

原型炉設計合同特別チームの 平成30年度活動報告・令和元年度活動計画

原型炉設計合同特別チーム


```
原型炉 JA DEMOの概念図
```


産学官によるオールジャパン体制

核融合原型炉開発活動

アクションプランに沿って

 ・原型炉概念設計
 ・材料、シミュレーション等の研究開発

共同研究を活用

•原型炉の基本方針について 合意形成

アクションプランの具体化、役割分担

核融合エネルギーの長期見通し

- ・低炭素社会に向けた核融合の役割
- ・資源確保の見通し

シンクタンク、関連学協会との連携 委託研究・調査を活用

平成30年度の活動概要

オールジャパン体制による設計活動

令和元年6月現在のメンバー数:96名 (QST:28、産業界:25、大学等:43)

- ・大学・研究機関との共同研究(32件)
- ・関連学協会等への委託研究(5件)
- ・H30度の技術会合~25回(延べ~350人参加)

第9回全体会合(H30年12月)

メーカー設計報告会(H30年4月)

特別チーム/ワーキンググループ活動

特別チーム内外の専門家の協力を得て、アクションプラン を詳細化、遂行のための役割分担を協議

アクションプランの実施計画案をQST報告書に取りまとめ (https://www.qst.go.jp/site/archives/1110.html)

€ QST ast-M-s	GOST QST−M−10	ØQST QST-M-19	SQST QST-M-18
ダイパータ物理検討ワーキンググループ	原型炉運転計画ワーキンググループ	理論・シミュレーション	原型炉超伝導コイルワーキンググループ
教告書	報告書	ワーキンググループ報告書	報告書
Working group report on the divertor physics	Working group report on the operation plan	Working group report on the theory and simulation	Working group report on Superconducting
researches	for DEMO	researches	Magnet for fusion DEMO
原語の記計合同状語デーム	原版炉設計合同特別チーム	原型伊設計合同特別チーム	原型印刷台向钟频于一人
Joint Special Design Team for Fasion DBMO	Joint Special Design Team for Fusion DEMO	Joint Special Design Team for Flation DBAO	Joint Special Design Team for Fusion DEMO
国立研究研究法人 量子科学技術研究開発機構	現立研究開発法人量子科学技術研究開発機構	国立研究開発法人量子科学技術研究開発機構	国立研究開発法人 皇子科学技術研究開発機構
National Institutes for	National Institutes for	National Institutes for	National Institutes for
Quartum and Rediciogical Science and Technology	Quantum and Radiological Science and Technology	Quantum and Rediciogical Science and Technology	Quantum and Radiological Science and Technology
ダイバータ物理検討We	G 原型炉運転計画WG	理論シミュレーションWG	a 超伝導コイルWG
(H30年5月出版)	(H30年7月出版)	(H30年12月出版)	(H31年3月出版)

低炭素社会に向けた核融合の役割

(地球環境産業技術研究機構との協力)

・地球温暖化抑制シナリオにおける核融合エ ネルギーの導入ポテンシャル

パリ協定2℃目標達成のために核融合が役割を果たし うる条件を、CO₂排出抑制計画、社会経済等の様々な シナリオに対して分析。

資源確保の見通し

DEMO DESIGN

- 核融合導入のために確保すべき資源の見通 しを分析
- ▶ H30年度は燃料増殖に有効なBe資源の見通し を調査 (三井金属資源開発(株)との協力)
 - ✓原型炉での必要量はブランケット1式につきBe 約500トン(約100 トン/年. 再利用可)に対し、現在の年間生産量は世界で約300トン

✓Be埋蔵量自体は豊富(40万トン)

(地球環境産業技術研究機構, H30)

③ 燃料の自己充足性を満足す る総合的なトリチウム増殖
→ブランケット・燃料循環系

物理・工学ガイドライン(15-19):	実施中	
基本概念設計(15-19):	実施中	
燃料サイクル戦略(16-26):	実施中	(共同研究)
コスト評価(18-31):	実施中	(共同研究)
原型炉TBM目標(15-19	実施中	(共同研究)
BOPを含む機器構成案(17-19):	実施中	
安全確保方針案(16-19):	実施中	

