Feature Background behind the Emergence of Nobel Prize Winners	
- Aiming at Continuing to Produce Nobel Prize Winners from Japan	1
1 Winning the 2015 Nobel Prize, and the Key to That Achievement	1
(1) Outline of the research that was awarded the 2015 Nobel Prize	
(2) The key to winning the 2015 Nobel Prize · · · · · · · · · · · · · · · · · · ·	6
2 Looking Back on Previous Japanese Nobelists · · · · · · · · · · · · · · · · · ·	16
(1) What is the Nobel Prize? · · · · · · · · · · · · · · · · · · ·	16
(2) Changes in the lineup of Nobel laureates · · · · · · · · · · · · · · · · · · ·	17
(3) The life courses of the Japanese Nobel laureates	21
Part I Challenges in Realizing a Super Smart Society Supported by the IoT, Big Data, and Artificial Intelligence - Japan as a Globa Frontrunner	1
Introduction · · · · · · · · · · · · · · · · · · ·	4.4.
Before Reading Further	
before reading I di tilei	40
Chapter 1 The Advent of a Super Smart Society · · · · · · · · · · · · · · · · · · ·	51
Section 1 Japanese Society in the Future · · · · · · · · · · · · · · · · · · ·	51
1 Purchasing Customized Goods and Friendly Services · · · · · · · · · · · · · · · · · · ·	53
2 Town Planning and the Local Production of Energy for Local Consumption · · · · · · · · · · · · · · · · · · ·	55
3 Desirable Crops Grown to Order · · · · · · · · · · · · · · · · · · ·	
4 Healthcare Management on a Daily Basis · · · · · · · · · · · · · · · · · ·	58
5 The Joys of Everyday Life at a Nursing Home · · · · · · · · · · · · · · · · · · ·	60
6 From Planning to Maintenance of Buildings · · · · · · · · · · · · · · · · · · ·	62
7 Sharing of Various Systems for Disaster Prevention and Mitigation · · · · · · · · · · · · · · · · · · ·	64
Section 2 The Super Smart Society of the Future · · · · · · · · · · · · · · · · · · ·	69
1 Toward the Realization of a Super Smart Society · · · · · · · · · · · · · · · · · · ·	69
(1) Elements common to various aspects of our future society · · · · · · · · · · · · · · · · · · ·	69
(2) Sharing of a vision toward a super smart society	70
2 Major Socioeconomic Changes Associated with the Realization of a Super Smart Society · · · · · · · · ·	71
(1) Changes in industrial structure	71
(2) Changes in the employment situation · · · · · · · · · · · · · · · · · · ·	77
3 Trends of Foreign Countries towards a Super Smart Society · · · · · · · · · · · · · · · · · · ·	82
(1) Policy trends of foreign countries · · · · · · · · · · · · · · · · · · ·	82
(2) Trends of businesses in the U.S.A. and Europe	86
4 Japan's Current Efforts and Challenges towards Realizing a Super Smart Society · · · · · · · · · · · · · · · · · · ·	88
(1) Policymaking by the government · · · · · · · · · · · · · · · · · · ·	88
(2) Efforts by the private sector	90

(3) For sharing a vision of a super smart society: Closer connections between STI and our society
Chapter 2 The Direction of Japan's Efforts towards Realizing
a Super Smart Society (Society 5.0)
Section 1 Promotion and Systemization of R&D that Supports a Super Smart Society 97
1 History and Current State of Core Technology for a Super Smart Society · · · · · · · 97
(1) History of the development of computer technology
(2) History of the development of network technology · · · · · · · 100
(3) History of the development of robot technology · · · · · · · · · · · · · · · · · · ·
(4) A history of the development of artificial intelligence technology
2 The Strengths and Weaknesses of Japan · · · · · 108
3 Efforts towards Realizing a Super Smart Society · · · · · · 120
(1) Efforts to systematize core technologies · · · · · · · · · · · · · · · · · · ·
(2) Strategic strengthening of infrastructure technology for the super smart society
Section 2 Innovation of Techniques for Creating Science, Technology and
Innovation in a Super Smart Society · · · · · 132
1 A Super Smart Society and Open Innovation
(1) Reinforcement of the systems that support the realization of a super smart society · · · · · · · · · · · · · · · · · · ·
(2) Enhancement and practical application of basic technologies that support a super smart society
2 System Improvement towards Realizing a Super Smart Society · · · · · · · · · · · · · · · · · · ·
(1) System improvements necessary for realizing a super smart society
(2) System reforms necessary for realizing a super smart society
3 Paradigm Shifts in Scientific Research
(1) New research methods made possible by information and communications technology
(2) Open science
Section 3 The Development and Securing of the Human Resources
That Will Contribute to a Super Smart Society
1 Human Resources Necessary for Realizing a Super Smart Society · · · · · · · · · · · 159
(1) Artificial intelligence engineers who are knowledgeable about the latest technologies · · · · · · · · · 159
(2) Data scientists · · · · · · · · · · · · · · · · · ·
(3) Cybersecurity experts
(4) Entrepreneurial human resources · · · · · · · · · · · · · · · · · · ·
2 The Fostering of Qualities and Abilities Necessary for Survival in a Super Smart Society
(1) The steady implementation of education reform towards the realization of a super smart society
(2) Improvement of the relearning environment for a super smart society
(3) The path toward a super smart society · · · · · · · · · · · · · · · · · · ·
Conclusion

