


# 物性研究所における国際化の取組

#### 研究環境基盤部会 2017年6月28日





東京大学物性研究所 瀧川仁





### アウトライン

- 1. 何のための国際化?
- 2. 物性研の国際共同利用・共同研究の状況
- 3. 頭脳循環プロジェクト (平成26-28)
- 4. 共同利用・共同研究拠点における国際化について



# 1. 何のための国際化?

▶ 共同利用・共同研究拠点の役割

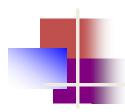
国内の研究者コミュニティに、価値ある研究資源(実験施設や新しい アイデア醸成のための議論の場)を提供。

- ⇒ 日本の研究力向上 1. 裾野を広げる。
  - 2. その中から傑出した成果を出す。
- > 国際的な共同利用·共同研究の目的

拠点の研究資源を有効に活用する優れた研究テーマを発掘

- =>研究成果の最大化 ⇔「裾野を広げる」ことは目的でない。

国際化は目的ではなく、成果最大化のための手段




# 2. 物性研の国際共同利用・共同研究の状況

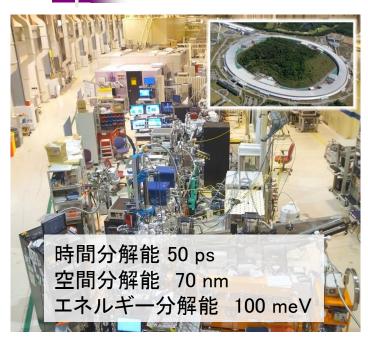
| 平成27年度実施状況 |           |     |          |  |  |  |  |
|------------|-----------|-----|----------|--|--|--|--|
| 公募型実施件数    | 公募型以外実施件数 | 合計  | うち国際共同研究 |  |  |  |  |
| 879        | 44        | 923 | 44       |  |  |  |  |

|              | 平成27年度参加状況 |      |     |               |      |      |      |               |      |
|--------------|------------|------|-----|---------------|------|------|------|---------------|------|
| 区分           |            | 受入人数 |     |               | 延べ人数 |      |      |               |      |
|              | 機関数        |      | 外国人 | 若手(35<br>歳以下) | 大学院生 |      | 外国人  | 若手(35<br>歳以下) | 大学院生 |
| 学内(法人内)      | 10         | 474  | 10  | 139           | 86   | 762  | 20   | 311           | 197  |
| 大学(国立・公立・私立) | 66         | 891  | 37  | 268           | 192  | 3900 | 166  | 1526          | 1112 |
| 大学共同利用機関法人   | 2          | 18   | 0   | 0             | 0    | 22   | 0    | 0             | 0    |
| 公的研究機関(独法など) | 4          | 63   | 0   | 3             | 0    | 183  | 0    | 4             | 0    |
| 民間機関・その他     | 6          | 15   | 0   | 0             | 0    | 78   | 0    | 0             | 0    |
| 外国機関         | 73         | 108  | 108 | 26            | 24   | 1961 | 1961 | 489           | 226  |
| 計            | 161        | 1569 | 155 | 436           | 302  | 6907 | 2147 | 2330          | 1535 |

| 平   |               |          |
|-----|---------------|----------|
| 総数  | うち共同利用・共同研究論文 | うち国際共著論文 |
| 448 | 414           | 106      |



# 2. 物性研の国際共同利用・共同研究の状況


### 特色ある取組

- ➤ 国際的大型施設内での活動 例: SPring-8 軟X線東大アウトステーション
- ▶ 独自開発の特色ある装置の活用 例:レーザー光電子分光
- ▶ 滞在型ワークショップ・海外客員所員 多様な発想の交点から生まれる国際共同研究の醸成

