アクションプラン構成表

第14回原型炉開発総合戦略TF 平成29年11月28日(火)

┌ 凡例 ────			
合同特別チームの 活動フェーズ	概念設計の基本設計	概念設計	工学設計
黒: 開始事項 赤: 完了事項 20	015 202	20頃 202	2035頃
#. 課題名	研究計画1	研究計画2	
		研究計画3	
小課題名1	アクションを、開始、実施機関記号、アクション名、終了年の順に記載: (15)特/Q/N:アクション1(25) 黒: 開始事項 赤: 完了事項	>(15)特/Q/N:アクション (25)	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
小課題名2	同区分期間に開始と終了の場合の記載 例:	注: 完了時期の(19)とは、	

2020年に予定される第1回中

間C&Rの前までを意味する。

責任をもって実施することが期待される機関・組織の記号

直接の実施でなく全体調整等を行う機関は、 IFや特のように、緑字で、位置は実施期待機関の後。

大学研究所・センター等

国: 政府

C1~C5 : 大学研究所・センター等(右記)

 \rightarrow (19)

特: 原型炉設計合同特別チーム 学: 学協会

Q: 量子科学技術研究開発機構(核融合) Ij: ITER機構(主に日本チーム)

N: 核融合科学研究所 物: 物質•材料研究機構

(15)Q/N/特:アクション2

大: 大学 QW: 量子科学技術研究開発機構(関西研) 産: 産業界 TF: 原型炉開発総合戦略タスクフォース

HQ: 社会連携活動ヘッドクォータ F: 核融合エネルギーフォーラム

C1:大阪大学レーザー科学研究所

C2:京都大学エネルギー理工学研究所

C3: 筑波大学プラズマ研究センター

C4: 九州大学応用力学研究所

C5: 富山大学水素同位体科学研究センター

概念設計の基本設計

概念設計

工学設計

赤: 完了事項 2015

2020頃

2025頃

		20只 202	2000兵
0.炉設計	概	念設計	工学設計
	物理・工学設計ガイドライン構築		サイト評価 建設向け設計 建設地候補選定 ▲
	安全確保方針案の策定	安全要求・解析・評価ならびに法令準備	安全法制の整備と候補サイトでの安全評価
	物理·工学·材	料データベース構築	JT-60SAや材料照射成果にそったDB更新
炉概念と建設計画	(15)特:物理・工学ガイドライン →(19) (15)特:基本概念設計 →(19) (16)特/TF:燃料サイクル戦略(26) (17)Q/N/大/特:統合シミュレータ(26)	(20)特/産:概念設計 →(26) > (16)特/TF:燃料サイクル戦略(26) > (17)Q/N/大/特:統合シミュレータ(26) (23)特/Q/F:目標プラズマ性能更新 →(28)	(27)産/特:炉本体設計 →(35)
	(18)特/産:コスト評価 (31)		>(18)特/産:コスト評価(31) (29)国/TF:候補地選定 →(31) (32)国:建設サイト評価・選定 →(35)
機器設計	(15)特/Q:SC概念 の 基本設計 →(19) (19)特/Q:原型炉TBM目標 →(19) (17)特/産:BOPを含む機器構成案→(19)	(21)特/産:BOP概念設計 →(26)	(サイト評価向け) (27)産/特:プラント・建屋・機器設計 →(31) (27)学/特:規格・基準 →(31) (規格基準とサイト候補決定後) (32)産/特:プラント・建屋・機器設計 →(35)
安全確保指針	(16)特/産:安全確保方針案 →(19)	(20)特:安全要求・解析・評価(31) (20)特/産:原型炉プラントの安全上の 特徴整理→(26) (20)TF/特:安全規制法令予備検討 →(26)	>(20)特:安全要求·解析·評価→(31) (27)国/TF:安全規制法令 →(35) (32)国:安全評価 →(35)
物理·工学·材料DB	(16)Q/大/F/特:原型炉物理DB(26) (16)Q/大/F/特:工学・材料DB(26)	>(16)Q/大/F/特:原型炉物理DB(26) >(16)Q/大/F/特:工学·材料DB(26)	(27)Q/特:物理・工学DB更新 →(31) JT-60SAを反映 (32)Q/特/産:材料DB更新 →(35) 14MeV重照射データを反映

概念設計の基本設計 活動フェーズ 黒: 開始事項 赤: 完了事項 2(

概念設計

工学設計

2015

2020頃

2025頃

20	10 20,	20员 202	2000頃
1.超伝導コイル	SC概念基本設計	SC概念設計	SC工学設計
	SC試験設備の検討	SC要素試作·試験	コイル試験
	関連BOP(冷却系、コイル電源) 概念基本設計	関連BOP(冷却系、コイル電源) 概念設計	関連BOP(冷却系、コイル電源) 工学設計
SC設計	(15) 特/Q/産:SC概念基本設計 →(19)	(20) 特/Q/産: SC概念設計 → (26)	(27) Q/産/特:SC工学設計 →(35)
	(15)特/Q/N/物/大:超伝導線材検討・ 主案選定 →(19)	 (20)特/Q/N:超伝導導体概念設計 →(26) 	(27) Q/産/特:SC生産・製造技術 検討 →(35)
	(18)特/Q/大/産:R&D計画の策定 →(19)		
超伝導導体・コイル試験	(17)Q/N/特:超伝導導体試験設備 検討 →(19)	(20)Q/N/特:超伝導導体試験設備 →(26) (20)Q/N/産:超伝導導体試験(33)	(27)Q/N/特:コイル試験設備 → (35) (27)Q/産/N:コイル試験 → (35) > (20)Q/産/N:超伝導導体試験 →(33)
		(20)4717/至. 足口升升开放顺人(00)	/ (20/G/)E/N. ÆIA ಈ PERING (00)
高強度構造材料·耐放射 線絶縁材料	(15)Q/物/特:高強度構造材料 検討 →(19)	(20)Q/産/特:高強度構造材料試作· 試験→(33)	> (20) Q/産:高強度構造材料試作・ 試験 →(33)
	(15)Q/特:耐放射線絶縁材検討 →(19)	(20) Q/産/特:耐放射線絶縁材試作• 試験 →(33)	> (20) Q/産:耐放射線絶縁材試作・ 試験 →(33)
関連BOP (冷却系、コイル電源)	(15)特/Q:冷却系、コイル電源概念 基本設計 →(19)	(20)Q/特:冷却系、コイル電源概念 設計 → (26)	(27)Q/産/特:冷却系、コイル電源工学 設計 → (35)

