資料10-2

科学技術·学術審議会 研究計画·評価分科会 宇宙開発利用部会 ISS·国際宇宙探査小委員会 (第10回)H26.11.12

「月探査の意義について」

2014年11月12日

大阪大学 理学研究科 佐伯和人

本日の話題

- (1)月と火星の特徴
- (2)月(火星)探査の位置づけ
- (3)月探査ロードマップの考え方

月と火星の基本データ

	半径 (km)	地球との距 離 (km)	大気圧 (bar)	大気	地表温度 (平均) (℃)
月	1737	38万	0.00	なし	-170 ~ 120
火星	3396	5759万 (2018年) 会合周期 780日ごとに 打ち上げ好機	0.01	CO ₂ (95%) N ₂ (3%) Ar (1.5%)	-150 ~ 20 (-60)
地球	6378		1	N ₂ (78%) O ₂ (21%) Ar (1%)	-90 ~ 60 (15)

撮影:鈴木邦彦

人類の次のフロンティア として必要な条件は、

- 1) 大きい
- 2) 近い
- 3) 分化している

月は大きい・・惑星に近い

月 1737 km (地球の約1/4) 火星 3396 km (地球の約1/2) 地球 6378 km

火星328 m(14号車)

月は近い

太陽の直径を2mとすると

X

中間車 25 m

地球 1.8 cm

0.5 cm

火星 1.0 cm

地球 215 m(9号車)

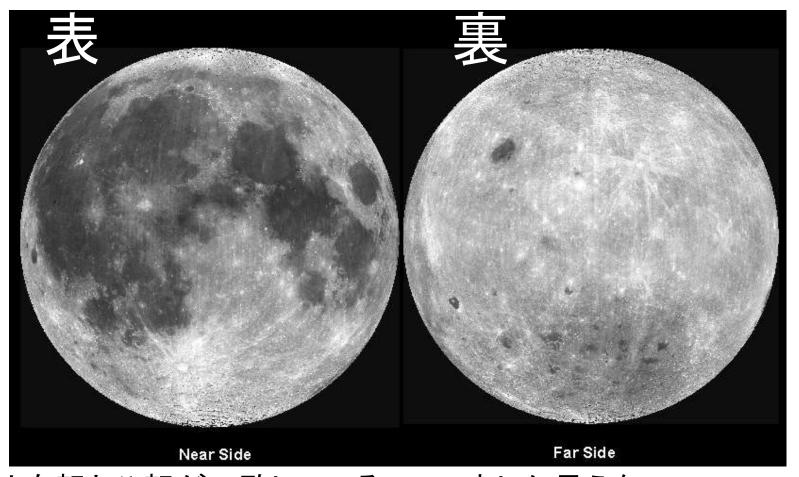
地球 – 月

0.55 m

火星最接近 (2018年)

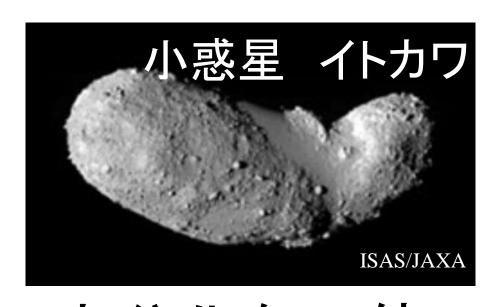
地球 - 火星 83 m 3車両強

新幹線N700系 16両編成 405 m 先頭車 27.35 m


6

木星 1.1 km 土星 2.1 km

月と火星の特徴


月は常に表側を地球に向けている(=通信利便性(これも近さ))

Clementine Albedo Map of the Moon /NASA

月は自転と公転が一致しているので、表しか見えない。 火星の衛星フォボス、ダイモス、木星の4つのガリレオ衛星なども同じ

月は分化している

未分化な天体 おおむね一様な物質

分化した天体 地殻+マントル+核

鉱山は分化した天体にのみ存在する。

まとめ

	月	火星	地球	小惑星 イトカワ 約 500 m	小惑星 ベスタ 約 500 km
大きい (資源の量)				×	Δ
近い (距離だけでは 測れない 利便性)		×	©	Δ	×
分化している (元素濃集機構)				×	Δ

