和歌山大学大学院教育学研究科 鎌倉伸也

- 1、日時
- 2、学年 5年 1組
- 3、単元名 「電流の働き」
- 4、単元目標

鉄心を入れたコイルに電流を流すと鉄心は磁化し、電磁石ができることを理解する。また電磁石には極があり極は電流の向きによって変わること、電磁石の強さは、コイルの巻数や電流の強さによって変わることを、実験を通して理解する。

5、本時の目標

身近に使われている電磁石について興味を持ち、電磁石について理解できる。キットを 使ってコイルを作成することができる。

6、本時の準備物

7、本時の計画(1限目)

時間	内容	注意点	
5分	☆電磁石の導入	電磁石を使った道具は、指を	
	・電磁石を使った道具の演示	挟まないように気をつける。	
	電流を流すことで引っ張っても取れなくなるこ		
	とを見ることで、導線は電気を流すと磁石にな	コイルを見せないように気	
	る性質があることを学ぶ。	をつける。	
	「どうして引っ張っても取れなくなったの	どうして引っ張っても取れ	
	カゝ?」	なくなったのか考えさせ、意	
	→電気を流すことで、磁石みたいになったから	見を聞いてみる。	
5分	☆電磁石についての説明		
	・電磁石とは		
	「鉄心に電気を流して、磁石になったもの」		
	・電磁石の利点		

	電気を流したときだけ、磁石にすることができ	
	る。	
5分	☆身近になる電磁石	
	・身近にある電磁石について説明する。	
	1 鉄のスクラップ工場	
	電磁石を用いて、鉄を集めることができる。	
7分	☆コイルの説明	電磁石を使った道具は、電池
	電磁石を使った道具を見せることで、鉄心以外	を取っておく。
	に導線が巻いてあることに気づかせる。	
	「どうして電磁石を使った道具は、導線を巻い	
	て使っていたのか?」	
	→磁力を強くすることができるから。	
	・導線を巻くと磁力が強くなるのか調べる実験	
	鉄心と導線をまいてある鉄心の 2 つに磁石を近	
	づけて、どっちの方が、磁石が動くか実験する	
	→導線をらせん状にまいてある鉄心	
	・コイルの説明	
	導線をらせん状に巻いたものをコイルと言う。	
	らせん状に巻くことで、磁力を強めることがで	
	きる。	
23 分	☆コイル作成	
	・コイル作成の注意の説明	最初にキットに名前を書か
	キットを用いて各自コイルを作成する。	せる。
	コイルは 100 回巻きとする。	
	・注意点の説明	
	コイルを作るにあたっての注意点を説明する。	
	1、均一に巻く。	
	2、ねじれた部分を作らない。	
	3、エナメル線をこんがらがらないように気を	
	つけながら、巻いていく。	

本時の計画(2限目)

時間	内容	注意点
30 分	・コイル作成	
	前回から引き続いて、コイルを作成する。	
10 分	・作ったコイルを用いた回路作り	電気がうまく流れない場合、
		次のことを確認する。
	コイル作りが終わった子どもたちから、紙やす	・エナメル線の両端の皮膜を
	りでコイルの両端をはがす。	はがしているか
		エナメル線と導線がしっか
	作ったコイルに電流が流れているか確認するた	りつながっているか
	めに、コイルを用いて回路を作り、豆電球を光	• 導線が発熱するため、豆電
	らしたり、オルゴールを鳴らしてみたりする。	球やオルゴールを付けずに、
		回路を作らない。
5分	・感想記入	
	学習カードにわかったこと、感想を記入する。	

和歌山大学大学院教育学研究科 鎌倉伸也

- 1、日時 平成27年1月9日
- 2、学年 5年1組
- 3、単元名 「電流の働き」
- 4、単元目標

鉄心を入れたコイルに電流を流すと鉄心は磁化し、電磁石ができることを理解する。また電磁石には極があり極は電流の向きによって変わること、電磁石の強さは、コイルの巻数や電流の強さによって変わることを、実験を通して理解する。

5、本時の目標

コイルに電気を流すことで、鉄心が磁石になったものを電磁石と言い、電磁石は身の回りに使われていることを理解する。コイルを作る意味を理解し、100回巻きのコイルを作成する。

6、本時の準備物

コイルキット、電磁石を使った道具、iPad、導線、電池、セロハンテープ

7、本時の計画(1限目)

時間	内容	注意点
5分	☆電磁石の導入	電磁石を使った道具は、指を
	・電磁石を使った道具の演示	挟まないように気をつける。
	電気をながすことで、くっついて取れなくなる	
	ことを見せる	電磁石の中のコイルを見せ
		ないように気をつける。
	・電磁石を使った道具の体験	
	代表して 1 人の子に電磁石を使った道具が、本	子どもが怪我しないように
	当に取れなくなったのか試してもらう。	電磁石を使った道具を触ら
	(安全装置を必ず付けておき、子どもの後ろで倒	せるときは、電池を取ってお
	れないように補助してもらう)	<.
	問いかけ	
	「どうして取れなくなったのか」	
	→近づけたらくっついたので、磁石みたいだ。	

	電気を流すことで、磁石みたいになったから	
	\downarrow	
	電気を通して磁石になったので、「電磁石」とい	
	う。	
5分	☆電磁石についての説明	
	・電磁石とは	電磁石についてのスライド
	「鉄心が磁石になったもの」	を写す。
	電磁石を使った道具の真ん中に、鉄心があるこ	
	とを iPad で確認する。	
	・磁石の性質についての復習	
	磁石の性質について知っていることを発表して	
	もらう。	
	1、N極とS極がある。	
	2、同じ極は引き合う。	
	3、違う極は退け合う。	
	4、磁石は鉄を引き付けることができる。	
	・電磁石の利点	
	電気を流したときだけ、磁石にすることができ	
	る。	
5分	☆身近になる電磁石	iPad を用いて、鉄のスクラ
	・身近にある電磁石について説明する。	ップ工場の動画を見せる。
	1 鉄のスクラップ工場	
	電磁石を用いて、鉄を集めることができること	
	を強調する。	
5分	☆コイルの説明	電磁石を使った道具は、電池
	鉄に電気を流しても、熱くなるだけで磁石には	を取っておく。
	ならない。	
	他に何か秘密があるのではないか?	
	・電磁石を使った道具の断面の写真を見せて、	
	磁石になった秘密を考えてもらう。	
		電磁石を使った道具の断面
	問いかけ	図の写真を iPad で写してお