プラント概念

● 原型炉周辺機器のレイアウト

電気出力の評価

主冷却系の熱収支と設備所要電力を一次評価
 正味電気出力 約254MW

7

1. 超伝導コイル

SC概念基本設計(15-19): 実施中 超伝導線材検討(15-19): 実施済 R&D計画の策定(18-19): R&D課題を整理 冷却系概念基本設計(16-19): 消費電力を評価

トロイダル磁場コイルの設計

- ITER方式を採用、製作公差を緩和 超伝導線材:Nb₃Sn 導体構造:ケーブルインコンジット 巻線方式:ラジアルプレート ダブルパンケーキ
- H30年度は導体設計で進展

クエンチ時の放電時定数を~30秒と決定

補正磁場コイル設計

● トロイダル磁場コイルの製作公差緩和のため、 補正磁場コイルを採用

保守ポート、NBIポートを避けた補正磁場コ イル配置の場合でも補正可能な見通し

(非周期成分の効果は小さいことを確認)

トロイダル角67.5°補正磁場コイルの配置案

BLKシステム概念基本設計(15-26):実施中 先進BLK概念検討(15-19): 実施中(共同研究)

増殖ブランケット

● 内部冷却配管の破断による事象進展抑制のため、筐体の耐圧構造化

W水冷却DIVの適用性(18-26):実施中 先進DIV評価(15-19):先進磁場配位の検討は実施済 DIV機器の保全・補修技術(16-26):実施中 排気システムの検討(16-26): 一部実施済

ダイバータ概念

● ITERの延長技術を採用

ダイバータシミュレーション

● ダイバータの設計ウィンドウを解析

ダイバータ機器概念

仕様検討

プラズマ加熱・電流駆動のため

- 中性粒子ビーム入射(NBI)
- 電子サイクロトロン波 (ECH) ∫

NDI	効率		
NDI	ITER	原型炉(目標)	
電源	90 – 95%	\leftarrow	
イオン源	66%	÷	
中性化セル	56%(ガス)	90-95% (光)	
システム効率	33 – 41%	53 – 60%	

FOU	効率		
ЕСП	ITER評価	原型炉(目標)	
電源	90 – 95%	~	
ジャイロトロン	50%	70-80%	
伝送系	90%	\leftarrow	
ランチャー	98%	÷	
システム効率	40 - 42%	55 – 67%	

配置検討(EC, NBI)

NBI:イオン源の保守を考慮してホットセル側に配置 ECHアンテナ:NBIの対面に配置

ECH及びNBIの配置案

シミュレーションコードの開発

- 原型炉の性能予測に向け炉心プラズマ シミュレーションコードを開発
- 共同研究によりシミュレーションの 幅広い協力を展開

H30年度5件、R1年度6件

ダイバータシミュレーションモデルの改良

SOL上流への不純物輸送が抑制され、 プラズマへの不純物混入の低減を示唆

理論シミュレーションWG活動

- アクションプランを具体化
- 原型炉に向けた理論シミュレーションの
 中長期研究開発計画を立案
 - 1. 統合シミュレーション
 - 2. ダイバータシミュレーション
 - 3. ジャイロ運動論的乱流輸送シミュレーション
 - 4. 高エネルギー粒子輸送シミュレーション
 - 5. MHD・ディスラプションシミュレーション
 - 6. 核燃焼制御シミュレーション
 - 7. 材料照射効果シミュレーション
- QST報告書として出版 (H30.12)

理論シミュレーションWGメンバー

運転シナリオ

● 高楕円度を持つプラズマの立上げをプラズ マ平衡制御シミュレーター MECSで検討

楕円度~1.75まで安定な立上げを確認

原型炉パラメーター検討WG活動

- 設計パラメーターについて合意形成
- パラメーター実現のための技術的課題と
 開発計画について意見集約

原型炉設計側とプラズマ物理研究側の 意見の擦り合わせ

第1回原型炉パラメータ検討WG (2018.8.31)

物理設計と炉心パラメータ(15-19):実施中 プラズマ設計DB構築(15-19): 実施中

燃料供給シナリオ策定(15-18): ペレット入射は実施済 燃料インベントリー評価(15-18):実施中(共同研究) 燃料循環システム仕様(18-19):実施中 T製造プロセス検討(15-19):実施中(共同研究)

トリチウム諸課題検討WG活動

- 燃料システムを含むトリチウムに関連する 設計方針策定のため、WG活動を始動
- 専門家45名を組織化し、アクションプランの以下の課題を検討
 - 1. 環境中トリチウム規制の考え方
 - 2. トリチウム燃料サイクル
 - 3. 大量トリチウム取扱施設
 - 4. トリチウム確保戦略
 - 5. 炉内インベントリ