月が火星より優れている点

- •圧倒的に地球に近い
- •同じ面が地球に向いている
- 最初期の地殻が保存されている

火星が月より優れている点

- ・大気の存在
- かつて海があった
- 圧倒的な揮発成分資源量

9

本日の話題

- (1)月と火星の特徴
- (2)月(火星)探査の位置づけ
- (3)月探査ロードマップの考え方

月(火星)探査の位置づけ

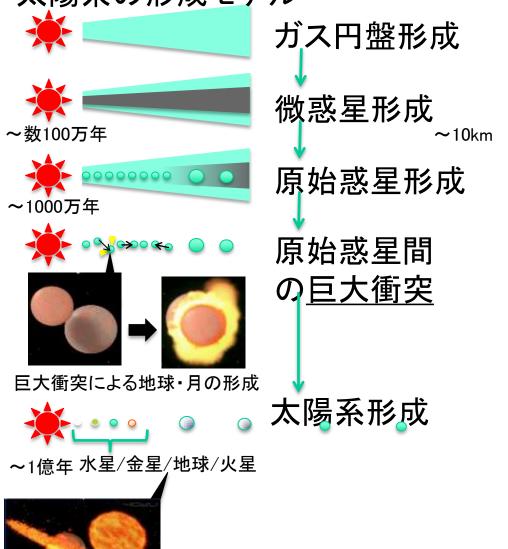
惑星進化の段階の理解

未分化な小惑星 \rightarrow 分化した小惑星 \rightarrow 月 \rightarrow 火星 \rightarrow 地球卵(+前世の記憶) 胎児 赤ちゃん 幼児 青年

写真:

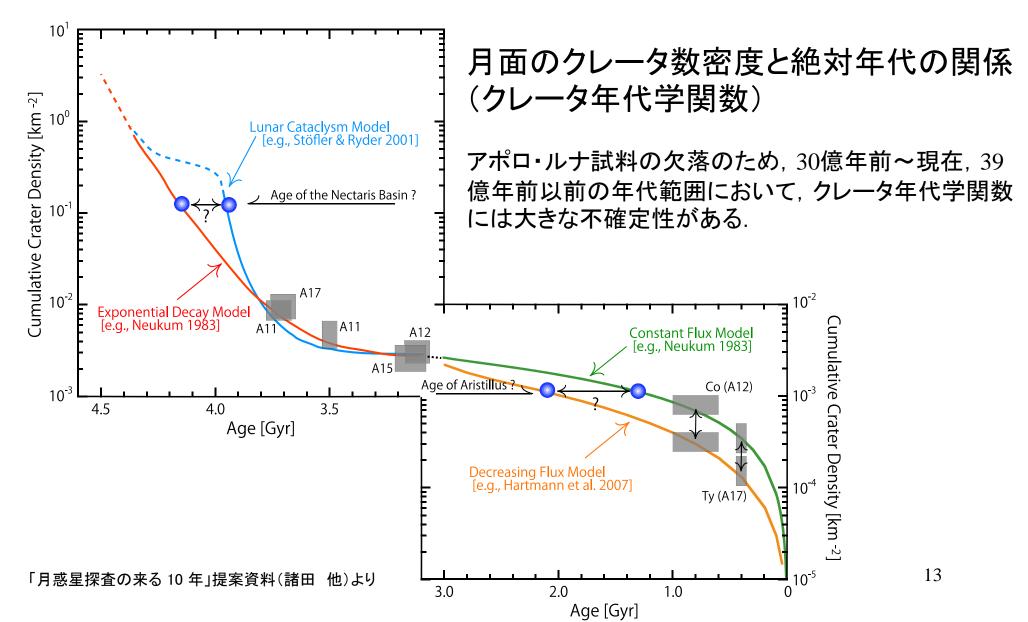
Itokawa JAXA/ISAS

Vesta NASA/JPL-Caltech/UCAL/MPS/DLR/IDA


月 K.Suzuki

火星 NASA, ESA, the Hubble Heritage Team

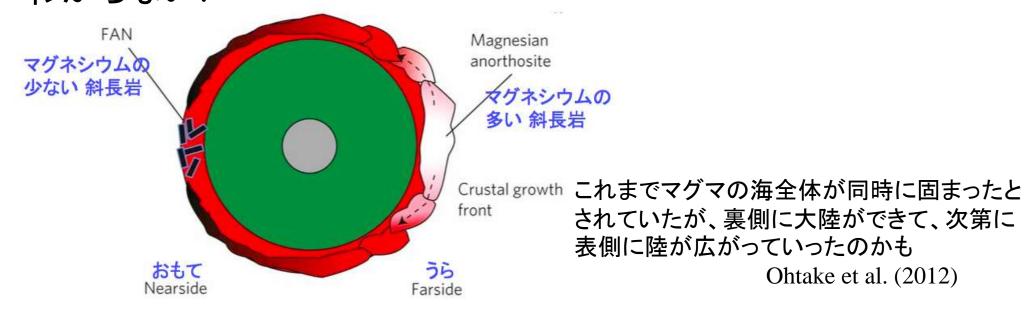
地球 NASA


月(火星)探査の位置づけ

太陽系の軌道進化の理解・・・隕石衝突記録を元に読み解く 太陽系の形成モデル

月(火星)探査の位置づけ

太陽系の軌道進化の理解・・・隕石衝突記録を元に読み解く

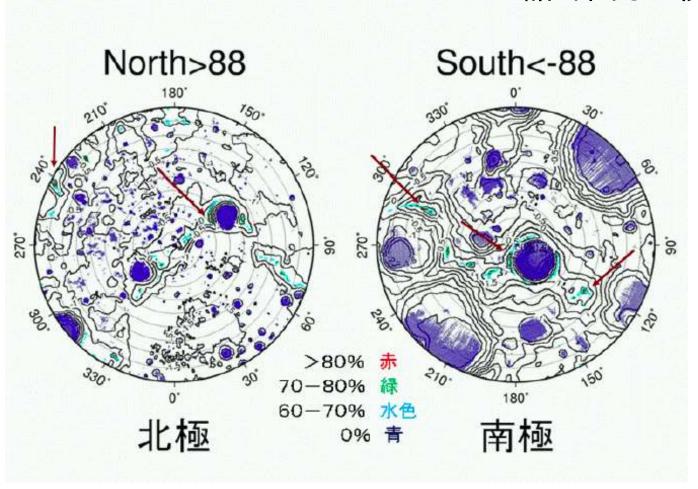

月探査ロードマップの考え方

本日の話題

- (1)月と火星の特徴
- (2)月(火星)探査の位置づけ
- (3)月探査ロードマップの考え方

科学での月攻略の大きなポイントは3つ

- 1) <u>裏側地殻探査(</u>表側との対比) ・・・ 月は裏から固まった?
- 2) <u>地震計ネットワーク</u>・・・ 地下構造わからずして月の起源は わからない!


3) 極域探査 • • • 揮発成分は天体表面をどう動くか?

資源という観点で良い場所は限られている

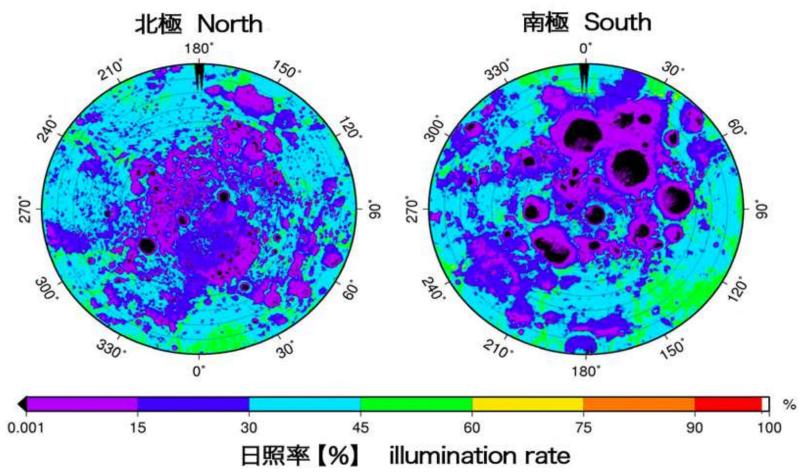
- •高日照率領域
- ・永久影領域(水氷の存在)
- 放射性物質濃集領域
- •縱穴構造

高日照率領域

- •太陽光発電に有利
- ・越夜のハードルが低い
- •諸外国も重視

高日照率領域 (JAXA/KAGUYA)