Part II Measures Implemented to Promote Science and Technology

Chapter 1	Development of Science and Technology · · · · · · · · · · · · · · · · · · ·	185
Section 1	The Science and Technology Basic Plan · · · · · · · · · · · · · · · · · · ·	185
Section 2	Council for Science, Technology and Innovation Policy · · · · · · · · · · · · · · · · · · ·	188
1	Major Endeavors of CSTI in FY2014 · · · · · · · · · · · · · · · · · · ·	189
2	Strategic Prioritization in the Science and Technology-related Budget · · · · · · · · · · · · · · · · · · ·	189
3	R&D Evaluation of Projects of National Importance · · · · · · · · · · · · · · · · · · ·	191
4	Major Deliberations at Expert Panels · · · · · · · · · · · · · · · · · · ·	192
Section 3	Comprehensive Strategy on Science, Technology and Innovation · · · · · · · · · · · · · · · · · · ·	195
Section 4	Administrative Structure and Budget for Science, Technology and Innovation Policies ·	197
1	Administrative Structure for Science, Technology and Innovation Policies · · · · · · · · · · · · · · · · · · ·	197
2	Science and Technology Budgets · · · · · · · · · · · · · · · · · · ·	201
Chapter 2	Realization of Sustainable Growth and Social Development in the Future · · · · · · · · · · · · · · · · · · ·	203
Section 1	Recovery from and Reconstruction after the 2011 Great East Japan Earthquake	
1	Promotion of Measures to Address Critical Issues · · · · · · · · · · · · · · · · · · ·	
2	System Reform for Restoration and Recovery from Earthquake Disasters · · · · · · · · · · · · · · · · · · ·	
Section 2	Promotion of Green Innovation · · · · · · · · · · · · · · · · · · ·	
1	Promotion of Measures for Accomplishing Critical Issues · · · · · · · · · · · · · · · · · · ·	
2	Reforming the Systems for the Promotion of Green Innovation · · · · · · · · · · · · · · · · · · ·	
Section 3	Promotion of Life Innovation · · · · · · · · · · · · · · · · · · ·	
1	Promotion of Measures to Address Critical Issues · · · · · · · · · · · · · · · · · · ·	
2	System Reform for Life Innovation Promotion · · · · · · · · · · · · · · · · · · ·	237
Section 4	System Reform toward the Promotion of Science, Technology and Innovation · · · · · · · · ·	240
1	Strategic System Reform toward the Promotion of Science, Technology and Innovation	
2	Construction of a New System for Science, Technology and Innovation · · · · · · · · · · · · · · · · · · ·	248
Chapter 3	Responses to Critical Issues Facing Japan · · · · · · · · · · · · · · · · · · ·	
Section 1	Advancement of Measures for Solving Key Issues · · · · · · · · · · · · · · · · · · ·	257
1	Assuring Safety, Affluence and High Quality of Life · · · · · · · · · · · · · · · · · · ·	257
2	Strengthening of Japan's Industrial Competitiveness · · · · · · · · · · · · · · · · · ·	
3	Contributing Solutions to Global Issues · · · · · · · · · · · · · · · · · · ·	268
4	Foundations of the State · · · · · · · · · · · · · · · · · · ·	272
5	Improvement and Enhancement of Common Science and Technology Infrastructure	
Section 2	System Reforms towards Solution-Oriented R&D · · · · · · · · · · · · · · · · · · ·	289
1	System Reforms for Promoting Solution-Oriented R&D	289
2	The Establishment of Systems for Promoting R&D That Should be Led by the Government	289
Section 3	Strategic Development of Global Activities in an International Context · · · · · · · · · · · · · · · · · · ·	290