概念設計の基本設計

概念設計

工学設計

赤: 完了事項 2015 2020頃

2025頃

	10 202			2000頃
2.ブランケット	原型炉ブランケットシステムの概念基本設計	原型划	炉ブランケットシステムの概念設計	原型炉ブランケットシステムの工学設計
	固体	増殖•水冷	お却ブランケット関連基礎・標準デー	タベースの構築
	ITER-TBM	 製作実績	▲ITER-TBM最終設計報告書	┃ ITER-TBM1号製造終了 ▲ITER-TBM2号製造終了
			_	核融合中性子源照射試験
	TBS・補完試験装置の設計・試験計画、コールド試験	データ取得	ITER-TBSによるブラン	・ケット設計・製作技術の妥当性実証
	トリチウム工学試験の計画と設備設計		トリチウム	· 学動解明·取扱技術確立 ·
	原型炉TBMのための先進ブラ	ランケット様	既念検討・素案提示	基礎・標準データ拡充
	先進ブランケットの小型試験体製	作•特性診	式験、システム技術開発	小型モックアップによる総合機能実証
固体増殖・水冷却 ブランケット	(15) Q/特:基礎・標準データベースの構築(35) (15)特/Q/産:原型炉ブランケット システムの概念基本設計→(19) (18)Q:ITER-TBM製作実績(35) (15)Q:TBSと補完試験装置の設計と 試験計画、及びコールド試験施設による データ取得(21) (15)Q:トリチウム工学試験の計画と 設備設計(21)	> (15)(試験計画 > (15)(>(15) Q/特:基礎・標準データベースの 構築 → (35) (27)特/Q/産:原型炉ブランケット システムの工学設計→(35) >(18)Q:ITER-TBM製作実績 → (35) (30)Q/大:核融合中性子源照射試験 →(35)
			の妥当性実証(35) リチウム挙動解明、トリチウム 取扱技術の確立(35)	の妥当性実証→(35) >(22)Q:トリチウム挙動の解明、トリチウム 取扱技術の確立→(35)
先進ブランケット	(15)特/N/大: 原型炉TBMのための先進 ブランケット概念検討と素案提示(26) (15)N/大: 小型試験体製作、機能・ 特性試験(26) (15) N/大: 実環境相当の統合循環 ループ試験(31)	先進ブラ	15)特/N/大:原型炉TBMのための ランケット概念検討と素案提示(26) >(15)N/大:小型試験体製作、 機能・特性試験(26) >	(26)N/大/特:先進ブランケットに関する 基礎・標準データの拡充→(31) (27)特/N/大:小型モックアップに よる総合機能実証→(35) >(15) N/大:実環境相当の統合 循環ループ試験→(31)

合同特別チームの ボッテームの **活動フェーズ** 黒:開始事項 赤: 完マナー

概念設計の基本設計

概念設計

工学設計

赤:完了事項

2015

2020頃

2025頃

		OZO头	.0头		
3. ダイバータ	ダイバータシミュレーションコードの開発とその検証				
		ダイバータの概念設計と運転シナリオ構築	ダイバータの工学設計		
	ダイバータ機器特性評価	ダイバータ機器適用性判断	V 7 V 7 D MAIN		
	先進ダイバータ概念の評価		▲原型炉初期ダイバータ方式の決定		
		中性子照射の影響,保全や補修技術の評価と開	発		
ダイバータ開発目標の整合性である。	(18)特/Q/N/大:W水冷却ダイバータ機器の 原型炉適用性の判断(2) (15)特/Q/N/大:先進ダイバータの評価と		(27)特/産:ダイバータシステムの工学設計→(35)		
炉設計への適用	開発推進の判断→(1: (16)Q/N/大/特:中性子照射材料・機器の 熱負荷試験装置の開発とコールド試験(2:	(16) Q/N/大/特:中性子照射材料・機器の熱負	(27) Q/N/大/特:中性子照射材料・機器の熱負荷 特性データ取得→(35)		
プラズマ運転シナリオ	 (16)Q/特/N/大:ダイバータプラズマ シミュレーション開発(2)	>(16)Q/特/N/大:ダイバータプラズマ 6) シミュレーション開発→(26) (24)Q/N/大:統合コードによるプラズマ運転	のシミュレーションによる再現 →(35)		
	(16)Q/N/大/C3:ダイバータ級定常高密度 プラズマ実験装置の開発と実験(2) (16)Q/N/大:デタッチメントプラズマの実時間	シナリオ提示(35) >(16)Q/N/大/C3:ダイバータ級定常高密度			
	制御法の開発(2)		(20)Q/N/大:ITER/JT-60SAにおけるデタッチメントプラズマの制御手法の実証(35)(20)Q/N/大:ITER, JT-60SAにおけるダイバータ		
材料∙機器開発	(15)Q/N/大:ダイバータ機器構成材料の中性子照射影響(3: (16)特/Q/大/産:ダイバータ機器の保全や	(16)特/Q/大/産:ダイバータ機器の保全や補修	>(15)Q/N/大:ダイバータ機器構成材料 中性子照射影響(35)		
粒子制御	補修技術の評価と開発(2) (16)Q/N/大/特:炉内粒子挙動シミュレーショ: コード(3)	→ ————————————————————————————————————	> (16)Q/N/大/特:炉内粒子挙動 シミュレーションコード(35)		
	(-) 	(23) 特/Q/N/大:実機環境におけるT挙動 シミュレーション(35) >(16) 特/Q/N/産:原型炉で使用可能な	(23)特/Q/N/大:実機環境におけるT挙動 シミュレーション →(35)		
	排気システムの検討(2)				