「何が鉄心を磁石に変えたのか?」 電磁石を使った道具の断面図の写真を見せて、 秘密がありそうなところを、子どもたちに印を 付けてもらう。 →鉄心の回りに何かある。 電気を流していたので、鉄心の周りにあるもの | 鉄心のまわりにコイルがあ は導線である。 る画像を iPad で見せる。 - 導線はどんなふうになっていうか 問いかけ 「導線は鉄心の回りでどんなふうになっている カコー コイルについてのスライド 鉄心の回りにあるコイルを見ることで、導線が を写す。 らせん状巻かれていることを学ぶ コイルの説明 鉄心に導線を巻き電気を流すことで、鉄心を磁 石に変えることができる。 導線をらせん状に巻いたものをコイルと言う。 27 分 ☆コイル作成 問いかけ 「どんなふうにコイルを作ろう?」 何を使うか?→エナメル線 どんなふうに巻くか?→きっちり巻く 何回巻くか?→100回 ・コイル作成の説明 iPad を用いて、コイルの作 動画を見せて、コイルの作り方を説明する。 り方を画像で説明する。 注意点の説明 部品をなくさないように、使 うもの以外は箱から出さな コイルを作るにあたっての注意点を説明する。 1、きっちりまく 11 2、隙間を作らない iPad を使って、上手な子の 3、重ねてところを作らない

作り方をクラスで共有する。

4、ねじれを作らない。

本時の計画(2限目)

時間	内容	注意点
35 分	・コイル作成	電気がうまく流れない場合、
	前回から引き続いて、コイルを作成する。	次のことを確認する。
		・エナメル線の両端の皮膜を
	・エナメル線の両端を紙やすりで削る	はがしているか
	コイル作りが終わった子どもたちから、紙やす	エナメル線と導線がしっか
	りでコイルの両端をはがす。	りつながっているか
	注意点	
	1、力を入れてこする	
	2、均一にこする(同じ方向ばかりで削らない)	
	・作ったコイルに電気が流れているかの確認	電池と導線を用意しておく。
	コイルの中に鉄心を入れ、コイルの中の鉄心が	
	磁石になっているか方位磁石を用いて確かめ	コイルに鉄心が入っている
	る。	か確認する。
	方位磁石が動かなかった子は、紙やすりでもう	鉄心は無理やり入れないよ
	一度削る。	うに気をつける。
5分	作成した 100 回巻きコイル、エナメル線、支柱、	セロハンテープを各班 1 つ
	電池ホルダーを箱の中にしまう。	用意する。
	箱の中からパーツが出ないように、セロハンテ	
	ープで箱を閉じる。	
5分	・感想記入	
	学習カードにわかったこと、感想を記入する。	

和歌山大学大学院教育学研究科 鎌倉伸也

- 1、日時 平成27年1月9日
- 2、学年 5年 1組
- 3、単元名 「電流の働き」
- 4、単元目標

鉄心を入れたコイルに電流を流すと鉄心は磁化し、電磁石ができることを理解する。また電磁石には極があり極は電流の向きによって変わること、電磁石の強さは、コイルの巻数や電流の強さによって変わることを、実験を通して理解する。

5、本時の目標

コイルに電気を流すことで、鉄心が磁石になったものを電磁石と言い、電磁石は身の回りに使われていることを理解する。コイルを作る意味を理解し、100回巻きのコイルを作成する。

6、本時の準備物

コイルキット、電磁石を使った道具、iPad、導線、電池、セロハンテープ

7、本時の計画(1限目)

時間	内容	注意点
10分	☆電磁石の導入	電磁石を使った道具は、指を
	・電磁石を使った道具の演示	挟まないように気をつける。
	電気をながすことで、くっついて取れなくなる	
	ことを見せる	電磁石の中のコイルを見せ
		ないように気をつける。
	・電磁石を使った道具の体験	
	代表して 1 人の子に電磁石を使った道具が、本	子どもが怪我しないように
	当に取れなくなったのか試してもらう。	電磁石を使った道具を触ら
	(安全装置を必ず付けておき、子どもの後ろで倒	せるときは、電池を取ってお
	れないように補助してもらう)	< ∘
	問いかけ	
	「どうして取れなくなったのか」	
	→近づけたらくっついたので、磁石みたいだ。	

	電気を流すことで、磁石みたいになったから	
	j.	
- ^	1	
5分	☆電磁石についての説明	
	・電磁石とは	電磁石についてのスライド
	「鉄心が磁石になったもの」	を写す。
	電磁石を使った道具の真ん中に、鉄心があるこ	
	とを iPad で確認する。	
	・磁石の性質についての復習	
	磁石の性質について知っていることを発表して	
	boj.	
	1、N極とS極がある。	
	2、同じ極は引き合う。	
	3、違う極は退け合う。	
	4、磁石は鉄を引き付けることができる。	
	・電磁石の利点	
	電気を流したときだけ、磁石にすることができ	
	<u> వ</u> .	
3分	☆身近になる電磁石	iPad を用いて、鉄のスクラ
	・身近にある電磁石について説明する。	ップ工場の動画を見せる。
	1 鉄のスクラップ工場	
	電磁石を用いて、鉄を集めることができること	
	を強調する。	
12分	☆コイルの説明	電磁石を使った道具は、電池
	鉄に電気を流しても、熱くなるだけで磁石には	を取っておく。
	ならない。	
	他に何か秘密があるのではないか?	
	・電磁石を使った道具の断面の写真を見せて、	
	磁石になった秘密を考えてもらう。	
		電磁石を使った道具の断面
	問いかけ	図の写真を iPad で写してお

「何が鉄心を磁石に変えたのか?」

電磁石を使った道具の断面図の写真を班ごと 2 電磁石を使った道具の断面 枚配り、どこに秘密があるか考え、班ごと発表 図の写真を各班 2 枚用意す してもらう。

る。

コイルの説明

鉄心の周りに導線がまいてあり、これに秘密が ある。

鉄心に導線を巻き電気を流すことで、鉄心を磁 石に変えることができる。

導線をらせん状に巻いたものをコイルと言う。

20 分

☆コイル作成

問いかけ

「どんなふうにコイルを作ろう?」 何を使うか?→エナメル線 どんなふうに巻くか?→きっちり巻く 何回巻くか?→100回

・今回の授業の目標

「エナメル線を 100 回ぐらいまいて、コイルを り方を画像で説明する。 作る」

(100 回巻きのコイルを作ることを目標として、 回数、巻き方には多少変わってしまっても、今 回はよいとする。)

・コイル作成の説明

カメラとスライドを使い、コイルの作り方を説 | iPad を用いて、コイルの作 明する。

iPad を用いて、コイルの作

部品をなくさないように、使 うもの以外は箱から出さな V10

り方を説明する。

説明の手順

- 1、使う道具の準備(スライド)
- 2、 見本の巻き方の説明(カメラ)
- 3、悪い例の説明(スライドとカメラ)
- 4、100回巻き終わったら、ボビンの逆のとって に、エナメル線を2,3回巻く(カメラ)