1	Promotion of R&D toward Solutions to Common Issues in Asia · · · · · 29	90
2	New Developments in Science and Technology Diplomacy	
Chapter 4	Enhancement of Basic Research and Human Resource Development 30	05
Section 1	Radical Enhancement of Basic Research · · · · · 30	05
1	Enhancement of Diverse and Creative Basic Research · · · · · · 30	05
2	Strengthening World-Leading Basic Research · · · · · 30	09
Section 2	Development of Human Resources capable of Active Roles in	
	Science and Technology Research · · · · · 3	10
1	Development of Human Resources Capable of Leadership in Diverse Fields	11
2	Development of Creative, Top-Level, Researchers · · · · · 3	14
3	Development of Human Resources for Next-Generation Science and Technology · · · · · · · 3	16
Section 3	Establishment of a World-Class Research Environment and Infrastructure · · · · · · · 32	22
1	Improvement of R&D Environments at Universities and Public Research Institutions	22
2	Enhancement of Intellectual Infrastructure · · · · · 32	
3	Enhancement of Research Information Infrastructure	28
Chapter 5	Development and Promotion of Policy in Collaboration with Society	31
Section 1	Increase in Relations between Society and STI	31
1	Promotion of STI Policies from the Public Viewpoint	31
2	Promotion of S&T Communications 33	32
Section 2	Promotion of Effective STI Policies · · · · 33	34
1	Strengthening of Policy Planning and Promotion Function	34
2	Enhancement of Assessment and Allocation Functions in the Research-Fund Systems	35
3	Enhancement of R&D Implementation Systems · · · · · · 32	42
4	Establishment of the PDCA Cycle in Science, Technology and Innovation Policy	43
Section 3	Expansion of Research and Development Investment	44

Figures & Tables....

Feature

Figure 1	Number of people treated with ivermectin · · · · · · · · · · · · · · · · · · ·	
Figure 2	Neutrino mixing and neutrino oscillations · · · · · · · · · · · · · · · · · · ·	
Table 1	Nobel laureates per country (natural sciences) · · · · · · · · · · · · · · · · · · ·	
Table 2	Japanese Nobel laureates (in natural sciences) · · · · · · · · · · · · · · · · · · ·	19
Figure 3	Age at which the laureate conducted the research that led to the Nobel Prize · · · · · · ·	20
Table 3	Average age at which the laureate conducted the research that led to the Nobel Prize,	
	the average number of years between the year in which the laureate conducted	
	the research that led to the Nobel Prize and the year of the win, and	
	the average age at which the laureate received the prize	21
Figure 4	Records of the Japanese Nobel laureates (in the three natural sciences). · · · · · · · · · · · · · · · · · · ·	22
Table 4	Catalysts for the Nobel laureates' interest in science (examples) · · · · · · · · · · · · · · · · · · ·	26
Figure 5	Changes in the number of people who completed a master's in the natural sciences	
	and advanced to a doctoral course, and changes in the rate of enrollment in	
	doctoral courses·····	27
Table 5	Nobel laureates' reasons for advancing to higher institutions for the purpose of	
	majoring in sciences and for setting their sights on being researchers	28
Table 6	Facts about Nobel laureates, including ages at which they obtained a position	
	that was without a time limit · · · · · · · · · · · · · · · · · · ·	30
Table 7	Nobel laureates' research activities before their Nobel Prize win · · · · · · · · · · · · · · · · · · ·	32
Table 8	Nobel laureates' motivations for, and achievements from, studying abroad	34
Figure 6	Flow of Dr. Ryoji Noyori's research and the research funds provided	37
Figure 7	Flow of Dr. Shinya Yamanaka's research and the research funds provided	
Figure 8	Summary of the life courses of Japanese Nobel laureates, and conclusions drawn	
	from them · · · · · · · · · · · · · · · · · · ·	40
D (I		
Part I	1-1 Schematic overview of the IoT·····	4.0
_	1-2 Characteristics of big data · · · · · · · · · · · · · · · · · ·	
	1-3 Schematic overview of artificial intelligence (AI)	
	1-4 Forecasted increases in the volume of global digital data · · · · · · · · · · · · · · · · · ·	
	1-5 Hardware evolution · · · · · · · · · · · · · · · · · · ·	
	1-6 The global industrial structure	73
Figure 1-	1-7 Outlook for the economic value brought by artificial intelligence, big data	
	and the IoT · · · · · · · · · · · · · · · · · · ·	76
Figure 1-	1-8 Impacts on production processes from policies and advanced technologies related	
	to the IoT/ICT · · · · · · · · · · · · · · · · · · ·	
Figure 1-	1-9 Japan's demographic trend ······	78