### 国際的大型施設内での活動

イリノイ大

### SPring-8 軟X線東大アウトステーション



ストックホルム大 国際共同研究

\*\*\*マッチェスター大

ュトレヒト大 ★台湾国立精華大

スイス連邦工科大

SLS放射光

パリ大・・ヴュルツブルグ大



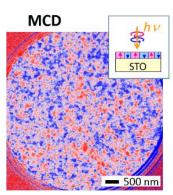
必ずしも国外申請の採択率が高いわけではない。

競合する海外の次世代施設・装置が利用開始

NSLSII(米)
TPS(台湾)
MAX IV(スウェーデン)
ESRF ERIXS(仏)
Soleil ANTARES(仏)

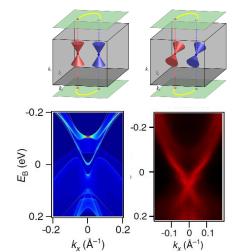
## 独自開発の特色ある装置の活用




### レーザー光電子分光






エネルギー分解能 70 μ eV スピン偏極エネルギー分解能 1.3 meV 空間分解能 2.6 nm

#### 酸化物表面の強磁性



Dichroic contrast: 0.2 %

トポロジカル・ワイル 半金属の同定



独自開発のレーザー光源を用いて、 世界最高性能を実現:

トポロジカル電子系の表面物性など、 最先端のテーマで共同研究が進展 2015年以降で、Phys. Rev. Lett.、 Nature Comm. など8報。

# 3. 頭脳循環プロジェクト

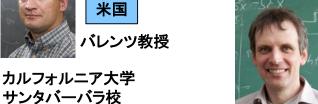


頭脳循環を加速する戦略的国際研究 ネットワーク推進事業

新奇量子物質が生み出すトポロジカル現象の 先導的研究ネットワーク



採択期間:平成26年10月~平成29年3月


プロジェクトの特長 新しい研究分野の開拓を目指す、戦略的な国際共同研究チーム。 派遣研究者は期間中に長期(原則1年以上)海外連携機関に滞在。 期間中に定期的に研究集会を開催 => 関連研究者への情報発信



ドイツ メスナー教授



バレンツ教授



理論

ロッシュ教授 ケルン大学

ドイツ

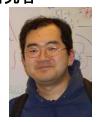




瀧川教授【全体統括】 担当研究者



鈴木シニアURA 【管理運営】


招 聘

派遣6名

ドイツ



榊原教授【実験】



押川教授【理論】

若手研究者 6名



中辻准教授

志村特任

研究員



三田村助教



多田助教



ヒュイアン特任 肥後特任 研究員 研究員 5



ドイツ

ブロホルム教授 ジョンズホプキンス大学

複雜系物理学研究所

マックスプランク 固体化学物理学研究所



マッケンジー教授

ドレスデン高磁場研究所



ツァーリッシン部門長

ドイツ



バリカス主任研究員



米国国立高磁場研究所

ゲーゲンバルト教授

アウグスブルグ大学



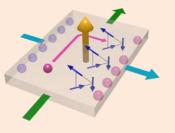
#### 事業の効果 一 研究成果と波及効果

#### 研究成果例

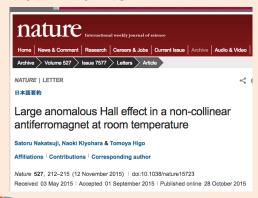
・新規現象の発見

#### 活きたネットワーク効果

・先端研究者とのブレインストーミング




研究指針へのフィードバック


どこまで研究上重要な 議論ができるか

平成27年11月

競合者でもある研究者と



反強磁性体における巨大ホール効果



平成 27年3月

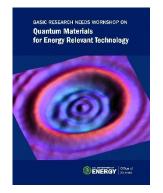


ワークショップ・インフォーマルミーティング等

トポロジカルな電子構造に 起因する革新的な現象

- ー 新規メモリ材料 新規熱電材料
- 特許取得

#### 連携研究者の協力 TOP NET



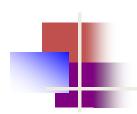

・米国エネルギー省(DOE) の研究戦略に掲載

注目すべき先端研究としての評価

→ 新しい研究領域の構築へ (分野創成)