・コイルの作成	iPad を使って、上手な子の
説明どおりのコイルを作成する。	作り方をクラスで共有する。
回数、巻き方は多少違ってもよいとし、100 回	
巻けることを目標とする。	

本時の計画(2限目)

時間	内容	注意点
35 分	・コイル作成	電気がうまく流れない場合、
	前回から引き続いて、コイルを作成する。	次のことを確認する。
		・エナメル線の両端の皮膜を
	・エナメル線の両端を紙やすりで削る	はがしているか
	100 回巻き終わった子が増えてきたら、iPad の	・エナメル線と導線がしっか
	カメラを用いて、紙やすりでコイルの両端をは	りつながっているか
	がす説明をする。	
	注意点	
	1、力を入れてこする	
	2、均一にこする(同じ方向ばかりで削らない)	
		電池と導線を用意しておく。
	・作ったコイルに電気が流れているかの確認	
	コイルの中に鉄心を入れ、コイルの中の鉄心が	コイルに鉄心が入っている
	磁石になっているか方位磁石を用いて確かめ	か確認する。
	る。	鉄心は無理やり入れないよ
	方位磁石が動かなかった子は、紙やすりでもう	うに気をつける。
	一度削る。	
5分	・片付け	セロハンテープを用意して
	作成した 100 回巻きコイル、エナメル線、支柱、	おく。
	電池ホルダーを箱の中にしまう。	
	箱の中からパーツが出ないように、セロハンテ	
	ープで箱を閉じる。	
5分	・感想記入	
	学習カードにわかったこと、感想を記入する。	

和歌山大学大学院教育学研究科 鎌倉伸也

- 1、日時
- 2、学年 5年1組
- 3、単元名 「電流の働き」
- 4、単元目標

鉄心を入れたコイルに電流を流すと鉄心は磁化し、電磁石ができることを理解する。また電磁石には極があり極は電流の向きによって変わること、電磁石の強さは、コイルの巻数や電流の強さによって変わることを、実験を通して理解する。

5、単元計画

	時	学習内容	教師の支援
1 次	1時	・電磁石について	
		コイル、電磁石について学ぶ。	
		・電磁石の作成	
		釘にエナメル線を巻きつけて電磁	エナメル線の巻数は 50 回とする
		石を作る。	巻く向きときれいに巻くことに気を
		電磁石に電流を流すと、方位磁石が	つける。
		動き磁力ができることを確認する	
	2 時	・電磁石の観察	
		永久磁石と電磁石を比較して、電磁	授業を始める前に、永久磁石の性質に
		石について疑問を持つ。	ついて確認する。
		① N極、S極があるか。	
		② 電磁石を強くするためにはど	
		うすればいいか。	
	3 時	・電磁石に極があるか調べる実験の	
		計画	
		計画と結果の予想を立てて、班ごと	比較実験なので、変える条件以外は同
		意見を交流する。	じにするように強調する。
	4 時	・電磁石に極があるか調べる実験	変える条件以外はしっかり同じにな
		乾電池の向きや、配線を変えること	っているか確認させる。
		で、方位磁石の向く極が変わる。	

2 次	5 時	・どうすれば電磁石が強くなるか調	
		べる実験の計画	
		① コイルの巻数を多くする。	コイルの巻数は 50 回と 100 回、乾電
		② 電流を強くする。	池の数は1個と2個として、電磁石
			の強さを比較する。
	6 時	・どうすれば電磁石が強くなるか調	
		べる実験	
		電磁石を強くするためには、コイル	変える条件以外は、同じにするように
		の巻数や電流を強くする必要があ	確認する。
		る。	
	7時	・コイルモーターの作成	
		コイルモーターを作成することで、	コイルについている黒いチューブは
		身近なものに電磁石が使われてい	外さない。
		ることを実感する。	コイルモーターがうまく回らないと
			きは、コイルモーターの形を少し楕円
		リニアモーターカーの演示	形にさせる。
		普段の生活に利用されている電磁	
		石の例として、リニアモーターカー	金属棒の動く向きや速さに注目させ
		を演示する。	る。
	8時	コイルモーターの実験	
		コイルモーターの回転を強くする	コイルについている黒いチューブは
		ためにはどうすればいいか実験を	外さない。
		考え、各班で実行する	
		① 電池の数を増やす。	
		② 乾電池を増やす。	
	9時	・電磁石のまとめ	
		電磁石の性質について、まとめのテ	
		ストをする。	

6、本時の目標(第7限目)

コイルモーターやリニアモーターカーを見ることで、電磁石が身近に使われていることを実感する。また、これらの働きは、電流の強さや向き、コイルの巻数、磁石の強さが関係していることを理解する。

7、本時の準備物

見本のモーター、リニアモーターカーセット、コイルモーターセット、プリント

8、本時の計画(第7限目)

時間	内容	注意点
導入	・身近に使われている電磁石	見本のモーターを準備する。
(5分)	身近に使われている電磁石の例として、モータ	
	一を説明する。	
	モーターが使われている製品の例	
	① 車(電気自動車)	
	モーターの回転でタイヤが動く。	
	② 扇風機	
	モーターが回転することで、扇風機の羽が一緒	
	に回る。	
	③ 掃除機	
	モーターを高速でまわすことで、空気と一緒に	
	ごみを吸い取る。	
	(4) エスカレーター	
	モーターをまわすことで、階段や手すりを動か	
	す。	
	7 0	
	 ⑤ 携帯電話やゲーム機のバイブレーション	
	モーターにおもりをつけることで、振動させて	
	いる。	
展開 1	・コイルモーターの作成	
(30分)	コイルモーターを作成することで、電磁石の力	コイルモーターセットとプ
	でモーターが回ることを理解する。	リントを準備する。
	プリントに従って、班ごとでコイルモーターを	
	作成する。	
	① モーター用コイルのリード線中央部を折	コイルについている黒いチ

		1
	り曲げてねじる。	ューブは外さない。
	② 乾電池を入れたケースの両脇に、銅版を付	
	ける。	
	③ 銅版にコイルをセットする。	
	④ 電池の上に磁石を置く。	
	⑤ コイルを手で軽く回すと、コイルが動き出	コイルがうまく回らないと
	-	きは、コイルの形を楕円にす
		る。
展開 2	・リニアモーターカーの演示	リニアモーターカーセット
(10分)	電気を流した磁石の上で、金属棒が動くことを	を準備する。
	見ることで、リニアモーターカーの原理を視覚	
	的に理解する。	
	電流を流すと、磁石の上に金属棒が動いていく	
	「金属棒を速くするにはどうすればいいか?」	
	電流を強くする	
	→乾電池を2つから3つに増やしてみる	
	「電流の向きを逆にするとどうなるか?」	
	→金属棒が逆に動く	