Figure	1-1-10	Jobs that are likely to be replaced by artificial intelligence or robots	
		(Comparison among Japan, the U.K. and the U.S.A.)·····	79
Figure	1-1-11	Jobs that are unlikely or likely to be replaced by	
		artificial intelligence or robots · · · · · · · · · · · · · · · · · · ·	79
Figure	1-1-12	Changes in employment to result from Industrie 4.0	
		(by category of business/industry, from 2015 through 2025) · · · · · · · · · · · · · · · · · · ·	
Figure	1-1-13	Policy trends of foreign countries · · · · · · · · · · · · · · · · · · ·	86
Figure	1-1-14	Comparison between the 5th Science and Technology Basic Plan and efforts	
		in the U.S.A. and Germany · · · · · · · · · · · · · · · · · · ·	
		Changes in the number of subscribers to communications services · · · · · · · · · · ·	
		History of artificial intelligence technology · · · · · · · · · · · · · · · · · · ·	
Figure	1-2-3	Schematic of image recognition in deep learning · · · · · · · · · · · · · · · · · · ·	108
Figure	1-2-4	Number of industrial robots in operation and the market share of	
		industrial robots for major countries · · · · · · · · · · · · · · · · · · ·	109
Figure	1-2-5	Global market share held by Japanese companies for each sensor type	
		(2014, in value terms) · · · · · · · · · · · · · · · · · · ·	109
Figure	1-2-6	Penetration rate of electronic money and the spread of electronic	
		money for transportation · · · · · · · · · · · · · · · · · · ·	110
Figure	1-2-7	Major countries' global share of research papers, broken down by	
		research field and "adjusted Top10% papers" · · · · · · · · · · · · · · · · · · ·	111
Figure	1-2-8	International comparison of the number of researchers	
		in information science and technology · · · · · · · · · · · · · · · · · · ·	112
Figure	1-2-9	Breakdown of ICT industry by country and region · · · · · · · · · · · · · · · · · · ·	113
Figure	1-2-10	The United States' share of the world's patents in business	
		intelligence and business analytics · · · · · · · · · · · · · · · · · · ·	113
Figure	1-2-11	Share of patents for data analysis technologies, broken down by nation $\cdots\cdots$	114
Figure	1-2-12	Trade balance for the main categories of electrical equipment $\cdots\cdots\cdots\cdots$	115
Figure	1-2-13	Level of science and technology, and industrial competitiveness $\cdots\cdots\cdots$	116
		Progress of IoT standardization around the world · · · · · · · · · · · · · · · · · · ·	
Figure	1-2-15	Utilization of the IoT/big data · · · · · · · · · · · · · · · · · ·	118
Figure	1-2-16	Importance of investment to information systems · · · · · · · · · · · · · · · · · · ·	118
Figure	1-2-17	Sectors in which the utilization of the IoT/big data is effective and/	
		or expected to be effective in business · · · · · · · · · · · · · · · · · ·	119
Figure	1-2-18	Summary of Japan's strengths and weaknesses · · · · · · · · · · · · · · · · ·	120
Figure	1-2-19	Objectives presented in the "Public-Private Dialogue towards	
		Investment for the Future" of Nov. 5, 2015 ·····	146
		Outline of the different types of special zones · · · · · · · · · · · · · · · · · · ·	
Figure	1-2-21	Drone home delivery in Chiba · · · · · · · · · · · · · · · · · · ·	148
Figure	1-2-22	National strategic special zone project for realizing fully autonomous driving \cdots	149
Figure	1-2-23	Human resources contributing to a super smart society	158
Figure	1-2-24	The number of IT engineers in Japan and other countries	159

