

Attachment 7

FUSION, Future Vision of Green Energy

13th Korea-Japan Joint Coordinators' Meeting Korean Status Report on Fusion R&D

July 6, 2017 / Naka, Japan

Governance Framework of Fusion R&D

*NST: National Research Council of Science & Technology *NRF: National Research Foundation of Korea

Korea Fusion Energy Development Plan

Korea, Fusion Energy Development Roadmap

Work in Progress

Mission is exploring the physics and technologies of high performance and steady-state operation that are essential scientific and technological basis for ITER and fusion reactor

Unique tools of KSTAR foradvanced plasma research capabilities

SC magnet technology

- Lowest error field ($\delta B/B_0 \sim 1 \times 10^{-5}$)
- Lowest toroidal ripple (~0.05 %)

Advanced diagnostic systems

- Profile and 2D imaging diagnostics
- Domestic and int'l collaboration

ITER relevant In-vessel coils

- Uniquely top/middle/bottom coils
- **Reliable ELM-crash suppression**

KSTAR In-vessel Control Coils (IVCC): Top/Mid/Bot H.K. Kim et al, FED (200: n=1, +90 phase top mid bot

- Long-pulse capable beams
 - Long pulse NBI and ECCD
- 2nd NBI system is under construction

Japan collaboration and contribution in KSTAR research

ECE Radiometer : channel extension for low field operation

CES diagnostics : Additional poloidal rotation

Thomson scattering : Giga sampling digitizer

Soft X-ray imaging VUV camera

Imaging bolometer(IRVB) : IRTV replacement

 Fast ion Loss Detector (FILD)

Outstanding progress in achievement the steady-state H-modes and advanced operation modes

Progress in plasma performance

Achieved key parameters

Parameters	Designed	Achieved (~2016)
Major radius, R ₀	1.8 m	1.8 m
Minor radius, a	0.5 m	0.5 m
Elongation, k	2.0	2.15
Triangularity, δ	0.8	0.8
Plasma shape	DN, SN	DN, SN
Plasma current, I _P	2.0 MA	1.0 MA
Toroidal field, B ₀	3.5 T	3.5 T
H-mode duration	300 s	70 s
β _N	5.0	4.3
Superconductor	Nb₃Sn, NbTi	Nb₃Sn, NbTi
Heating /CD	~ 28 MW	~ 10 MW
PFC	C, W	C, W(sample)

Long pulse H-mode operation and alternative operation mode development

Longest H-mode discharge

- H-mode discharge : 70 s (0.45 MA)
- Nearly non-inductive discharge

#017321 $I_{n}(MA), B_{T}=2.5T$ 0.4 $V_{loop}(V)$ 0.2 0.0 0.0 4.0 4.0 P_{NBI}(MW) 2.0 2.0 0.0 0.0 4.0 2.0 2.0 <n_{e,FIR}> (10¹⁹ m⁻³) T_{e,0}(keV) 0.0 189 2.0 2.0 1.0 1.0 β_Ρ,β_Ν 0.0 0.0 D_{α, pol} (a.u.) 2.0 1.0 0.0 0 10 20 30 40 50 60 70 time (sec)

Alternative operation mode development

- Internal transport barrier (ITB) > 13s
- High beta operation ($\beta_N > 3.0, \beta_P > 3.0$) : > 3s

0.45 MA, 70s

Reliable and robust operation of the Edge Localized Mode (ELM) crash suppression using the invessel control coils

- Robust suppression of the ELM-crash
- LM-crash free for > 30s
- n=1, q95 = 4.0, 5.0, 6.4
- n=2, q95 = 3.4 (ITER compatible), 3.8

34s ELM suppression

Validation of sustaining ELM-crash suppression under 360^o rotated at n=1 RMP

n=1 full RMP under 360 degree rotation

n=1, +90 phase

Role of RMP in ELM-crash suppression and dynamics of the ELM-crash

- Interaction of the ELMs and Solitary Perturbation (SP: partial n=1 mode)
 - •SP appears ~100 μ s prior the crash •Opposite rotation due to E_r X B drift