合同特別チームの 活動フェーズ

概念設計の基本設計

概念設計

工学設計

黒: 開始事項 赤: 完了事項

2015

2020頃

2025頃

	10 201	2050 202	2000頃			
4. 加熱・電流駆動システ ム	ITER/JT-60SA用を通じた工学基盤技術開発					
	▲ NBTF電源稼	動 ▲ ▲ NBTFビーム源稼働開始 ▲ JT-60SA ECH稼働 JT-60SA NBI稼働開始	NBTFでITER要求ビーム達成 JT-60SA NBIプラズマ実験への貢献			
	ITERでの	ITERでの立上げを通じた放射線環境下における工学基盤技術の高信頼性化				
		▲ ITER ECH	家働 ▲ ITER NBI稼働			
		原型炉に向けた基盤技術開発	原型炉に向けた技術確立			
技術仕様の決定	(17)特/Q:ECH/NBI技術仕様の決定(26)	>(17)特/Q:ECH/NBI技術仕様の決定 →(26)				
原型炉試験用設備整備		(20) Q/N: メンテナンスレス負イオン源試験 施設整備→(26)	(27) Q/N: 原型炉用ECH試験施設整備 →(35)			
高出力·定常化	(17) Q:ITER用ECHシステムにおける 高出力化・長パルス化(26)(17) Q: ITER用NBIシステムにおける 高出力化・長パルス化(26)	>(17) Q:ITER用ECHシステムにおける高出力化・長パルス化 (26) (20) Q/N/大:原型炉用高出力・定常ECHシステムの技術開発 (35)>(17) Q: ITER用NBIシステムにおける高出力化・長パルス化 (26) (22)Q/N:原型炉用定常・高出力NBIの概念設計→ (26)	>(20) Q/N/大:原型炉用高出力・定常ECH システムの技術開発 →(35) (27)Q/N:原型炉用定常・高出力NBI技術の 開発 →(35)			
高信頼性	(15)Q/N: 高信頼性ECHの概念設計 (ミラーレス、周波数高速可変、保守)(26) (17)Q/N/大: 高信頼性NBIの概念設計 (メンテナンスレス負イオン源、遠隔保守)(26)	> (15)Q/N:高信頼性ECHの概念設計 (ミラーレス、周波数高速可変、保守) (26) (20) Q/N/大:ECH, NBI耐放射線材料の 開発 (35) > (17)Q/N/大::高信頼性NBIの概念設計 (メンテナンスレス負イオン源、遠隔保守) (26)	(27)Q/N:原型炉用高信頼性ECH技術の 確立→(35) >(20) Q/N/大:ECH, NBI耐放射線材料の 開発 →(35) (27)Q/N/大:高信頼性ランチャーの開発・ 実証試験 → (35) (27)Q/N/大:高信頼性NBIの基盤技術の 確立→(35)			
高効率化		(20) Q/N/産:ECHエネルギー回収技術の 高度化(35) (20) Q/N/大:電子ビームの高品質化(35) (20) Q/N/大:NBI高効率化概念設計 →(26)	> (20) Q/N/産:ECHエネルギー回収技術 の高度化 (35) > (20) Q/N/大:電子ビームの高品質化(35) (27) Q/N/大:NBI高効率化技術の開発 → (35)			

概念設計の基本設計

概念設計

工学設計

赤: 完了事項

2015

2020頃

2025頃

		20-55		
5. 理論・シミュレーション		炉心プラズマ第1原理系SMC群の開発・利用		
	ダイバータSMCの重点開発・利用	ダイバータSMCのJT-60SA, ITER実験等	等への適用、検証及び継続開発・利用	
	炉心プラズマ統合SMCの開発・利用	炉心プラズマ統合SMCのSA, ITER核燃	焼実験等への適用、検証及び継続開発	
	材料シミュレーション	要素コードの開発・利用	材料統合解析コードの開発・利用と適用機器の拡 大及び原型炉システム統合SMCとの連携	
		材料統合解析コート	の開発・利用・検証	
	工学基礎コード群の開発・利用	原型炉基盤コードの整備・利用	原型炉統合コードの開発・利用	
	プラズマ応答特性・制御系モデリング	プラント挙動を予測可能な制	・ 卸用シミュレータの開発・利用 ・	
炉心プラズマ第1原理系 SMC群	(15)Q/N/大/特: プラズマエッジ第1原理系 SMCの重点開発・利用→(19)	(20) Q/N/大/特: ディスラプション・核燃 焼プラズマ・乱流輸送第1原理系SMCの 重点開発・利用(*)	(20) Q/N/大/特: ディスラプション・核燃焼 プラズマ・乱流輸送第1原理系SMCの 重点開発・利用(*)	
ダイバータSMC	(15) Q/N/大/特: ダイバータSMCの重点 開発・利用→(19)	(20)Q/N/大/特: ダイバータSMCのSA, ITER実 験への適用、検証及び継続開発・利用(35)	(20)Q/N/大/特: ダイバータSMCのSA, ITER実 験への適用、検証及び継続開発・利用(35)	
炉心プラズマ統合SMC	(15) Q/N/大/特: 炉心プラズマ統合SMCの 開発・利用→(19)	(20)Q/N/大/特: 炉心プラズマ統合SMCの SA, ITER核燃焼実験等への適用、検証及び 継続開発→(*)	> (20) Q/N/大/特: 炉心プラズマ統合SMC のSA, ITER核燃焼実験等への適用、検証及び 継続開発→(*)	
			(27)Q/N/大/特: 原型炉に向けた炉心 プラズマ統合SMCの改良、適用→(*)	
核融合炉材料SMC	(15)Q/N/大/特:材料シミュレーション要素 コードの開発・利用→(26)	(15)Q/N/大/特:材料シミュレーション要素 コードの開発・利用→(26)	(27) Q/N/大/特: 材料統合解析コードの適用 機器の拡大及び原型炉システム統合SMC との連携 → (35)	
		(19)Q/N/大/特:材料統合解析コードの 開発・利用・検証(35)	> (19) Q/N/大/特:材料統合解析コードの 開発・利用・検証(35)	
原型炉システム統合SMC	(15)Q/N/大/特: 工学基礎コード群の 開発・利用→(20)	(21)Q/N/大/特: 原型炉基盤コード群の 開発・利用→(26)	(27) Q/N/大/特: 原型炉統合コードの 開発・利用→(35)	
原型炉制御シミュレータ	(15) Q/N/大/特: プラズマ応答特性・ 制御系モデリング→(19)	(20)Q/N/大/産/特: プラント挙動を 予測可能な制御用シミュレータの 開発・利用(35)	> (20)Q/N/大/産/特: プラント挙動を 予測可能な制御用シミュレータの 開発・利用 (35)	