Figure 1-2-25	AI-related patent applicants and authors of AI-related papers: Shares
	according to the nationalities of applicants/authors
	(or the authors' institutions)······ 159
Figure 1-2-26	The numbers of AI-related patent applicants and of AI-related papers:
	(according to the types of applicants/authors (or the authors' institutions) · · · · 160
Figure 1-2-27	Shortage of information security experts · · · · · · 163
Figure 1-2-28	Willingness to remedy the shortage of information security experts within the company · · · · · · · · · · · · · · · · · · ·
Figure 1-2-29	Changes in the number of listed ICT companies
C	(according to corporate nationality)
Figure 1-2-30	The percentage of students 25 years of age or older who are enrolled
8	in bachelor's degree programs in various countries · · · · · · · 177
Part II	
Figure 2-1-1	Outline of the 5th Science and Technology Basic Plan (FY 2016 - FY 2020) · · · · 187
Table 2-1-2	List of CSTI members
Figure 2-1-3	Organizational chart of CSTI
Figure 2-1-4	Outline of the final report by the Comprehensive Policy Special Committee · · · · 193
Figure 2-1-5	Outline of the Comprehensive Strategy on Science, Technology and
	Innovation 2015
Table 2-1-6	Major reports from Council for Science and Technology (FY 2015) $\cdots \cdots 198$
Figure 2-1-7	Organizational structure of the Science Council of Japan (SCJ) $\cdots \cdots 199$
Table 2-1-8	Major recommendations by the Science Council of Japan (SCJ) (FY 2015) $\cdot\cdot\cdot\cdot$ 199
Table 2-1-9	Changes in science and technology budgets · · · · · 201
Table 2-1-10	Science and technology budgets of each ministry/office/agency · · · · · · 202
Figure 2-2-1	Seafloor observation network for earthquakes and tsunamis along the
	Japan Trench · · · · · · 206
Figure 2-2-2	Monitoring system implementation by ministries in accordance
	with the Comprehensive Monitoring Strategy · · · · · 208
Figure 2-2-3	Radioactive substances distribution map · · · · · 208
Figure 2-2-4	Radiation measurement map · · · · · 209
Table 2-2-5	Major projects for recovery and reconstruction from the earthquake
	disaster (FY2015) · · · · · 212
Table 2-2-6	Major policies for the promoting green innovation (FY 2015) · · · · · 229
Figure 2-2-7	Japan Environment and Children's Study (JECS) · · · · · · 232
Table 2-2-8	Major policies for the promotion of life innovation (FY 2015) · · · · · 239
Figure 2-2-9	Transition in achievements of joint research at universities 241
O	Award winners for contributions to industry-academia-government
	collaboration
Figure 2-2-11	Visions of COI · · · · · · · 245
0	COI sites · · · · · · 246