#### 平成 28年12月




·外部資金獲得 平成28年度

CREST

革新的技術の応用

代表:中辻知【若手派遣研究者】 トポロジカルな電子構造を利用した 革新的エネルギーハーヴェスティングの基盤技術創製

# 3. 頭脳循環プロジェクト



新奇量子物質が生み出すトポロジカル現象の先導的研究ネットワーク



- ▶ プロジェクト(国際共同研究)の意義・効果
- O研究成果:

新規現象の発見 異なる研究環境、異なる考え方を持つ研究者の間の継続的な

議論から、思いがけないアイデアや画期的成果が生まれる。

(国際共同研究の本来の意義)

**質の向上へ** 論文数(量)にはあまり貢献しないが、波及効果の大きな論文に直結。

○ 国際ハブ拠点: 滞在型ワークショップ等の研究会の開催によって、国内研究者へ

国際共同研究の機会を提供する。(国内コミュニティへの波及効果)

○ 所内制度へ: 研究所内の異分野間連携、国際連携・人事交流の活性化を促す。

共共拠点がこのような共同研究を先導し、国内研究者コミュニティが参加できる制度を目指してはどうか。

### 国際ハブ拠点として国内研究者への橋渡し

・滞在型理論ワークショップ

2017年2月6日~3月2日 毎日2つの理論講演+議論 理論家・実験家の交流 参加者(延べ人数):410人(25人/日)

十

・国際シンポジウム

2017年2月20日~2月22日(3日間)

著名な講師を招聘 発表·質疑時間を十分に確保した討論ベース の講演会 参加者(延べ人数):347人

物性研では2006年以降ほぼ毎年開催 - 国内研究者へ国際共同研究の機会を提供



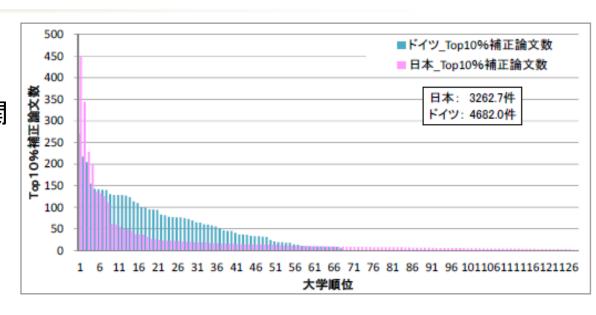
Contact: Email: tpfc@issp.u-tokyo.ac.jp Web: http://tpfc.issp.u-tokyo.ac.jp












# 4. 共共拠点制度における国際化について

#### > 現状の課題

活発な研究活動が少数の機関に集中していることが、日本の 問題

基礎研究の発展には、多様性 の確保が本質的に重要



- ➢ 法人化以後の基礎体力の低下
  - 研究時間の減少、学生の減少 ⇒ 論文数の停滞
  - ・ 論文数の停滞 × 国際共同研究のコスト ⇒ 国際共著論文の相対的低下
  - 一方、研究の質の向上には、国際共同研究が重要な要素 レベルの高い国際共同研究の推進 ⇒ 共共拠点の役割



# 4. 共共拠点制度における国際化について

- ▶ 共共拠点における国際化のポイント
  - 共共拠点が、価値ある研究資源(施設、研究者、国内研究ネットワーク)を 活かして、国際共同研究を推進する。=> 拠点の成果最大化
  - 拠点の国際化を国内研究者コミュニティに還元する仕組みを作り、拠点の活動に 国内研究者が参加することによって、国内研究者コミュニティを活性化=> 裾野の拡大
  - 基本的にボトムアップ・アプローチ (WPIや理研とは異なるアプローチ) 日本全体としてはトップダウンとボトムアップの両方が必要 デュアルサポートの考え方(学術会議提言)
- ▶ 運営・事務組織の国際化

運営組織の国際化、事務組織の国際対応はできれば望ましいが、多大な労力と経費が必要。恐らく最優先事項ではない。

日本の大学システム全体の課題。物性研ではまだできていない。

- ▶ 投資効果について
  - ・限られた経費を国際化に向けるのであれば、共同研究そのものの活性化に。
  - ・実際に国際化を進めるには、研究者の自由な時間の確保が最も重要。