

も震部材の利	•類 Popular seism	ic isolation systems	
	代表的な "免震	技承"と"ダンパー"	
	珪屋ゴノナス	天然ゴム系積層ゴム支承	
		高減衰ゴム系積層ゴム支承	
	Rubber bearing	鉛プラグ型積層ゴム支承	
Bearing	すべり支承 Sliding bearing	弾性すべり支承	
	転がり支承 Rolling bearing	ボールベアリング支承	
	履歴減衰型	鋼材ダンパー	
	Elasto-plastic	鉛ダンパー	
ダンパー	粘性減衰型	粘性ダンパー	
Damper	Viscous	オイルダンパー	
	摩擦減衰型 Friction	摩擦ダンパー	
		免震部材の種類と特性	± p19

免震構造の計画 p23

- シ 亚 甘 油 亦 恥 S (m)	DAVE	0φ	弾性す	べり支	承	鉛ダンパー
小十盔牛炎心 0g(m)	0.560		0.	650		0.800
荷重支持条件に関する係数β	0.8		C	.9		1.0
設計限界変形 $m \delta_d(m)$	0.448		0.	585		0.800
免震層の設計限界変位 $\delta_s(m)$	i i		0.	448		

2			Ai	Cri	$Q_i(kN)$
	32400	32400	1.352	0.155	5010
1	30900	63300	1.138	0.141	8910
() () () ()			11000	0.105	10010
上記地震力 各階の層間	に対し、許容) 変形角が1/3	応力度設計を行 00以内であるこ	テう。 ことを確認す [、]	5	

建築設計上の留意点 Notes for architectural design

風に対する設計

強風時に揺れが問題とならないよう、風荷重に対してはダンパーを 降伏させないようにするのが一般的である

上下動

免震建築で用いる積層ゴムは、水平方向には柔らかいが、上下方向 に対しては通常のRC部材の鉛直剛性と変わらないため、上下動に 対して免震効果は無く、通常の建物と同じである

耐火被覆

は、 基礎免震建物の場合、免震支承は基礎とみなされ、耐火被覆は必要 とならないが、中間層免震の場合は、免震支承が法律的には柱とみ なされるため、免震支承に耐火被覆を施すか、防火区画により免震層 に火災が及ばないようにするなどの配慮が必要になる

建築設計上の留意点と維持管理 p32

No.	項目	竣工時点検	定期点検	定期点検	応急点検	詳細点検	
1 9	奧施時期	建物竣工時	1回/年程度	竣工後 5,10 年. 以後 10 年ごと	災害発生時	災害発生時	
2 相	き 査・点検 対象	免腹音	免震部材、免震層・建物外周部、設備配管・配線可境部、別置き試験体				
3	箇所	全数	目視:全数 記録:1/2	目視:全数 記録:1/2 計測:指定数	目視:全数 記録:1/2 計測:指定数	目視:全数 記録:1/2 計測:指定数	
4	方法	目視、計測	目視	目視、計測	目視	目視、計測	
5	管理値	設計図書または JSSI 免震建物維持管理基準による					
6	実施者	点検技術者 建物管理者、 点検技術者 点検技術者					
	建物 報告・改ま 建物 日常的に	所有者(管理組名 等提案 委託 管理者 異常の早期多 三建物の異常を	会等含む) ★ 委託 要素許時に連絡 提告・改善提案 発見 読用する	相談 服告・改善提案 (専門業者: (竣工検 ・ (竣工検	建物設計者 相談 検技術者* ¹ または第3者機関 査・点検の実施 査)	a) • 2	