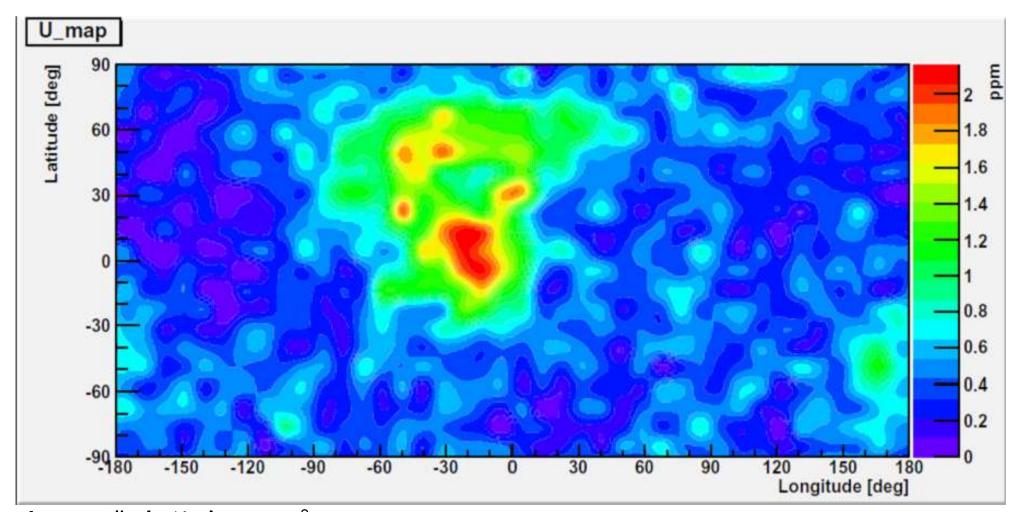
17


北極周辺と南極周辺(緯度88度以上)の日照率マップ 提供/野田寛大(国立天文台)/JAXA

・飲み水

・酸素の元

・燃料の元



永久影領域(JAXA/KAGUYA)

北極周辺と南極周辺(緯度85度以上)の日照率マップ。黒い部分が永久影領域。 提供/野田寛大(国立天文台)/JAXA 月探査ロードマップの考え方

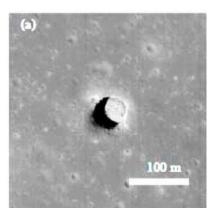
放射性物質濃集領域

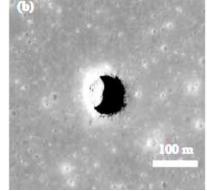
•月の次のフロンティア開発 のエネルギー源

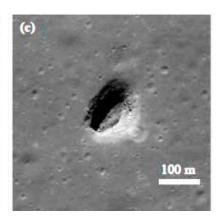
ウラン濃度分布マップ

「かぐや」データベースのガンマ線分光器のデータを元に作成。

提供/長谷部信行、長岡央(早稲田大学)


(参考:地球品位 0.1% 1000 ppm ウラン鉱石)

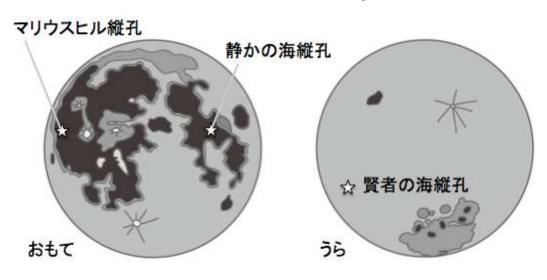

19


月探査ロードマップの考え方

「かぐや」が発見した縦穴構造

月での長期居住の 基地建設に 有利な可能性

(a) マリウスヒル孔

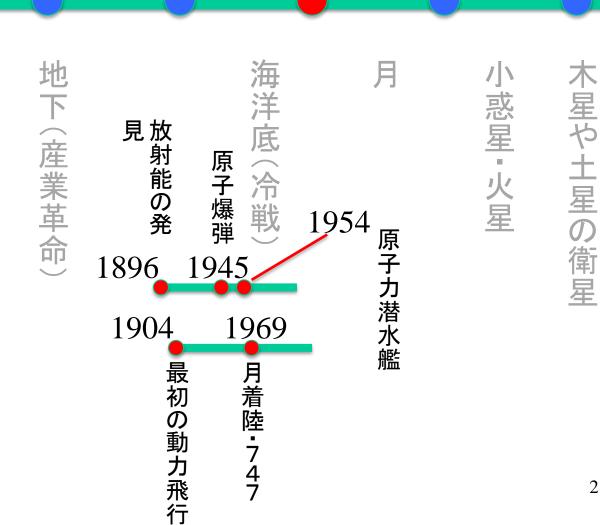

(b)静かの海孔

(c) 賢者の海孔(裏)