Figure 2-2-13	List of projects being implemented under the Creation of Innovation Centers	
	for Advanced Interdisciplinary Research Areas · · · · · · · · · · · · · · · · · · ·	248
Figure 2-2-14	Regions in which Innovation Promotion Strategies have been supported:	
	List of regions selected in FY 2015 ·····	251
Table 2-3-1	Major projects for realizing safe and high-quality lives (FY2015) \cdots	265
Table 2-3-2	Major projects to strengthen Japan's industrial competitiveness (FY 2015) $\cdots\cdot$	268
Table 2-3-3	Key projects to help solve global issues (FY2015) \cdots	272
Figure 2-3-4	Implementation schedule of the Basic Plan on Space Policy (summary)	274
Table 2-3-5	Major projects for maintaining the foundations of the state (FY 2014) \cdots	282
Figure 2-3-6	Examples of technologies and instruments for advanced measurement	
	and analysis · · · · · · · · · · · · · · · · · ·	283
Figure 2-3-7	Universities & institutions participating in the Program for the Creation of	
	Research Platforms and the Sharing of Advanced Research Facilities	287
Table 2-3-8	Key facilities for improving and enhancing shared-use S&T infrastructure	
	(FY 2015) · · · · · · · · · · · · · · · · · · ·	289
Figure 2 - 3 - 9	Changes in the number of foreign researchers in Japan	
	(Short or mid-length to long stay) · · · · · · · · · · · · · · · · · · ·	292
Figure 2-3-10	Changes in the number of Japanese researchers overseas	
	(Short or mid-length to long stay) · · · · · · · · · · · · · · · · · · ·	293
Figure 2-4-1	Large-scale projects that will be implemented under	
	the Large-scale Academic Frontier Promotion Project · · · · · · · · · · · · · · · · · · ·	309
Figure 2-4-2	World Premier International Research Center Initiative (WPI) $\cdots \cdots \cdots \cdots \cdots$	310
Table 2-4-3	Breakdown of successful candidates of the Second-Step Professional	
	Engineer Examination by Technical Discipline (FY 2015) · · · · · · · · · · · · · · · · · · ·	313
Figure 2-4-4	Percentage of female researchers by country · · · · · · · · · · · · · · · · · · ·	315
Figure 2-4-5	Participants in International Student Contests in Science and	
	Technology, FY 2015 · · · · · · · · · · · · · · · · · · ·	318
Figure 2-4-6	The 5th Japan High School Science Championship	320
Figure 2-4-7	The 3rd Japan Junior High School Science Championship	320
Figure 2-4-8	Example of the redevelopment of an aging facility · · · · · · · · · · · · · · · · · · ·	323
Table 2-4-9	Effects of using external advanced research facilities and	
	equipment (cross tabulation)······	324
Figure 2-4-10	Geological Information Integrated Portal Site (GeomapNavi):	
	Display example · · · · · · · · · · · · · · · · · · ·	327
Table 2-4-11	Key projects relating to research and information infrastructure (FY2015) \cdots	330
Table 2-5-1	List of competitive funds · · · · · · · · · · · · · · · · · · ·	338
Figure 2-5-2	Trends in Government-financed R&D Costs in Major Countries · · · · · · · · · · · · · · · · · · ·	345
Table 2-5-3	R&D taxation system · · · · · · · · · · · · · · · · · · ·	346

Columns

Feature-1	Measurement and analysis equipment for supporting science and technology · · · · 10
Feature-2	Interview with Dr. Omura · · · · · 12
Feature-3	Interview with Dr. Kajita····· 14
Feature-4	The Nobel Prize in economic sciences
Feature-5	Obtaining the right to name Element 113 41
1-1	What is a super smart society? 50
1-2	1964×2020 (Color TV × Technology for Transmitting Images of
	the Entire Sporting Venue) · · · · · · 68
1-3	What is deep learning? · · · · · · 107
1-4	A pioneering system using big data of the global environment:
	the Data Integration and Analysis System (DIAS)····· 121
1-5	Entering the global market by using technologies from fields in which
	Japan is internationally competitive and by using deep learning 125
1-6	Understanding the Human Mind: What is Cognitive Science?
1-7	IoT Lab Selection Grand Prize winner: Liquid Marketing, Inc.
	Personal authentication of foreign tourists through fingerprints
	(for identification and payment)
1-8	Autonomous Driving System: New Value Generated Through the Development
	of 3D Location Information Infrastructure
1-9	The Development of Image Analysis Software That Supports
	the Advancement of Science and Technology · · · · · · 157
1-10	Education Network for Practical Information Technologies (enPiT) · · · · · · 166
1-11	First Graders Experience Programming (Tama Municipal Aiwa Elementary
	School, Tokyo) · · · · 172
1-12	What You Never Knew about Cybersecurity
	(Information-technology Promotion Agency) · · · · · 173
1-13	Example of Adaptive Learning:
	Ritsumeikan Moriyama Junior & Senior High School····· 176
2-1	Use of fire simulations in fire cause investigations
2-2	Launch of the Kounotori HTV-5, and the important roles of Astronaut Yui · · · · · 280
2-3	National Institutes for Quantum and Radiological Science and Technology (QST),
	a new national research and development agency
2-4	The Fourth Annual Global Meeting of GRC held in Tokyo 304
2-5	Development of electrode materials for lithium-air batteries
	that have a long cycle life and a large capacity · · · · · 307
2-6	Development of fundamental technology that enables
	the mass production of influenza vaccines

2-7	A spirit of autonomy and independence that has been handed down to	
	younger generations Mr. Kajita and Saitama Prefectural	
	Kawagoe Senior High School · · · · · · · · · · · · · · · · · ·	321
2-8	The Universe as seen through gravitational waves:	
	Elucidating black holes and beyond · · · · · · · · · · · · · · · · · · ·	325

The maps in this white paper do not include all the territory of Japan. $\,$