合同特別チームの ルルファームの **活動フェーズ** 黒:開始事項 赤: 完ファ

概念設計の基本設計

概念設計

工学設計

赤: 完了事項 2015 2020頃

2025頃

	10					202	O 	2000吳
6.炉心プラズマ					ITER		H/He)	
		IT 000A		40 H0 TT 000 CD.004		/+ Λ TΠ	rdn CD. 1714	DT運転/
		JT-60SA		初期研究段階		統合研	究段階	拡大研究段階
	LHD		重	水素実験 T		J		
プラズマ設計	(15)特:特			(20)特:炉心プラズマパラ	メータ最適化	上(*)		マパラメータ最適化 →(*)
	(15)特:フ	タ設定 - プラズマ設計DB構築 -	→(19) →(19)	(20)特:プラズマ設計DBご	女訂(*)		(20)特:プラズマ部	g計DB改訂 → (*)
ITER	(15)Q/N	/大/Ij:ITER研究計画の改算	定(24)	->(15)Q/N/大/ I j:ITEF	R研究計画 σ		(29)Ij:プラズマ制	
				(25)Ij : ファーストプラズマ	→(25)	(24)	(32)Ij:加熱プラス ション制御、ELM# (35)Ij:Q=10実現(*	
JT-60SA	(20)Q/N	/大:JT-60SA研究計画ので ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	→(19) →(20),		マ特性解 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	ディ →(24) →(27) →(28) 純物) →(27) 砂秒間 →(28)	(30)Q/N/大:W-D (30)Q/N/大:W-D (30)Q/N/大:W-D (D, (32)Q/N/大:W-D (32)Q/N/大:W-D	IVでの加熱プラズマ特性 解明 →(32) IVでの高ベータ定常運転 の実証 →(32) IVでの高閉じ込め プラズマの高密度化 →(32) IVでの粒子制御技術 He,不純物)の実証 →(32) IVでの高ベータ定常運転 の100秒間維持 →(35) IVでの原型炉に外挿可能 マ性能の同時達成 →(35)
LHD、ヘリオトロンJ	(16)N:重	2:トーラス系物理の理解(25 水素実験(25) i子制御技術(D,He,不純物) 実証・		>(15)N/C2:トーラス (16)N	系物理の理(I:重水素実)			
プラズマ壁相互作用研究	獲得(26) (17)大/C	3/C4:W材のPWI基礎デー 3/C4:W材ダイバータ長時 限題の明確化(26)		>(15)大/C3/C4:W材 (17)大/C3/C4:W材ダイル での	の獲	得(26) 引特性		
モデリング/シミュレーショ ン研究	(15)Q/N	/大:物理モデル構築と 性能予測コード高度化・	→ (19)	(20)Q/N/大:制御シミュレ JT-60SA等・				>(*)

合同特別チームの ルルファームの **活動フェーズ** 黒:開始事項 赤: 完ファ

概念設計の基本設計

概念設計

工学設計

赤: 完了事項 2015 2020頃

2025頃

20	20,	2000 202	2000 映
7.燃料システム	要素技	術の開発	ITER(TBM計画を含む)での実証
		T大量取扱施設設計検討	T大量取扱施設建設/技術実証
	パイロ	・ コットプラント規模でのLi確保技術確立	プラント規模でのLi確保技術実証
燃料循環システム設計	(15)特/Q/大:燃料供給シナリオの策定 →(18) (15)特/Q/大:燃料インベントリーの評価 →(18) (18)特/Q/大:燃料循環システム仕様の 決定 →(19)	(20)Q/N/C5/大:燃料供給シナリオの実証 →(26) (25)Q/N/C5/大:燃料循環システム仕様の 確認 →(26)	
燃料循環システム技術開 発	(15)Q/C5/大:燃料循環システム要素技術(不純物除去、同位体分離など) の開発(26)	(15)Q/C5/大:燃料循環システム要素技術 (不純物除去、同位体分離など)の開発 (26)	(25)Ij: 炉としての燃料循環統合システム 技術の実証→(*) (28)Q/C5/大: 燃料循環システムの開発 (ITER設計との相違検証含む)→(35) (30)Q: T大量取扱時の燃料循環システム 技術の実証→(35)
T安全取扱技術·機器開発	(15)Q/C5/大:T除去系、計量管理の確証 試験(24) (15)Q/C5/大:Tと材料の相互作用など 基礎データ取得 →(19)	(15)Q/C5/大:T除去系、計量管理の確証 試験(24) (20)Q/C5:T含有ガス・水を取り扱う機器 (燃料系)の要素試験 →(26)	(27)Ij: 炉としてのT安全取扱実績の蓄積(*) (30)Q: T大量取扱施設での安全取扱実績 の蓄積 →(35) (27)Q/C5: T含有ガス・水を取り扱う機器 (燃料系)の機能試験 →(35) (35)Q: T含有ガス・水を取り扱う機器 (発電系含む)の総合試験→(*)
T大量取扱施設		(20)Q:T大量取扱施設設計検討 →(26)	(27)Q:T大量取扱施設建設 →(30)
Li確保	(15)Q: ⁶ Liの確保方策の検討 →(17) (18)Q/産:パイロットプラント規模での Li確保技術確立(26) (18)Q: ⁶ Li濃縮基盤技術開発(26)	>(18)Q/産:パイロットプラント規模での Li確保技術確立(26) >(18)Q:6Li濃縮基盤技術開発(26)	(27)Q:プラント規模でのLi確保技術実証 → (35) (27)Q: ⁶ Li濃縮技術確立 →(35)
初期装荷T	(15)特/大:T製造プロセスの検討 → (19)	(20)特/Q/大:初期装荷Tの確保方策の 検討 →(23) (24)Q:初期装荷Tの確保準備(35)	> (24)Q: 初期装荷Tの確保準備 (35) (25)Q: 初期装荷Tなしシナリオの準備 →(35)