Haruyama et al., 2011

溶岩チューブ探査想像図 NASA

主要な縦孔の位置


20

「世界はなぜ月をめざすのか」(講談社ブルーバックスより)

人類のフロンティアの変遷

300年前 200年前 現在 100年後 400年前 100年前 200年後

新 大陸(大航海時 代

科学コミュニティーをまとめる活動

1) SELENE-2 着陸地点検討会

目的: 2010年半ば打ち上げ予定のSELENE-2着陸地点を提案

期間: 2010年~2012年

主体: 多学会横断、着陸地点検討会(103名)

2)「月惑星探査の来る 10年」検討活動

目的: 惑星科学コミュニティーの将来を担う探査提案を作成しWG化する

期間: 2009年~2014年

主体: 惑星科学会将来計画専門委員会下の将来惑星探査検討グループ

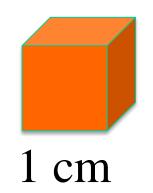
ただし、提案・検討は惑星科学会に閉じない

3) 月科学研究会、月探査ロードマップ作成作業

目的: 科学コミュニティーの提案する月探査レシピの備蓄展開

期間: 2014年夏~

主体: 惑星科学コンソーシアム(惑星科学会を中心に組織中)


どのような活動も、議論の透明性と一般啓発が大切

以下、補足資料

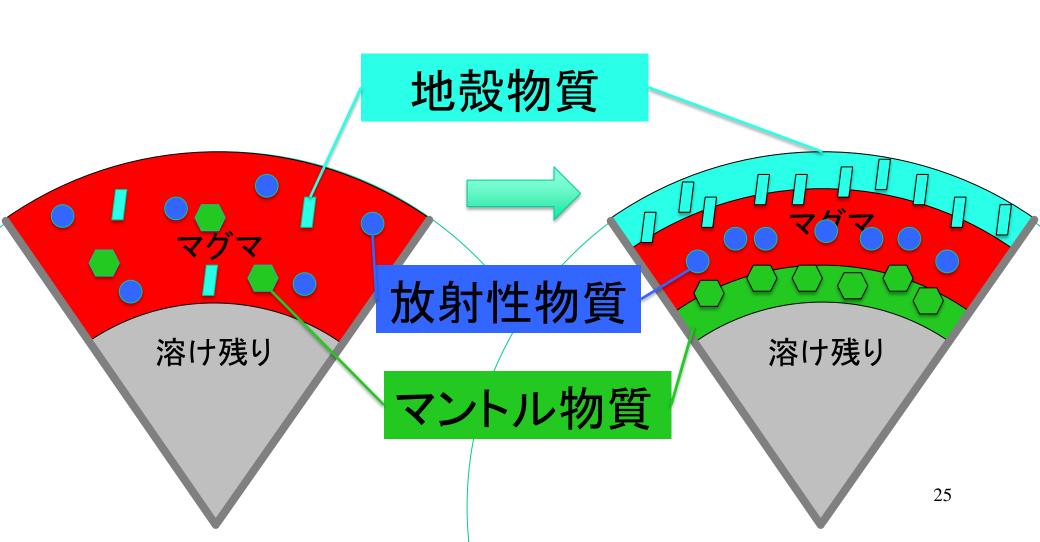
月は地球より少し早く冷えた

使い捨て カイロ小(月)

使い捨て カイロ大(地球)