JE Lee (UNIST), Scientific Report 7, 2017

- ELM-crash suppression experiments based on predictive modeling
- Prediction based on Ideal plasma response

Upgrade plan for higher beta and steady-state operation

ITER Project

In-kind Contribution of Korea

- KO Allocation : 21.3%
- KO Contribution (kIUA) : 26.20

3. Vacuum Vessel Port Total Value(kIUA) : 76.96 KO Allocation : 72.7% KO Contribution (kIUA) : 55.98

7. Tritium SDS

Total Value(kIUA) : 15.21

KO Allocation : 82.1%

KO Contribution(kIUA): 12.48

* TBMA (TBM Agreement) was signed in 2014 Total Value : 270.54 klUA

11. Test Blanket Module* **KO Contribution :** HCCR TBS (TBM System) kIUA Value : N/A

8. AC/DC Converters Total Value(kIUA) : 123.58 KO Allocation : 37.3% KO Contribution(kIUA): 46.06

Leading Items

4. Thermal Shield Total Value(kIUA) : 26.88 **KO Allocation : 100%** KO Contribution(kIUA) : 26.88

5. Blanket Shield Block Total Value(kIUA) : 56.34 KO Allocation : 49.8% KO Contribution(kIUA): 28.07

6. Assembly Tooling Total Value(kIUA) : 23.01 KO Allocation : 100% KO Contribution(kIUA): 23.01

10. Diagnostics Total Value(kIUA) : 142.09 KO Allocation : 3.2% KO Contribution (kIUA) : 4.49 **Tokamak Main**

Ancillary

ITER Project

Progress of the ITER Procurement Activities of Korea

I VV Main Sectors: Manufacturing progress of the first Sector 6 is about 67% (as of June).

PS1: IWS SR assembly

PS2, PS3: T-rib assembly

PS4: Inner Shell and TrS assembly

Thermal Shield

✤ <u>VV Ports</u>

T-rib to Inner Shell ass'y of LPSE

Outer Shell assembly of LPSE

T-rib to Inner Shell of LPE

Thermal Shield factory shop

ITER Project

Progress of the ITER Procurement Activities of Korea

Sector Sub-Assembly Tools:

- Factory Acceptance Test of SSAT was completed at the end of April.
- The 1st delivery package departed on 15th May 2017 at Busan harbor.
- It arrived at Fos-Sur-Mer harbor in France on 19th June 2017 and the ITER site on 23rd June 2017.
- So, its IC milestone (Q2 2016: receiving the SSAT by the IO) was met.

FAT with a load of the VVTS OB Sector Frame

1st delivery package arrived at Fos-Sur-Mer harbor on 19th June

1st delivery package arrived at IO Site on 23rd June

Domestic Fusion R&D collaboration network

Fusion Plasma Stability and confinement Research Center UNIST (POSTECH, PU)

Center for Advanced Tokamak Study SNU (KAERI)

Three core research centers and universities supporting the basic fusion research and HR development

Impurity and Edge Research Center KAIST (HYU, SNU)

Universities & Research Institutes

Hanyang U. Yo Daegu U. Da Ajou U. Ch Jeju Nat'l U. Ky KAERI, UST Ch

Yonsei U. Dankook U. Chonbuk Nat'l U. Kyungpook Nat'l U. Chungnam Nat'l U.

DEMO R&D Program

K-DEMO Mission

To demonstrate the sustainable generation of electricity from fusion power

K-DEMO Strategy

- ♦ Natural Path : KSTAR → ITER → DEMO (Tokamak)
- To mitigate risks in the course of DEMO development -> Two-Phased Operation strategy

♦ The operation Stage I → not considered as a final DEMO

- At least one port will be designated for the CTF including blanket test facility.
- To demonstrate the net electricity generation (Q_{eng} > 1) and the self-sufficient Tritium cycle (TBR > 1.05)

The operation Stage II

- Major upgrade of In-Vessel-Components
- To demonstrate the net electricity generation > 400 MWe
- To demonstrate the competitiveness in COE