合同特別チームの 活動フェーズ

概念設計の基本設計

概念設計

工学設計

黒: 開始事項 赤: 完了事項

2015

2020頃

2025頃

	201	20员 202		<u> </u>
8.核融合炉材料と規格・基	原型炉に要求される材料スペックの明確化/構	造材料の技術仕様の提示		
│ 準 │ (1)ブランケット構造材料	低放射化鋼の大量製造技術/ブランケット構造			
(7,7,7,7,7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1	微小試験片技術の信頼性評価・規格化			
	接合被覆部・環境影響データ取得	原子炉による照射影響を	<u> </u> 	
		77 TO CHANTON E 7		 子源照射試験
	核融合中性子照射影響の解明/照射劣化モデ	 ルの構築/昭射構造設計基準の構築		
		200日本/ 300日在区日在十0日本		
	先進ブランケット材料の利用方法を明確化			
	先進ブランケット材料のデータベースの充実			
低放射化フェライト鋼	(15) Q/特/大:原型炉に要求される材料スペックの明確化、技術仕様の提示(26) (15)Q/産:大量製造技術の確立(26) (15)Q/産:ブランケット構造体製作技術の確立(26) (15)Q/産/学:微小試験片技術の信頼性評価・規格化(26) (15)Q:コールド試験による接合被覆部・環境影響データ取得(22) (15)Q:原子炉による80dpa照射データの取得→(19) (15)Q:接合被覆部・環境影響に関する照射データ取得(31) (15)Q/N/大:He影響の理解の進展、核融合中性子照射影響の解明、照射劣化モデルの構築(35) (15)Q/産/学:照射効果を踏まえた構造設計基準の在り方を提示(26) (15)Q/産/学:材料規格化に向けた学協会活動(35)	>(15) Q/特/大:原型炉に要求される材料スペックの明確化、技術仕様の提示(26)>(15)Q/産:大量製造技術の確立(26)>(15)Q/産:ブランケット構造体製作技術の確立(26)>(15)Q/産/学:微小試験片技術の信頼性評価・規格化(26)>(15)Q:コールド試験による接合被覆部・環境影響データ取得(22)(20)Q:原子炉による80dpa照射データの検証→(26)>	(30)Q:核融合中性子源照射 >(15)Q/N/大:He影響の 核融合中性子照射影響の例 モー (27)Q/産/学:照射効果を踏ま 設計基準 >(15)Q/産/学:材料規	データ取得(31) 試験 →(35) の理解の進展、 解明、照射劣化 デルの構築(35) まえた構造 の策定 →(35)
先進ブランケット材料	(15)特/Q/N/大: 先進材料の利用 方法を明確化(26) (15)Q/N/大: 先進材料のデータ ベースの充実(35)	>(15)特/Q/N/大:先進材料の利用 方法を明確化(26) >	>(15)Q/N/大:先近	

概念設計の基本設計

概念設計

工学設計

赤: 完了事項 2015 2020頃

2025頃

	10 20	20页 202		
8.核融合炉材料と規格・基 単	増殖機能材料の製造及び再使用技術の最	適化 原子炉照射影響評価		核融合中性子源照射試験
(2)その他の材料	増殖機能材料	· 充填体の機械特性評価/製作技術確立(ITE	R-TBM2号機)	
		Li確保技術開発		
	一	L ·タ材料の開発、原子炉照射影響評価		核融合中性子源照射試験
(3)核融合中性子源	計測・制御機器材料の			
	原子炉照射劣化データベース	原子炉耐照射性 計測・制御機器材料	料の評価 T	核融合中性子源照射試験
	核融合材料ハンドブックの策定			
		核融合中性子源の設計・建設		核融合中性子源照射試験
増殖機能材料(中性子増 倍材料及びトリチウム増殖	(15)Q:増殖機能材料の製造及び再使用 技術の最適化(22)	>(15)Q:増殖機能材料の製造及び再 使用技術の最適化(22)		
材料)	[文] (7] (2)	(23)Q:原子炉照射影響評価(30)	>(23)	Q:原子炉照射影響評価(30)
	(18)Q:増殖機能材料充填体の機械特性	>		曽殖機能材料充填体の機械 株までは、全性を持ちます(20)
	評価/製作技術確立(30)			性評価/製作技術確立(30) 性子源照射試験 →(35)
	(18)Q:Li確保技術開発(35)	>		->(18)Q:Li確保技術開発(35)
ダイバータ材料	(15)N/大:原子炉照射影響評価(26)	>(15)N/大:原子炉照射影響評価(26)		
	(18)Q/N/大:耐照射性材料開発と評価		>(18) Q	/N/大:耐照射性材料開発と
	(35)			評価(35)
計測・制御機器材料	(15) Q/特:照射劣化データベースの整理 (19)	(20)Q/N/大:耐照射性材料の評価(35) 	>(20) Q	/N/大:耐照射性材料の評価 (35)
その他	(15) Q/N/大:核融合材料ハンドブックの			
	策定→(19)			
核融合中性子源	(15) Q:核融合中性子源の設計・	>	>(15)	Q:核融合中性子源の設計・
٥	建設(30)		 (30) O / 大·核融	<mark>建設(30)</mark> 合中性子源照射試験
			(OO) Q/ J(.1X附)	→(35)
•			•	