9、本時の評価

関心・意欲・態度	思考・判断・表現	技能	知識・理解
・身近に使われてい	・リニアモーターカ	・コイルモーターセ	・電磁石を強くする
る電磁石に興味を持	一の金属棒を速く動	ットを、説明通り組	ためには、電流を強
つことができる。	かすためには、どう	み立てることができ	くする必要があるこ
・どうすればコイル	すればいいか考える	る。	とわかる。
モーターがうまく回	ことができる。		・電磁石の向きを変
るか考えることがで			えるためには、電流
きる。			の向きを変える必要
			があることがわか
			る。

和歌山大学大学院教育学研究科 鎌倉伸也

- 1、日時
- 2、学年 5年 組
- 3、単元名 「電流の働き」
- 4、単元目標

鉄心を入れたコイルに電流を流すと鉄心は磁化し、電磁石ができることを理解する。また電磁石には極があり極は電流の向きによって変わること、電磁石の強さは、コイルの巻数や電流の強さによって変わることを、実験を通して理解する。

5、単元計画

	時	学習内容	教師の支援
1 次	1.2 時	・電磁石について	
		電磁石について学ぶ。	
		・コイルの作成	
		釘にエナメル線を巻きつけてコイ	エナメル線の巻数は 100 回とする
		ルを作る。	巻く回数がわからなくならないよう
		コイルが完成したら、電流が流れる	に、班ごと同じペースで巻いていく。
		か調べるために、回路を作ってみ	
		る。	
	3 時	・電磁石の観察	
		永久磁石と電磁石を比較して、電磁	授業を始める前に、永久磁石の性質に
		石について疑問を持つ。	ついて確認する。
		① N極、S極があるか。	
		② 電磁石を強くするためにはど	
	, 174	うすればいいか。	
	4 時	・電磁石に極があるか調べる実験の	
		計画	11.数な験なので、ボミッタ供り例は同
		計画と結果の予想を立てて、班ごと	比較実験なので、変える条件以外は同し
	产吐	意見を交流する。	じにするように強調する。
	5 時	・電磁石に極があるか調べる実験	変える条件以外はしっかり同じにな
		乾電池の向きや、配線を変えること	っているか確認させる。

		で、方位磁石の向く極が変わる。	
0.1/-	0 11+		
2 次	6 時	・どうすれば電磁石が強くなるか調	
		べる実験の計画	
		① コイルの巻数を多くする。	コイルの巻数は 100 回と 200 回、乾
		② 電流を強くする。	電池の数は1個と2個として、電磁
			石の強さを比較する。
	7時	・どうすれば電磁石が強くなるか調	
		べる実験	
		電磁石を強くするためには、コイル	変える条件以外は、同じにするように
		の巻数や電流を強くする必要があ	確認する。
		る。	
	8時	・コイルモーターの作成	
		コイルモーターを作成することで、	コイルについている黒いチューブは
		身近なものに電磁石が使われてい	外さない。
		ることを実感する。	コイルモーターがうまく回らないと
			きは、コイルモーターの形を少し楕円
		リニアモーターカーの演示	形にさせる。
		普段の生活に利用されている電磁	
		石の例として、リニアモーターカー	金属棒の動く向きや速さに注目させ
		を演示する。	る。
	9時	・コイルモーターの実験	
		コイルモーターの回転を強くする	コイルについている黒いチューブは
		ためにはどうすればいいか実験を	外さない。
		考え、各班で実行する	
		① 電池の数を増やす。	
		② 乾電池を増やす。	
	10 時	・電磁石のまとめ	
		電磁石の性質について、まとめのテ	
		ストをする。	

6、本時の目標(第7限目)

コイルモーターやリニアモーターカーを見ることで、電磁石が身近に使われていること を実感する。また、これらの働きは、電流の強さや向き、コイルの巻数、磁石の強さが関 係していることを理解する。

7、本時の準備物

見本のモーター、リニアモーターカーセット、コイルモーターセット、プリント

8、本時の計画(第7限目)

時間	内容	注意点
導入	・身近に使われている電磁石	見本のモーターを準備する。
(5分)	身近に使われている電磁石の例として、モータ	
	ーを説明する。	
	モーターが使われている製品の例	
	① 車(電気自動車)	
	モーターの回転でタイヤが動く。	
	② 扇風機	
	モーターが回転することで、扇風機の羽が一緒	
	に回る。	
	③ 掃除機	
	モーターを高速でまわすことで、空気と一緒に	
	ごみを吸い取る。	
	(4) エスカレーター	
	モーターをまわすことで、階段や手すりを動か	
	す。	
	⑤ 携帯電話やゲーム機のバイブレーション	
	モーターにおもりをつけることで、振動させて	
	いる。	
展開 1	・コイルモーターの作成	
(30分)	コイルモーターを作成することで、電磁石の力	コイルモーターセットとプ
	でモーターが回ることを理解する。	リントを準備する。
	プリントに従って、班ごとでコイルモーターを	
	作成する。	

	① モーター用コイルのリード線中央部を折	コイルについている黒いチ
	り曲げてねじる。	ューブは外さない。
	② 乾電池を入れたケースの両脇に、銅版を付	
	ける。	
	③ 銅版にコイルをセットする。	
	④ 電池の上に磁石を置く。	
	⑤ コイルを手で軽く回すと、コイルが動き出	コイルがうまく回らないと
	-	きは、コイルの形を楕円にす
		る。
展開 2	・リニアモーターカーの演示	リニアモーターカーセット
(10分)	電気を流した磁石の上で、金属棒が動くことを	を準備する。
	見ることで、リニアモーターカーの原理を視覚	
	的に理解する。	
	電流を流すと、磁石の上に金属棒が動いていく	
	「金属棒を速くするにはどうすればいいか?」	
	電流を強くする	
	→乾電池を2つから3つに増やしてみる	
	「電流の向きを逆にするとどうなるか?」	
	→金属棒が逆に動く	

9、本時の評価

関心・意欲・態度	思考・判断・表現	技能	知識・理解
・身近に使われてい	・リニアモーターカ	・コイルモーターセ	・電磁石を強くする
る電磁石に興味を持	一の金属棒を速く動	ットを、説明通り組	ためには、電流を強
つことができる。	かすためには、どう	み立てることができ	くする必要があるこ
・どうすればコイル	すればいいか考える	る。	とわかる。
モーターがうまく回	ことができる。		・電磁石の向きを変
るか考えることがで			えるためには、電流
きる。			の向きを変える必要
			があることがわか
			る。