2020年中頃に報告書にまとめる計画

核融合材料と規格・基準

低放射化フェライト鋼の照射特性

- これまで得られた低放射化フェライト鋼(F82H)の中性子照射データを統計解析
- 照射材の寿命評価に向けて、照射材特性の確率分布を理解
 - ・Doseとともに偏差が増大、脆化傾向
 - ・変形能(均一伸び)は照射が進むとワイブル分布へ

材料特性を確率分布関数で定義する、確率論的設計法の概念

先進材料の利用方法(15-18): 実施中

(核融合材料ハンドブック策定):

(共同研究)

F82H

安全上の特徴整理「既存コード評価」(15-16): 一部実施済 安全上の特徴整理[安全確保方針](15-18):実施中 機器故障のシナリオ確立(15-26):検討に着手 安全性評価コードの開発(15-31):実施中 環境トリチウム規制目標の調査・検討(15-19):実施中

安全性研究

- 従来の安全性研究
 - ✓ 原型炉の安全に係る重要事象は真空容器(閉じ込め) バリア)の過圧損傷による内在トリチウムの容器外 放出
- ✓ これまでの安全性研究では、真空容器の過圧に対し て圧力抑制プールによる受動的影響緩和を考慮
- 最近の安全性研究

圧力抑制プール

プラズマ

バッフル

ダイバータ

ラプチャーディスク

NBポート

真空容器

逆止弁

ダイバータ冷却系

★: ギロチン破断箇所

290°C~325℃, 15,5 MPa

主冷却系の設計進展に合わせ、実配管構成による緩和、 事故影響緩和系の積極的な活用による事故影響低減化 の方策の検討に着手

0.7

0.6

0.5

0.4

0.3

0.2

0.0

0

器内压力 [MPa]

(約

BH ₩ 0.1

換器

逆止弁なし

10

20

時間 secl

30

放射化物保管

BBセグメントの自己遮蔽を利用することにより、 保管エリアを14,950 m²まで縮小(初期評価の40%)

保守方式暫定 (15-17) :	実施済
炉構造・パラメータ決定(15-17):	VV構造解析を実施中
保守R&D対象の検討・選択(17-18):	実施中
バックエンドシナリオ検討(17-19):	実施済

遠隔保守概念

● 保守時間短縮のため、ブランケットとダイ バータの独立保守、ブランケット集合体を 交換する概念を採用

保守関連設備のレイアウト

● 保守の作業動線に留意し、保守関連設備の配置を検討

保守手順・時間の見積り メーカーの評価 (セクターあたり) ✓ ブランケット:~60日

✓ フラングット:~60日
 ✓ ダイバータ:~30日

並行作業による全16セクターの保 守期間短縮を検討

稼働率~70%

(運転2年間、保守準備2ヵ月、保守8ヵ月)

第1回C&Rに向けて、

● これまでの概念設計の成果を文書化

全体概念:「核融合原型炉の概念設計報告書」

- ワーキンググループ活動による設計方針の確認、合意形成
 - ✓ トリチウム諸課題検討WG
 - ✓ 設計パラメータ検討WG
 - ✓ 増殖ブランケットWG(計画中)
 - ✓ 計測·制御検討WG(計画中)

H30年度の主要外部発表、R1年度の予定

IAEA DPWS IAEA DEMOプログラムWS (2018年5月、韓国)

● 招待講演: 「遠隔保守: DEMO Service Joining Technology」

IAEA FEC IAEA 核融合エネルギー会議 (2018年10月、インド)

● 口頭発表: 「日本の原型炉設計の進展」

TOFE 米国原子力学会核融合部会ANS-FED (2018年11月、米国)

● 招待講演:「原型炉概念確立に向けた日本の取組」

ISS 超伝導に関する国際シンポジウム(2018年12月、筑波)

● 招待講演: 「日本の核融合原型炉設計と超伝導コイルの課題」

IAEA核融合エネルギー会議での特別チーム成果発表

今後の予定

ISFNT-14 核融合炉工学に関する国際シンポジウム(2019年9月、ハンガリー)

● プレナリー講演: 「原型炉に向けたダイバータ物理・工学設計研究」