概念設計の基本設計

概念設計

工学設計

活動フェーズ 黒: 開始事項 赤: 完了事項

2015

2020頃

2025頃

	2010 20	20员 20	72.5 英 2005 英
9. 安全性	安全法令規制に向けた検討		安全法規制の策定
	工学安全課題の整理	里(機器故障シナリオの確立、プラズマによる	炉内機器の影響評価)
	安全性解析・評価(安全性解析コード開発		安全性評価
	環境トリチウムの規制に関する調査検討	V&V(実験と検証) トリチウム放出挙動評	価と安全性確保方針策定
安全法令規制	(15)特/産:原型炉プラントの安全上の特 徴整理 [既存コードでの評価] →(16) (17)特/産:原型炉プラントの安全上の特 徴整理 [安全確保方針案策定]→(19)	(20)特/産:原型炉プラントの安全上の 特徴整理 [方針に基づく解析評価] →(26 (20)TF/特:安全規制法令予備検討 →(26	(27)学:安全規制法令 法規制方針策定
工学安全課題の整理	(15)特/Q/Ij/N/大/産:機器故障のシナリオ 確立(26)	(15)特/Q/Ij/N/大/産:機器故障のシナ オ確立(26	
安全性解析•評価	(15)特/Q/産:安全性評価コードの開発(31)	(20)Q/大/特:V&V実験 [化学反応、 ダスト挙動評価等] →(26 (20)特/産:原型炉プラントの安全性評価 (31 (20)特/産:安全性確保の方針と整合する 設計条件の策定 [概念設計] →(26	(20)特/産:原型炉プラントの安全性評価 (31) (27)特/産:安全性確保の方針と整合する
環境トリチウムの挙動 評価	(15)特/Q/N/大:環境トリチウムの規制目標 の調査・検討→(19)	(20)特/大/N/産:定常・異常時の環境への放出量評価と制御(34	

概念設計の基本設計

概念設計

工学設計

赤: 完了事項 2015

2020頃

2025頃

	20	20员 202	5. 2005 英	
10.稼働率と保守	炉構造・保守方式の決定/R&D対象の選択	炉停止期間最適化		
	バックコ	エンドの検討		
	保守技術の開発・蓄積	保守技術の開発・蓄積		
			中規模R&D/ 200MGy機器開発	
			大規模保守技術開発設備	
原型炉設計	(15)特/産/Q:保守方式暫定 →(17) (15)特/産/Q:炉構造・パラメータ決定 →(17) (17)特/産/Q:保守R&D対象の検討・選択 →(18)	(20)特/産/Q:作業手順、炉停止期間の 検討→(24) (25)特/産/Q:保守方式の見直し →(26)		
バックエンド検討	(18)特/大/産:バックエンドシナリオ検討 →(19)	(20)Q/大/産:放射性廃棄物の処分・ 再利用基準の検討 →(22) (23)Q/産/学:同上策定(法規制準備) →(26)		
保守技術開発・蓄積	(17)産:原子力施設機器取扱、検査 →(19)	(20)特/Q/産:遠隔作業、検査・保守技術の調査→(21) (22)産:原子力施設機器取扱、検査→(24) (25)特/産:遠隔作業、検査・保守技術の整理→(26) (25)特/Q/産:故障率DBの調査(34)	(30)Q/産:保守技術の中規模R&D →(34) (30)Q/産/大:機能材料・機器開発 →(34) >(25)特/J/産:故障率DBの調査(34)	
新規施設			(29)Q:大規模保守技術開発設備 概念検討 → (30) (31)Q:同上 設計 →(32) (33)Q:同上 建設 →(36)	

