussion)



Key Perspectives to Consider in Nuclear Business

Development of New Businesses

Organizing and communicating experience and knowledge

Conclusion

- Half a century after the start of nuclear businesses, there is an urgent need for decommissioning and waste management.
- Effective use of the clearance system is of great social significance, closely linked to the SDGs.
- Recycling of clearance materials during decommissioning is a business priority.
- Information disclosure, discussion and cooperation among various people, as well as accountability to future generations, are essential.
- Creating a new culture and business model represents the first step toward future advancement (business) of nuclear technology.
- •Fukui Prefecture's efforts will pave the way for the future of Japan's nuclear business.