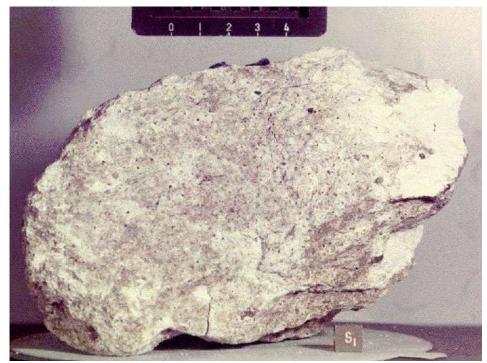
4 cm

熱くなる中身

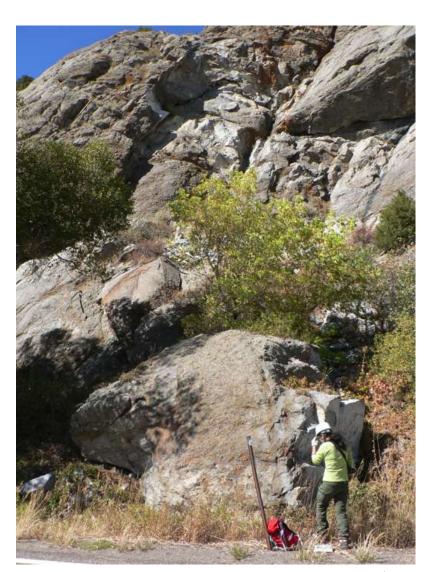

熱が逃げる表面積

: $4 \times 4 \times 4 = 64$

: $4 \times 4 = 16$


マグマの海仮説

マグマの海の中から、軽い地殻物質が浮いて固まった

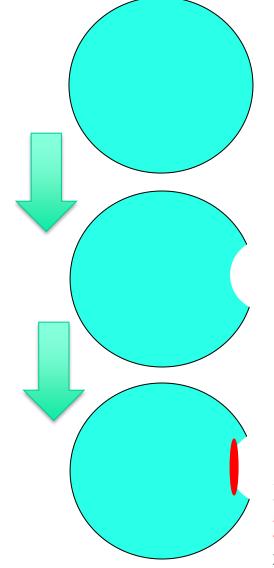


白いところ(高地)は斜長岩(白く軽い岩石)

アポロ16号試料 スケールはcm 写真提供:NASA

斜長岩でできた山、米国ワイオミング州ポーマウンテン PoeMountain, WY, USA 26

黒いところ(海)は玄武岩(黒く重い岩石)