合同特別チームの ルルファームの **活動フェーズ** 黒: 開始事項 赤: 完ファー

概念設計の基本設計

概念設計

工学設計

赤: 完了事項 2015 2020頃

2025頃

20	15 20,	20頃 202	5頃 2035頃			
11.計測・制御	安定限界、被制御量の検討	JT-60SAでの安定限界、被制御量の検証	ITER/JT-60SA等での実績DBの構築			
	計測候補の選定、開発体制の構築	候補計測器の開発、ITER/JT-60SA等での運用実績の蓄積、計測器の仕様策定 ITER/JT-60SA等での運転点の制御性、運転裕度の検証				
	制御運転点・運転裕度の仮設定					
	運転制御シミュレーターの開発	ITER/JT-60SA等での運転制御シミュレーターの検証・高度化				
		JT-60SAを用いた実時間制御系の開発・運用・高度化				
理論、既存・海外実験によ る予測、実験による検証	(15)Q/大/特:安定限界の理論特性の 理解→(19) (15)Q/N/大/特:被制御量の検討 →(19)	(20) Q/N/大/Ij/特:安定限界、被制御量の検証→(26) (20) Q/大/Ij/特:ITER/JT-60SA等での制御実績(手法、成功率等)と応答時間のDB 構築(35)	(20) Q/大/Ij/特:ITER/JT-60SA等での制 御実績(手法、成功率等)と応答時間のDB 構築(35)			
	(17) Q/大:遠隔位置磁気計測での 平衡精度のシミュレーション→(19)	(20) Q/大:遠隔位置磁気計測での平衡 精度の検証→(26) (27) Q/大/Ij/特:ITER/JT-60SA等における計測運用保守実績DB構築(35)	(27) Q/大/Ij/特:ITER/JT-60SA等におけ る計測運用保守実績DB構築(35)			
計測開発	(15) Q/N/大/特:炉設計と整合した候補 計測分類と選定→(19) (16) Q/N/大/TF:照射試験も含む計測 開発体制の構築→(19)	(20) Q/N/大/産/特:候補計測器の決定と 開発→(26) (20) Q/N/大/産/特:計測器のプラズマ 試験、照射試験、寿命評価(35)	(27) Q/N/大/産/特:候補計測器の開発と 評価→(35) (20) Q/N/大/産:計測器のプラズマ試験、 照射試験、寿命評価(35) (30) Q/N/大/産/特:計測器の仕様策定 →(35) (30) Q/N/大/産/特:計測保守の開発、 試行→(35)			
運転点と裕度評価	(16) Q/N/大/特:運転基準点·運転許容 範囲の仮設定 →(19)	(20) Q/N/大/特:運転基準点·運転許容 範囲の評価→(26)	(27) Q/N/大/特:運転基準点・運転許容 範囲の決定 →(35)			
オフライン予測	(16) Q/大:プラズマ運転制御シミュレータ の開発 →(19)	(20) Q/大/特:プラズマ運転制御 シミュレータの検証→(26)	(27) Q/大/産/特:プラズマ運転制御 シミュレータの高度化→(*)			
実時間制御システム	(16) Q/大:JT-60SA用実時間制御開発 →(19)	(20) Q/大:実時間制御の運用(35) (20) Q/N/大/特:第一原理計算、シミュ レータ、実時間制御の相互検証と高度化 →(26) (20)Q/N/大/特:学習・推定ツールの開発 →(26)	> (20) Q/大:実時間制御の運用(35) (20) Q/大/特:原型炉統合コード、制御用 シミュレータの性能(精度、成功率等) 評価→(35) (30) Q/大/特:実時間制御の仕様作成 →(35) ₁			

概念設計の基本設計

概念設計

工学設計

赤: 完了事項

2015

2020頃

2025頃

	20		0. 2000 头	
12.社会連携	核融合アウトリーチ活動HQの 在り方検討、設置準備、計画立案	▼核融合アウトリーチ活動HQの設置 核融合アウトリ	一チ活動の推進	
	アウトリーチ教育体制 及びプログラムの検討	アウトリーチ教育の実施		
	核融合エネルギー開発ロードマップ/ 原型炉設計活動に関する社会連携活動 の実施	原型炉建設サイト選定に関する 社会連携活動の実施	原型炉建設・運転に関する社会連携活動の実施	
アウトリーチ活動ヘッドク オーター(HQ)設置による 活動の推進	(16)TF/特/Q/N/F/学:核融合OR活動 HQの在り方の検討 →(19) (20)TF/特/Q/N/F/学:核融合アウトリー チ活動HQの設置 →(20) (20)TF/特/J/N/F/学:核融合アウトリー チ活動推進計画の立案 →(20)	(20)HQ/TF/特/Q/N/F/学:核融合 アウトリーチ活動の推進(35)	>(20)HQ/TF/特/Q/N/F/学:核融合 アウトリーチ活動の推進(35)	
アウトリーチ人材育成	(18) TF/特/Q/N/F/学:アウトリーチ 教育体制及びプログラムの検討→(19)	(20)HQ/TF/特/Q/N/F/学:アウトリーチ 教育の実施(35)	>(20)HQ/TF/特/Q/N/F/学:アウトリーチ 教育の実施(35)	
社会連携活動	(16)TF/特:核融合エネルギー開発ロードマップ/原型炉設計活動に関する社会連携活動の実施→(19)	(20)HQ/TF/特:原型炉建設サイト選定に 関する社会連携活動の実施 →(26)	(27)HQ/TF/特:原型炉建設・運転に関する 社会連携活動の実施 →(35)	

概念設計の基本設計

概念設計

工学設計

赤: 完了事項 2015 2020頃

2025頃

	20			
13. ヘリカル方式	高性	・ 生能プラズマの実証研究	高性能定常プラズマの実証研究	
	ヘリカル炉特有の炉工学研究と成立性提示			
	ヘリカル	戶概念設計	ヘリカル炉工学設計	
		- 1900-00-01 - 1900-00-00 - 1900-00-00 - 1900-00-00 - 1900-00-00 - 1900-00 -	{	
	クミュレーク		<u></u>	
		数値実験炉構築		
ヘリカルプラズマ	 (17)N/大:高性能プラズマの実証(25)	> (17)N/大:高性能プラズマの実証(25)		
	(15)N/大:ダイバータ部の熱負荷低減と	>(15)N/大:ダイバータ部の熱負荷低減と		
	粒子制御(25)	粒子制御(25)		
	 (15)N/大:輸送特性と高エネルギー粒子の	(15)N/大:輸送特性と高エネルギー粒子の		
	閉じ込め特性(25)	閉じ込め特性(25)		
		(20)N/大/Q:定常運転の実証とプラズマ壁	(20)N/大/Q:定常運転の実証とプラズマ壁	
		相互作用(35)	相互作用(35)	
炉工学•炉設計	 (15)N/大:3次元解析によるヘリカル炉の			
<i>v</i> = v	成立性(19)			
	(15)N/大:大型高磁場超伝導へリカル	 >(15)N/大:大型高磁場超伝導へリカル		
	マグネットの成立性(25)	マグネットの成立性(25)		
	(15)N/大:長寿命液体ブランケットの	>(15)N/大:長寿命液体ブランケットの		
	成立性(25)	成立性(25)		
	(15)N/大:低放射化構造材料開発研究	人工(120) >(15)N/大:低放射化構造材料開発研究		
	(25)	(25)		
	(25) (15)N/大:高熱流プラズマ対向機器・	>(15)N/大:高熱流プラズマ対向機器・		
	材料開発研究(25)	材料開発研究(25)		
	(15)N/大:ヘリカル炉概念設計(26)	>(15)N/大:ヘリカル炉概念設計(26)	 (27)N/大/産:ヘリカル炉工学設計→(35)	
	(10/11/)(、1、7/3/20 水一帆 心 (又百) (20)	/ (10/14/)(:・・)//// / / / / / / / (20)	(27)14/八/座.1、7万/04/工于政司 (65)	
数值実験炉	(15)N/大/Q:物理素過程の	 >(15)N/大/Q:物理素過程の		
	シミュレーション(26)	シミュレーション(26)		
	(15)N/大/Q:複合物理結合·階層間結合	->(15)N/大/Q:複合物理結合·階層間結合		
	シミュレーション(26)	シミュレーション(26)		
		(20)N/大:数值実験炉構築(30)	(20)N/大:数值実験炉構築(30)	
	ļ			