課題

エスカレーター 車のタイヤの見本

プリントの作り方

コイル、導線の名前がわからない、電気の流れがわからない 各班1人の補助が必要 話し合う、感想を言う時間を作る

リニアモーターカーの時間は無理かな

和歌山大学大学院教育学研究科 鎌倉伸也

- 1、日時
- 2、学年 5年1組
- 3、単元名 「電流の働き」
- 4、単元目標

鉄心を入れたコイルに電流を流すと鉄心は磁化し、電磁石ができることを理解する。また電磁石には極があり極は電流の向きによって変わること、電磁石の強さは、コイルの巻数や電流の強さによって変わることを、実験を通して理解する。

5、本時の目標(第7限目)

コイルモーターやリニアモーターカーを見ることで、電磁石が身近に使われていることを実感する。また、これらの働きは、電流の強さや向き、コイルの巻数、磁石の強さが関係していることを理解する。

6、本時の計画(1限目)

時間	内容	注意点
導入	☆身近に使われている電磁石	
(5分)	・問いかけ	
	「電気自動車のどの部分で、電磁石は使われて	
	いるか?」	
	iPad を用いて車の画像を写し、意見がある子 どもに、電磁石が使われていると思うところに 印を付けてもらう。	
	・モーターの説明	
	電気自動車はモーターの回転でタイヤが動く。	
	モーターを回転させているのは、電磁石であ	
	る。	
展開 1	・コイルモーターの原理の説明	
(10分)		
展開 1	・コイルモーターの作成	
(30分)	プリントに従って、班ごとでコイルモーターを	コイルモーターセットとプ

作成する。 リントを準備する。 ① モーター用コイルのリード線中央部を折 り曲げてねじる。 ② 乾電池を入れたケースの両脇に、銅版を付 ける。 コイルについている黒いチ ③ 銅版にコイルをセットする。 ューブは外さない。 ④ 電池の上に磁石を置く。 ⑤ コイルを手で軽く回すと、コイルが動き出 コイルがうまく回らないと す きは、コイルの形を楕円にす る。 ・コイルモーターのまとめ モーターが回るのは、電磁石があるからであ る。 鉄心がなくても、コイルだけでも電磁石にな る。

7、本時の計画(2限目)

片付け	・コイルモーターの片付け	
(5分)	指示に従って、コイルモーターを片付ける。	
展開 2	☆リニアモーターカー	リニアモーターカーセット
(35分)	・リニアモーターカーの実験	を3セット準備する。
	3つのグループに分かれて、リニアモーターカ	
	ーの実験を見てもらう。	1班と2班、3班と4班、5
		班と6班を1つのグループと
	電気を流した磁石の上で、金属棒が動くことを	する。
	見ることで、リニアモーターカーの原理を視覚	
	的に理解する。	
	・問いかけ	
	「金属棒を速くするにはどうすればいいか?」	
	各自意見を考えてもらう。	
	・予想される意見	
	電流を強くする。	

	磁石を強くする。	
	・予想された意見の実験	
	各グループで、乾電池を増やしてリニアモータ	
	ーカーを動かしてみる。	
	・問いかけ	
	「電流の向きを逆にするとどうなるか?」	
	各自意見を考えてもらう。	
	・予想される意見	
	電流を逆にする	
	磁石を逆にする	
	・予想された意見の実験	
	各グループで、予想された意見の実験をする。	
	電流を逆にする	
	→金属棒が逆に動く	
	土台を裏返して、磁石を逆にする	
	→金属棒が逆に動く	
感想	・感想記入	
(5分)	今日わかったことなどを記入してもらう。	

和歌山大学大学院教育学研究科 鎌倉伸也

- 1、日時 1月 30日(金)
- 2、学年 5年1組
- 3、単元名 「電流の働き」
- 4、単元目標

鉄心を入れたコイルに電流を流すと鉄心は磁化し、電磁石ができることを理解する。また電磁石には極があり極は電流の向きによって変わること、電磁石の強さは、コイルの巻数や電流の強さによって変わることを、実験を通して理解する。

5、本時の目標(第7限目)

モーター、コイルモーターやリニアモーターカーを使い実験することで、電流を強くする、コイルの巻数を増やすことで、電磁石の磁力は強くなることを理解する。

6、本時の計画(1限目)

時間	内容	注意点
導入	○身近に使われている電磁石	
(5分)	・問いかけ	iPad で扇風機の写真を写す
	「扇風機のどこに電磁石が使われているか」	
	予想される意見	
	回るところの中心	
	iPad を用いて車の画像を写し、意見がある子	
	どもに、電磁石が使われていると思うところに	
	印を付けてもらう。	
	・モーターの説明	
	扇風機が回るのは、モーターがあるからであ	
	る。	
	モーターには電磁石が使われている	
説明 1	○モーターの説明	
(15分)	・モーターの観察	書画カメラで、モーターの中
	モーターの中身を観察し、どのように電磁石が	身を写す
	使われているか確認する。	

コイルと鉄心のセットが3つあることを確認 する。 またコイルの回るに磁石があることを確認す る。 ・コイルの磁力の説明 コイル自体が磁石になっている コイルの磁石の極は、電流の向きによって変わ る。 モーターの説明 モーターには、N極とS極に磁石があり、磁 フリップを使用して、モータ 一の回る原理を説明する。 石の中に3つのコイルがある 電磁石によって、上のコイルはN極、右下、 左下のコイルはS極になっている 磁石の引き合う力によって、モーターが回転す 3 コイルの位置が変わると、電流の向きが切り替 わるため、N極、S極が切り替わる そのため、上のコイルは N極、右下と左下の コイルは S極にいつもなっている。 モーターは回り続けることができる。 説明 2 ○コイルモーターの説明 (5分) ・コイルモーターとは モーターのように、場所によってコイルの電流 の向きが変わる物を作るのは難しい。 しかし少し工夫することで、モーターのように 電磁石が回るものを作ることができる それがコイルモーターである。

	・コイルモーターの原理の説明	フリップを用いて、コイルモ
	電気が流れているコイルの下に磁石を置くと、	ーターの原理を説明する。
	力が発生する。	
	力が発生するため、コイルモーターは回り続け	
	ることができる。	
活動 1	・コイルモーターの作成	
(20分)	本当に電気と磁石の力で力が発生するのか、コ	コイルモーターセットとプ
	イルモーターを使って確かめて見る。	リントを準備する。
	プリントに従って、班ごとでコイルモーターを	
	作成する。	補助の方に手伝ってもらい
	① モーター用コイルのリード線中央部を折	ながら作成する。
	り曲げてねじる。	
	② 乾電池を入れたケースの両脇に、銅版を付	コイルについている黒いチ
	ける。	ューブは外さない。
	③ 銅版にコイルをセットする。	
	④ 電池の上に磁石を2つ置く。	コイルがうまく回らないと
	⑤ コイルを手で軽く回すと、コイルが動き出	きは、コイルの形を楕円にす
	t	る。

