センシング技術について(比較整理表)

センシング手法	原理	特 徴	地雷探知への活用状況	我が国の研究水準
地雷(表面)と土壌の物性値の違いによるセンシング				
電磁誘導法(金属探知器)	電気伝導度 (交流)	探知対象は金属のみ。金属であれば微量でも安定的に検出可能。但し、感度を高めた場合、地雷以外の金属片等にも誤作動するため、地雷探知の効率が著しく低下。	地雷探知の現場で実用化 されている。	外国メーカー製の製品が世界標準となっている。我が国の製品で地雷探知の現場で利用されているものはない。
電波法(地中レーダ)	誘電率	非金属にも適用可能。分解能と探知可能深度との間にトレードオフ関係有り。 周波数可変型等の技術で対応が必要。	地雷探知用に開発が進められており、一部は実証レベル。	大学、企業等で開発が進められて おり、金属探知器との複合センサ技 術では一部世界水準に達している。
電気探査法(比抵抗法)	比抵抗(電気伝導 度の逆数)(直流)	非金属にも適用可能。原理的に簡易な手法。	大規模構造物の探知に広 〈適用されているが地雷探 知への適用はない。	地質探査等の分野で技術力を有し ており、世界水準に近い。
熱探査法 (赤外線センサ)	熱容量	外気温に強〈依存。気温変動の激しい時に は探知が可能だが、日中等は温度が一様化 し、探知困難。単独で地雷探知に用いること は困難。	単独で地雷探知に利用された実績はない。	我が国の技術力は高い。
超音波法	音響インピーダンス(物質密度の関数)	非金属にも適用可能。土壌中の散乱のため 比較的大きな構造物(地層)の探知向きの手 法。	研究室レベル (水中では実用化(魚雷探 知器))	我が国含め研究室レベル (魚雷探知器は実用化レベル)
也雷(火薬)自体の物性値によるセンシング				
核磁気共鳴法	TNT中の窒素原子 の磁気特性	地雷(火薬)のみを選択的に探知することが可能であり、土壌の状況等環境に依存しない点で原理的に優れている。 一方、特に、核磁気共鳴法、中性子法については、比較的大きな高度な装置を必要とする等の難点がある。	研究室レベル (化学法、生物法のように TNTの微量蒸気を検出す る手法は東南アジアの地 雷対策機関の関係者も注 目しているところ)	我が国含め研究室レベル (核磁気共鳴法及び中性子法につ いては米軍による取組み有り)
中性子法	TNT中の窒素原子 の放射化特性			
化学法	TNT中の原子の結 合状態			
生物法	TNTに抗体を作る 生体膜			