概念設計の基本設計

概念設計

工学設計

赤: 完了事項 2015 2020頃

2025頃

20	10 20	/20块	202		2000员
14. レーザー方式	(引用3.)ダイバーターシミュレーションコー	ドの開発とその検証			
	(引用3.)ダイバーターの概念設計と運転シナリオ構築				
				·ムのITERでの実証	
	(引用7) (燃料システム) 要素技術の開発			(引用7) T大量取扱	施設建設/技術実証
		(引用11) 候補計測器	の開発, ITER/JT-60SA等で	この運用実績の蓄積, 計測器の仕様策定	
物質・プラズマ相互作用の 総合的理解	(16) C1/大/N: プラズマによる物体 損耗の数値モデル化(27) (16) C1/大/N: プラズマによる物体 損耗のモデル実験(27) (16) C1/大/N: 材料試験装置部詳細 設計 →(20)		ズマによる物体損耗 の数値モデル化(27) ズマによる物体損耗 のモデル実験(27)		
液体金属壁開発	(16)C1/大/N: 液体金属壁基礎実験 装置詳細設計 →(20)	(25) C1/大/N: 液体	金属壁基礎実験試験 (29)	(25)C1/大/N: 液	体金属壁基礎実験試験 (29)
ペレット製造・入射技術	(18) C1/N/大/産:ペレット製造法の 詳細設計 →(19) (18) C1/N/大/産:ペレット入射装置の 詳細設計 →(19)	(20) C1/N/大/産: ; (20) C1/N/大/産: ·	大量ペレット製造 装置の製作 → (23) ペレット入射装置の 製作 → (25)		
トリチウムの貯蔵・ハンドリ ング技術	(16) C1/C5/N/大/Q: トリチウム貯蔵/ 供給系の詳細設計→(18) (16) C1/C5/N/大/Q: トリチウム回収系 の概念設計 →(18) (19) C1/N/大/Q: トリチウム回収系の 詳細設計 (22)		リチウム回収系の 詳細設計→(22)): トリチウム貯蔵/ 系のデモ機製造→(27)		
過酷環境下における計測 技術	(15) C1/C5/N/大:レーザー生成過酷 環境の特性評価 →(18) (18) C1/N/大:レーザー生成過酷環境 の提供(35)		>	(18)C1/N/大:	レーザー生成過酷環境 の提供(35)

概念設計の基本設計

概念設計

工学設計

赤: 完了事項 2015 2020頃

2025頃

20	10	20	20頃	2025	妈 2030頃
参考	炉心プラズマ物理検証(FIREX-I)				
レーザー炉特有の		白己占小宝	L 語(FIREX-II)		
研究開発			繰り返し炉工試験		
					レーザー方式原型炉設計
炉心プラズマ	(15) C1/N/大: 炉心プラズマ 基礎実験→(17) (16) C1/N/大: 国際連携検討ー (19) C1/N/大: 国際連携準備ー	→ (22)	(22)C1/N/大: 高利得炉心	プラズマ数値設計 →(29)	(22) C1/N/大: 高利得炉心プラズマ数値設計 (29)
	(17)C1/N/大: 自己点火炉心フ	/フスマ剱個 設計→(21)	 (20)C1/N/大: 自己点火実	証実験 →(26)	
繰り返し炉工試験装置	(16)C1/N/大/産:繰り返し炉: 概念	工試験装置 念設計 →(18)			
	(18)C1/N/大/産: 大量ペレッ 詳 (18)C1/N/大/産: ペレット入!	細設計→(19) ト製造法の 細設計→(19) 射装置		対統合試験(28) J/10 Hz ルーザー建設→(25)	(23) C1/大/N/産:ペレット追尾装置の製作 (28) >(23) C1/N/大/産:連続照射統合試験(28)
	(15)C1/大/N/産: ペレット追	細設計→(19) 尾装置の 細設計→(22)	(20)C1/N/大/産: 大量ペレ (20)C1/N/大/産: ペレット	装置の製作→(23)	
炉工学技術	(16) C1/N/大/産:液体金属壁:詳細(16) C1/N/大:材料試験装置部(19) C1/N/大/産:トリチウム(19) C1/N/大/産:トリチウム	計的理解 (27) 基礎実験装置 田設計 → (20) 引詳細設計 → (20) 回収系の詳細 設計→ (22)	>(16) C1/大/N: 壁/フ(22) C1/C5/N/大: トリチヴターゲット製造系及びトリ(22) C1/C5/N/大: トリチヴ(21) C1/N/大: 液体金属壁(24) C1/N/大: 材料負荷照(25) C1/N/大: 液体金属壁	総合的理解 (27) ウム貯蔵/供給系の リチウム回収系へ の繋ぎ込み→(25) ウム回収系の製造 →(25) 基礎実験装置製作 →(24) 射試験 →(27)	