7、本時の計画(2限目)

思考	○コイルモーターを強くするためにはどうす	
(10分)	ればいいか考える	
	・発問	
	「コイルモーターを早く回すためにはどうす	
	ればいいか」	
	予想される答え	
	電流を強くする	
	コイルの巻数を増やす	
活動 1	○コイルモーターを強くする実験	
(15分)	・電流を強くする	前の机に集まってもらい、実
	電源装置を用いて、モーターに流す電流を強く	験を見てもらう。
	していくことで、モーターの回転が早くなるか	

実験する

電流を強くすると、コイルの回転が速くなる。

コイルの巻数を増やす

巻数が5回、10回、20回のコイルを用意し、 コイルの回る速さを比べてみる。

コイルの巻数が多いほど、早く回ることができ る。

・磁石を強くする 磁石の数を2つから3つに増やしてみる。

磁石の数を多くして、磁石を強くすると、コイ ルの回転が速くなる。

展開2

○リニアモーターカーの実験

3つのグループに分かれて、リニアモーターカ リニアモーターカーセット (10分) 一の実験を見てもらう。

> 電気を流した磁石の上で、金属棒が動くことを 1 班と 2 班、3 班と 4 班、5 見ることで、リニアモーターカーの原理を視覚 | 班と6班を1つのグループと 的に理解する。

・問いかけ

「電池の数を増やすと、金属棒はどうなるか」 予想される意見 金属棒は速くなる

電池を増やしてリニアモーターカーを動かし てみると、金属棒は速くなる。

・ 問いかけ

「電流の向きを逆にするとどうなるか?」 各自意見を考えてもらう。 予想される意見

を3セット準備する。

する。

	変わらない	
	予想された意見の実験 電流の向きを逆にして、リニアモーターカーを 動かすと、金属棒が逆に動く 電磁石の向きは、電流の向きで変わる。	
説明 1	○リニアモーターカー	
(5分)	・リニアモーターカーの説明 リニアモーターカーとは、レールの N 極と S 極を切り替えることで、車両を動かす乗り物で ある。	フリップを使用して、リニア モーターカーの原理を説明 する。
	・超電導の説明 リニアモーターカーには、超伝導コイルが使われている 超電導とは、物質をとても冷やすと、電流がと ても強くなる現象 ↓ 電流がとても強くなると、コイルの磁石も強く なる よってリニアモーターカーもとても速くなる	
感想	○感想記入	
(5分)	今日の感想、わかったことを記入する。	

和歌山大学大学院教育学研究科 鎌倉伸也

- 1、日時 1月 30日(金)
- 2、学年 5年1組
- 3、単元名 「電流の働き」
- 4、単元目標

鉄心を入れたコイルに電流を流すと鉄心は磁化し、電磁石ができることを理解する。また電磁石には極があり極は電流の向きによって変わること、電磁石の強さは、コイルの巻数や電流の強さによって変わることを、実験を通して理解する。

5、準備物

iPad、書画カメラ、コイルモーターセット(6 組)、ワニロクリップ(12 本)、リニアモーターカー(3 セット)

6、本時の目標(第7限目)

コイルモーターの活動を通して、電磁石の性質(電流を強くすると電磁石は強くなる、コイルの巻数を増やすと電磁石は強くなる、電流の向きを逆にするとコイルの極は逆になる) について復讐する。

7、本時の計画(1限目)

時間	内容	注意点
導入	○身近に使われている電磁石	
(5分)	・問いかけ	iPad で扇風機の写真を写す
	「扇風機のどこに電磁石が使われているか」	
	予想される意見	
	回るところの中心	
	・モーターの説明	
	扇風機が回るのは、モーターがあるからであ	
	る。	
	モーターには電磁石が使われている	
説明 1	○モーターの説明	
(5分)	・モーターの観察	書画カメラで、モーターの中
	モーターの中身を観察し、どのように電磁石が	身を写す

		200 E WW H 514 2 C (200
		ら方位磁石を持ってくる。
	めてみる	つずつ持ってくる。 各班1人代表して、キットか
	コイルが本当に磁石になっているか各班確か	池と電池ボックスを前から1
	実はコイル自体が弱い磁石となっている	各班前の机から、コイルと電
	・コイルが磁石になっているか確認	
	(40), 47, 1010 / (8) 30	
	る。 それがコイルモーターである。	
	モーターのように回るものを作ることができ	せる
	モーターを作るのは難しいが、電磁石を用いて	コイルモーターの写真を見
(10分)	・コイルモーターとは	
説明 2	○コイルモーターの説明	
	たことをプリントに書く。	
	モーターが速くなるのか、気付いたこと、感じ	
	コイルモーターを観察して、どうすればコイル	
	性質について復習しよう。」	
	「コイルモーターを観察することで、電磁石の	
	・今日のめあての発表	
	にある磁石と引き合うことで回る。	
	電気を流すことで電磁石となり、コイルの回る	
	・コイルの回る原理の説明	
	る。	
	またコイルの周りに磁石があることを確認す	
	する。	
	コイルと鉄心のセットが3つあることを確認	
	使われているか確認する。	

する。

書画カメラでコイルモーターを写しながら、作り方を説明する。

- ① モーター用コイルのリード線中央部を折り曲げてねじる。
- ② 乾電池を入れたケースの両脇に、銅版を付 ューブは外さない。 ける。
- ③ 銅版にコイルをセットする。
- ④ 電池の上に磁石を2つ置く。
- ⑤ コイルを手で軽く回すと、コイルが動き出 るとよい。 す

完成したらコイルモーターを観察し、気付いたこと、思ったことをプリントに記入する。 またコイルモーターで試してみたいことを実行する。

電池を増やして回してみたいという班があったら、自分のキットから電池を持ってきて、電池を増やして試させてみる。

コイルの巻数を増やしたいという班があった ら、エナメル線を渡して作らせる。 磁石 2 個を持ってくる。

補助の方に手伝ってもらい ながら作成する。

コイルについている黒いチューブは外さない。

コイルがうまく回らないと きは、コイルの形を楕円にす るとよい。

6、本時の計画(2限目)

話し合い (10分)