クパイアナハ(ハワイ)の溶岩湖 直径約100m

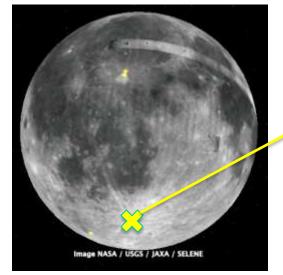
プウオオ(ハワイ)の溶岩噴泉 高さ450m

高地と海の形成

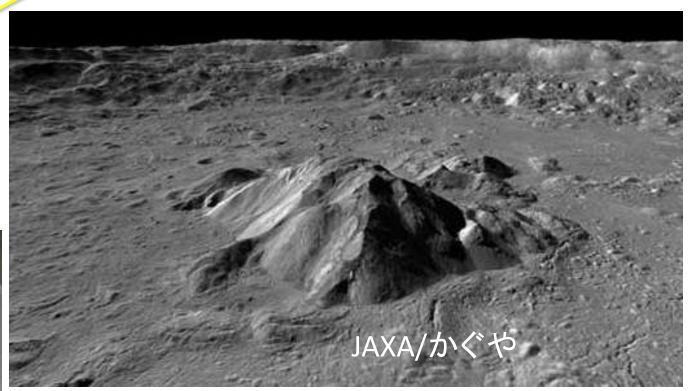
Highland and mare formation

斜長岩が浮いて 高地(白い岩石) を形成

巨大クレーター の生成


1~十数億年後に 溶岩が流れ出て 海(黒い岩石) を形成

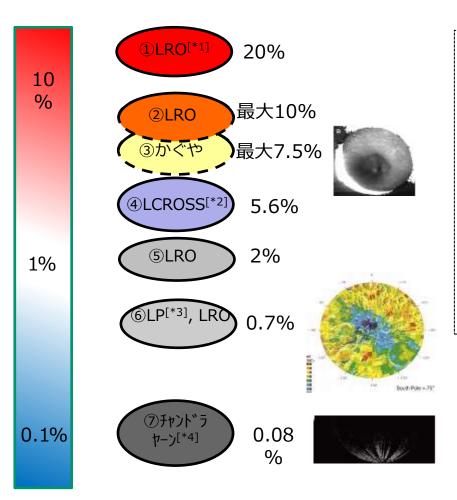
チコクレーター中央丘 Tycho central peak


地下深部の覗き穴

Google/NASA/USGS/JAXA/SELEN

チコクレーター内部の標高 2.5 kmの中央丘 5-30 km の深部から来た岩石があるとされる

月面の物質と環境に関する調査


代表的探査機(シリー	一ズ)	围	探査内容
Luna		旧ソ連 ~1976	リモートセンシング サンプルリターン(16号,20号,24号 計325g)
アポロ		米国 ~1972	リモートセンシング+着陸探査+サンプルリターン 381.7kg
クレメンタイン	TO IF	米国 1994	リモートセンシング (物質、地形)
ルナ プロスペクタ	X-	米国 ~1999	リモートセンシング(物質)
かぐや		日本 ~2009	リモートセンシング (物質、地形)
チャンドラ ヤーン		インド ~2009	リモートセンシング(物質、地形、放射線) 2016年 2号で着陸探査を予定
LRO/LCROSS	H	米国 2009~	リモートセンシング(物質、地形、放射線、温度) インパクタ(LCROSS)による水氷探査
嫦娥		中国 2007~	リモートセンシング(1号、2号:物質、地形、太陽風)、着陸探査(3号:物質、地下構造、 天文観測)、2017年に5号でサンプルリターンを予定
LADEE		米国 ~2014	月大気・ダストの軌道上観測

月の表面物質の利用可能性一覧

	· -					
	資源	存在形態	主な存在場所	主な抽出方法	存在量等	利用可能性
1	水氷	氷、土壌に吸着 ?	永久影および極域 の低温領域?	加熱	由来諸説あり 0.1-20wt%	×~◎ 存在量/質による(不 明)。
2	揮発性物質	土壌に吸着	全球(極地域の永久 影が高濃度)	加熱	太陽風由来等 H:10-120ppm C:20-280ppm N:10-160ppm	×~〇 存在量/質による(推 定量有)。
3	酸素	金属・シリコン等の 酸化物	全球(土壌はケイ素 や金属の酸化物が ほとんど)	還元 溶融電気分解	土壌の40wt%	〇 手法確立済み規模 の問題
4	金属	金属酸化物等	全球(鉄は海が多い)	還元	Si: >20wt% Fe: >10wt%	△ プロセスが確定して いない
5	バルク土壌	表面~10m(場所に よる)	全球	直接利用	普遍的に存在	©
6	放射性燃料	表層~	表側の海の中低緯 度	化学処理	U: <3ppm Th: <10ppm	×~〇(濃集場所が 発見されれば) 地球のU鉱石0.05 ~0.2 %
7	希土類(REE)	表層~	PKTと呼ばれる地域	酸やアルカリによる 処理	REEの最高濃度 La: 217ppm(アポロ) 平均は地球の地殻よ り少ない	×
8	白金族などのレアメ タル	単体金属もしくは合 金	濃集地は不明	王水や酸による溶 解と沈殿分離	土壌に数〜数十ppb 程度	× 地球の白金族鉱床だ と数十ppm
9	ヘリウム3	土壌に吸着	海が多い	加熱	太陽風由来 <0.05ppm	x 3

極域の水氷に関する知識

月極域には過去長期間にわたって彗星・小惑星・太陽風によりもたらされた水氷(あるいは水素)が保存されていると考えられている。水氷の存在の有無について下記のように<u>リモートセンシング観測データに基づく多くの研究が報告されているが、</u>観測波長・データ解析手法により結果が異なることや、データの解釈において意見が分かれるなど理由から、<u>量、分布、形態(塊、吸着など)について決定的な結論はまだ得られていない。</u>

- ① シャックルトンクレータ内は太陽風による月表面の変化が小さいか、 又は水氷が存在 (Zuber et al., 2012)
- ② 永久影領域に水氷が存在 (Thomson et al., 2012)
- ③ シャックルトンクレータ (南極の永久影) 内の地表に大量の 氷は存在しない (Haruyama et al, 2009)
- ④ 飛翔体の衝突による放出物を観測(Colaprete et al., 2010)
- ⑤ 表層に水の霜が存在(Gladstone et al., 2012)
- ⑥ 極域の永久影領域に水氷または水素が存在 (Miller et al., 2012)
- ⑦ 高緯度地域にOH基と水が存在(Pieters et al., 2009)
- [*1] Lunar Reconnaissance Orbiter(米国, 2009年打上)
- [*2] Lunar CRater Observation and Sensing Satellite (米国, 2009年打上)
- [*3] Lunar Prospector (米国, 1998年打上)
- 「*4] Chandrayaan-1 (インド, 2008年打上)