⑤コンタミ噛み込みの可能性検討

コンタミ源として考えられるものと、その評価は次のとおりであり、コンタミ噛込の可能性は低いと評価する

- (1) 製造時から存在したコンタミについて 清浄度検査の結果は、逆止弁を閉塞させるようなものではない.
- (2) 地上整備中に混入したコンタミについて 探査機に流体アクセスする場合、フィルタを通す手順となっているため、 逆止弁を閉塞させるコンタミは混入しない
- (3) 他バルブ作動時に発生したコンタミについて 逆止弁上流にある可動機器として,調圧弁があるが,調圧弁出口には フィルタが装着されているため,逆止弁を閉塞させるコンタミは発生しない.

ただし、コンタミの噛込は、完全に排除できる性質のものではなく、偶発的に発生する可能性を否定できない、そのため、今後の開発では、たとえば、設計段階でフィルタ配置をより慎重に検討する、配管洗浄方法の更なる改善の可能性を検討するなど、コンタミ噛み込みの可能性低減に継続的に取り組むこととする.

図5.2-7(5/5) CV-F閉塞の原因候補に対する調査・検討・試験結果

図5.2-9 加圧ガス供給配管を移動する酸化剤蒸気の量

図5.2-10 弁体付近での塩生成

図5.2-11 逆止弁閉塞再現試験の様子

分類	対応事 象番号	試験名	供試体	検証作業内容
インジェクタ 水流し試験	D2 D5	インジェクタ 水流し試験	同一設計 インジェクタ (新規製作)	低燃料供給圧条件でのインジェクタ水流し試験を行う ・燃料側単独の噴射状態を確認 →フィルムクーリング噴射方向変化の可能性評価 ・燃料/酸化剤の衝突状態を確認 →インジェクタ噴射方向変化の可能性評価
地上燃焼 試験		スラスタ作動特性 取得試験	同一設計 インジェクタ (新規製作) + セラミックスラスタ (予備品および 新規製作)	燃料/酸化剤供給圧を幅広く振ったOME燃焼試験を行う ・設計条件を逸脱した状態での燃焼挙動,性能特性の取得 →以下の試験の準備および安定した燃焼を示す範囲の確認
	D1 D3 D4 (D2) (D5)	異常事象 再現確認 試験		 VOI-1末期の燃料供給圧条件でのOME燃焼試験を行う VOI時-1の異常が発生するかを確認する ・スロート後方後燃え:燃焼圧・推力プロファイルで確認 ・不安定燃焼:燃焼圧・推力プロファイルで確認 ・ノズル・スロート部破損:監視カメラで確認 →スラスタ破損が確認された場合,次の破損後性能評価と 破壊確率評価を実施する
	D1	破損後 性能評価試験		異常現象再現確認試験でスラスタが破損した場合 破損したスラスタにおけるスラスタ性能を取得する →VOI-1開始後156~158秒における推定推力との比較評価
燃焼解析	D1 D2 D3 D4 D5	スラスタ燃焼の 数値流体解析		燃料/酸化剤供給圧を幅広く振った条件で, スラスタ燃焼状態の数値流体解析コードを整備して解析を実行する
破壊解析	D1	スラスタの 破壊確率評価		異常現象再現確認試験でスラスタが破損した場合 スラスタ温度分布より、熱応力解析、強度評価解析を行う 同時に破損位置の確認を実施する

図5.3-1 OMEに発生した事象を特定するための検証計画

- 64 -

噴射状態確認試験の様子 (イメージ図)

図5.3-4 燃焼試験(その1)の結果

図5.3-5 燃焼試験(その2)の結果(燃焼器外壁の最高温度の履歴)

<u>図5.3-6 VOI-1時の挙動と燃焼試験(その1)の挙動の対比</u>

	フ	ライト燃焼器	地上試験(その1)燃焼器 破損後		
	V0I-1	V0I-1	燃焼弐段ゴーク	CED/F F Z #4答	
	開始時	OME噴射152s以降	※ 洗試験 ナー ダ	いりこよる推昇	
推力 [N]	476	300	315	307	
横推力 [N]	0	5~20	(計測データ無し)	14	

図5.3-7 VOI-1時の推進特性と燃焼試験(その1)の推進特性の対比

金星周回軌道に投入した場合の熱環境

実際の熱環境(近日点0.6AU)

注:近日点マヌーバを実施しない場合の軌道上環境予測

図6.2-1 近日点近傍での熱環境

図6.3-1 金星周回軌道への再投入に向けての計画

- 69 -

図6.3-2 2度の試験噴射における加速度およびドップラモニタ

図6.3-3 試験噴射中の推進系各部の温度の履歴

図6.3-4 燃料配管温度の推薬流量感度解析結果

図6.3-5 破損したOMEが発生する推力のイメージ