○コイルモーターの活動を通して、気付いたことの発表

発問

「コイルモーターで遊んでみて、気づいたことや感じたことを発表しよう」

予想される意見

・電流を強くすると、コイルモーターの回る速 さが速くなる。

・巻き数を多くすると、速く回るようになるの ではないか。 ○磁石について意見が出た場合のみ教える ・磁石の強さが関係しているのではないか 実は磁石にも強さがある 磁石1個の時と、磁石2個で時とで、コイルモ ーターの回しやすさを比べて見る 磁石2個の方が磁石の強さが強いので、コイル モーターが回りやすい ・磁石の裏表を逆にすると、コイルモーターの 回転の向きが逆になった。 磁石の表裏を逆にすると回転が逆になるのか 試してみる。 ○コイルの形について意見が出た場合教える コイルの形が○をつぶした形の方が回りやす い形である。 説明1 ○電磁石の性質のまとめ (10分) 出た意見から、「電流の強さ」、「コイルの巻数」、 「電流の向き」に関するものに分類する。 ・電流を強くすると、電磁石は強くなる 電池1個の時と2個の時で、コイルモーターの 回る速さが速くなることを書画カメラで見せ 3 ・コイルの巻数を増やすと、電磁石は強くなる コイルモーターの場合は、コイルの巻数を増や すと重くなるので、回転の早さは変わらない。 しかし電磁石の強さは強くなる。 ・電流の向きを変えると、電磁石の極は変わる

コイルモーターの電池の向きを変えてみると、 回転が逆になる

コイルモーターの極が変わったので、電磁石と 磁石の引き合う向きが方向が逆になったから である。

各班コイルの回転が変わるのか、実際に試して

活動 1

○リニアモーターカーの実験

(10分) コイルモーターには軸があるので、回転するが「リニアモーターカーセット 軸がなかった場合は進むことができる。

> 3つのグループに分かれて、リニアモーターカ 1班と2班、3班と4班、5 一の実験を見てもらう。

・ 問いかけ

「電池の数を増やすと、金属棒はどうなるか」 予想される意見

金属棒は速くなる

電池を増やしてリニアモーターカーを動かし てみると、金属棒は速くなる。

・ 問いかけ

「電流の向きを逆にするとどうなるか?」 各自意見を考えてもらう。

予想される意見

金属棒が逆に動く

電流の向きを逆にして、リニアモーターカーを 動かすと、金属棒が逆に動く 電磁石の向きは、電流の向きで変わる。

○磁石について意見が出た場合のみ教える 「金属棒を逆に動かす方法がもう1つありま すし

土台を反対にして、金属棒を動かしてみる

を 3 セット準備する。

班と6班を1つのグループと する。

	金属棒は反対に動く	
説明 3	○リニアモーターカー	
(5分)	○超電導が利用されているもの	フリップを使用して、リニア
	・リニアモーターカーの説明	モーターカーの原理を説明
	リニアモーターカーとは、レールの N 極と S	する。
	極を切り替えることで、車両を動かす乗り物で	
	ある。	
	・超電導の説明	
	超電導とは、物質をとても冷やすと、電流がと	
	ても強くなる現象	
	リニアモーターカーには、レールに超伝導コイ	
	ルが使われている	
	冷やすことで超伝導状態になり、電流が強くな	
	る	
	よってコイルの磁力が強くなり、リニアモータ	
	ーカーは速くなる。	
片付け	○片付け	
(5分)	各班机にあるものを、前の机に返す。	
感想	○感想記入	
(5分)	今日の感想、わかったことを記入する。	

和歌山大学大学院教育学研究科 鎌倉伸也

- 1、日時 1月 30日(金)
- 2、学年5年1組
- 3、単元名 「電流の働き」
- 4、単元目標

鉄心を入れたコイルに電流を流すと鉄心は磁化し、電磁石ができることを理解する。また電磁石には極があり極は電流の向きによって変わること、電磁石の強さは、コイルの巻数や電流の強さによって変わることを、実験を通して理解する。

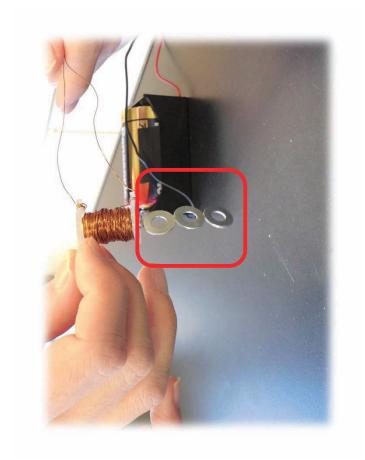
5、準備物

コイルモーターセット、ワニロクリップ

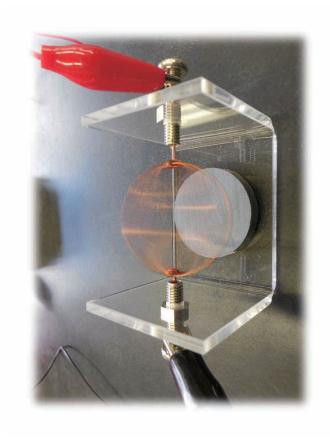
6、本時の目標

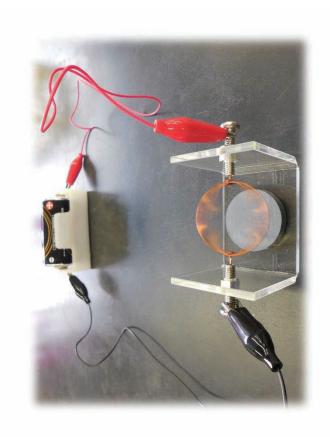
コイルモーターを使用して、それを用いてどんな実験をしたいか考え、実行することができる。

7、本時の計画

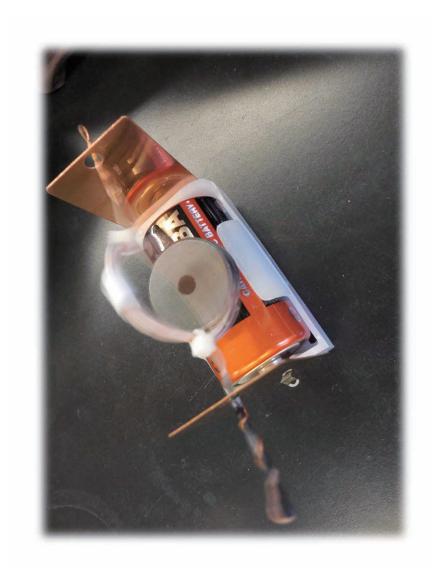

展開	○今日のめあて	
(15分)	「コイルモーターで試したいことを実行しよ	面白い考えがあったら、みん
	う。」	なに共有する。
	コイルモーターで試してみたいことを考えて、	
	プリントに記入する。	
活動	○実行	
(25分)	自分の目当てを実行する。	わからなかったところ、間違
	分かったことをプリントに記録する。	っているところがあったら、
		補助者が支援する。
	実験例	
	・温める	
	アルコールランプで、コイルをビーカーで温め	
	る。(温度を記録させる)	
	・冷やす	
	氷水に塩(寒剤)でコイルを冷やす。(約−20℃)	

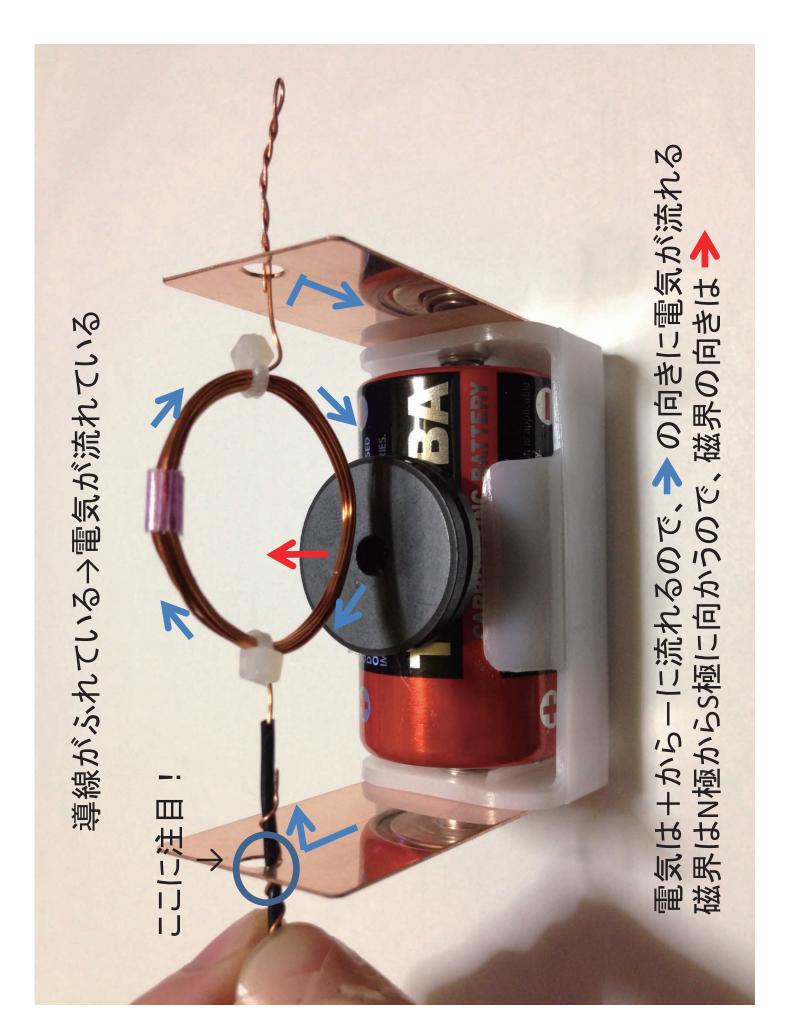
	・乾電池の数を増やしたい 乾電池を1個から2個に増やす。 違いが良く分からなければ、電源装置を使う。	
	・コイルの巻数を増やしたい	
	エナメル線を渡して、コイルを作らせる。	
片づけ	〇片づけ	終わった後、プリントを回収
5分	今日使ったものを片づける。	する。
	使ったものをキットに入れる。	
	前から持ってきたものは、前の机に返す。	


教材研究(電磁石の性質)



液体窒素温度

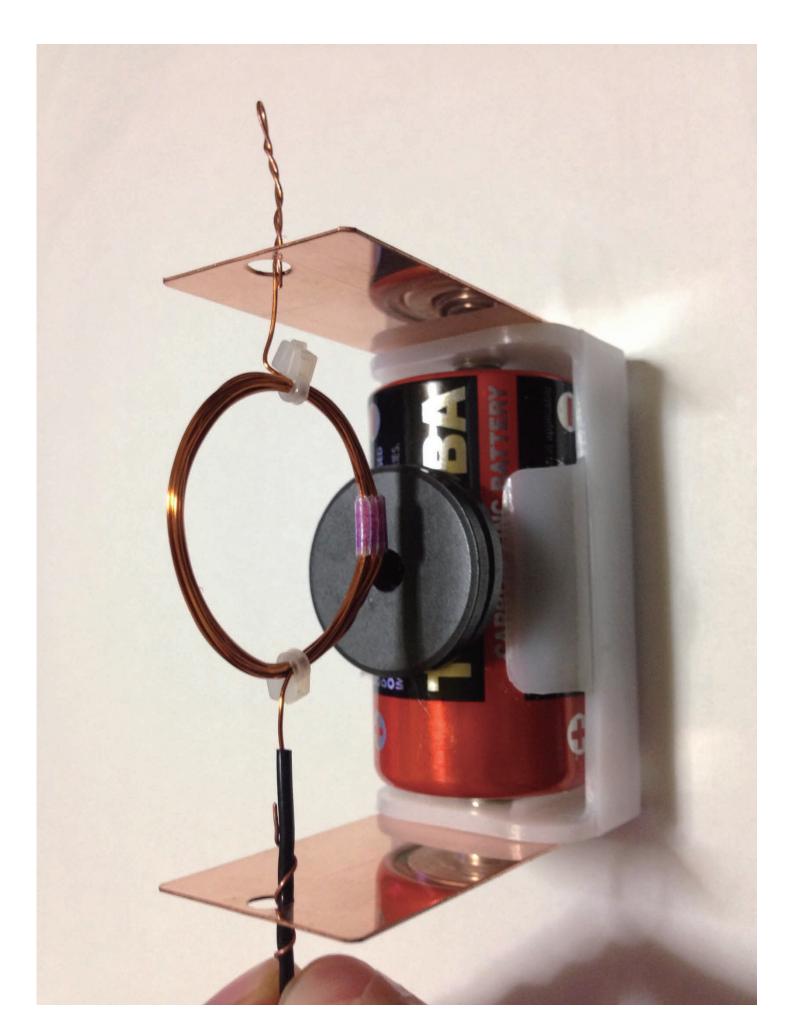



数材研究(コイルモーター)

教材研究(コイルモーター)

コイルの上の部分に注目

コイルの下の部分に注目


奥に進む

手前に進む

磁界の向き

電流の向き

コイルは回転する

白い部分がコイルの下にある時

コイルの上側に注目

コイルの下側に注目

コイルの下側は奥に動く

コイルの上側は手前に動

磁界の向きー

電流の向き

コイルは回転する