

資料7-3

科学技術·学術審議会 研究計画·評価分科会 宇宙開発利用部会 ISS·国際宇宙探査小委員会 (第7回)H26.9.26

国際宇宙探査に必要な技術について

2014.9.26 宇宙航空研究開発機構 執行役 田中 哲夫

目次

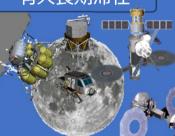
- 1. 国際宇宙探査のシナリオ
- 2. 国際宇宙探査に必要な技術
- 3. 国際宇宙探査における技術ロードマップ
- 4. ISS(地球低軌道)と月・火星探査の違い
- 5. 国際宇宙探査に求められるキー技術
- 6. 宇宙探査に対する世界の動きとニーズ
- 7. 国際宇宙探査に必要なキー技術とそのレベル
- 8. 国際宇宙探査に向けたJAXAの取り組み

1. 国際宇宙探査のシナリオ

出典:ISECGのGERを参考にJAXAで作成。

有人火星探查

(国際協同)


2030年以降

- 放射線対策
- 水•空気再生
- 宇宙医学•健康管理 等
- ✓ ISSを通じた探査技術の宇宙実証
 - 地球再突入
 - ・ 深宇宙航法ランデブ、光通信
 - 再生型燃料電池 等

国際協働 有人宇宙探査 2025年以降

有人長期滞在

有人小惑星探查

有人月面探查

小惑星

• 深宇宙運用

月

- ・ 着陸 ・ ロボット
- **。** 卤化
- を・ロルット・

• 深宇宙運用

· 電力

火星

- ・ロボット
- 突入/降下/着陸

2. 国際宇宙探査に必要な技術

出典:ISECGのGERを参考にJAXAで作成。

深宇宙運用技術

- 深宇宙航法ランデブ
- 大型電気推進
- 光通信
- 燃料補給

離着陸技術

- 高精度着陸
- 障害物回避
- メタンエンジン
- 表面からの離陸・回収

火星探査に向けて検討 が必要な技術

- 深宇宙自律運用(火星)
- 大気突入降下(火星)
- 高効率大型推進エンジン(火星)
- 原子力発電(火星)

輸送技術

- 探査用有人宇宙船
- 大型打上げ
- 極低温燃料貯蔵
- 地球再突入ヒートシールド

ロボット技術

- 表面移動
- 粉塵/低温下での機構・掘削
- 準リアルタイム遠隔操作
- EVA作業支援ロボット

有人滞在技術

- 放射線対策
- 水/空気再生
- 宇宙医学、健康管理
- 居住モジュール軽量化
- 宇宙服
- 現地資源利用

電力技術

- 再生型燃料電池
- 軽量/自動展開太陽電池パネル

3. 国際宇宙探査における技術ロードマップ

ISS 技術実証

無人月探査技術実証

			2020	2030	2040
出典:ISECGのGERを参考にJAXAで		で作成。		有人月面探査	有人火星探査
	探査用宇宙船	開発中(米)	LEO有人技術実証	LEO以遠有人宇宙船	LEO以遠有人宇宙船
±	大型打上げ能力	開発中(米)	大型化•有人化	打上げ能力(105t)	打上げ能力(130t)
輸送	極低温燃料貯蔵	地上研究	技術実証	蒸発率(1%/day)	蒸発率(0%/day)
	地球再突入ヒートシールド	LEO 帰還実証	月帰還速度対応(比重0.5)	月帰還速度対応(比重0.5)	火星帰還速度対応(比重0.3)
	高効率大型推進エンジン		地上研究		LEO以遠有人宇宙船
深	深宇宙航法ランデブ゛	技術実証	月近傍技術実証	月近傍/有人対応	火星周回/有人対応
十字	大型電気推進	地上研究	月近傍技術実証	ホールスラスタ(数10kw)	ホールスラスタ(100kw)
宙	光通信	技術実証	月近傍技術実証	月近傍(800Mbps)	火星(250-500Mbps)
運	燃料補給	地上研究	月近傍技術実証	月近傍·極低温	火星表面•極低温
用	深宇宙自律運用	技術実証	技術実証	月近傍/有人対応	火星周回/有人対応
₩#	高精度着陸·障害物回避	地上研究	<i>月着陸実証(100m)</i>	有人化対応(100m)	有人化対応(100m)
離着	表面からの離陸・回収	地上研究	月離陸技術実証	大型化対応(10t)	大型化対応(30t)
増	メタンエンジン	地上研究	月着陸技術実証	大型化対応(1/6G)	大型化対応(1/3G)
PI	突入/降下	地上研究	技術実証	(地球、無人火星)	有人化対応(60t)
ロボ	表面移動・掘削	地上研究	移動/掘削技術実証	移動(500km)/掘削(10m)	移動(1000km)/掘削(10m)
ット	遠隔操作・有人支援	地上研究	月遠隔操作実証	自律/遠隔·有人対応	自律·有人対応
電	再生型燃料電池	技術実証	1 <i>kW級</i> (250wh/kg)	10kW級(500wh/kg)	100kW級(800wh/kg)
亀	軽量太陽電池パネル	地上研究	技術実証	軽量パネル (10kw, 1kw/kg)	軽量パネル (100kw, 2kw/kg)
73	原子力発電		地上研究		有人火星(100kw級)
	放射線対策	LEO放射線計測·防護	深宇宙放射線計測	放射線防御(60日)	放射線防御(900日)
有	水•空気再生	技術実証(要素)	技術実証(システム)	水再生率(90%)	水再生率(99%)
一片	宇宙医学/健康管理	技術実証(180日)	技術実証(360日)	健康自律管理(60日)	健康自律管理(900日)
滞	居住モジュール軽量化	地上研究	技術実証	軽量化	軽量化
在	宇宙服	地上研	7 0	レゴリス対応・低重力	レゴリス対応・低重力
	現地資源利用	地上研究	要素技術実証	システム実証	実用化

4. ISS(地球低軌道)と月・火星探査の違い ISSのある地球低軌道と比して、地球からの距離や 宇宙環境などの違い が大きく、有人月・火星探査の 実現には技術的チャレンジを必要としている。

宇宙放射線: 数mSv/日×900日 飛行期間:約6~9か月(片道) 月表面 10 距離: 5500万km~4億km 宇宙放射線: 通信遅延(往復):6分~44分 数mSv/日×50-60日 地球低軌道 火星周回 月周回 10 飛行期間:数日(片道) 10 距離:37万km 通信遅延(往復)-- 約2.6秒 ■ 円グラフは、H2Bロケットで地球低軌道に輸送できる重量を 基準とし、同じロケットで月、火星に輸送できる重量を表記 ■ GERの前提では、有人火星着陸機の火星周回軌道到着時 6

の重量は約100トン

5. 国際宇宙探査に求められるキー技術

- 1)月以遠への効率的輸送
 - ■輸送能力

月表面や火星周回への輸送量は地球低軌道の1/10。輸送技術の革新やシステムの軽量化が必要。

■限られた補給機会

火星への補給機会は26ヶ月に一回。補給物資の再利用や長期保管が必要

- 2)遠くへの長期間の有人宇宙飛行
 - ■宇宙放射線の増加

ISSでは1mSV/日。月では数mSV/日×50~60日、火星では数mSV/日×900日への対処が必要。

■宇宙航行•軌道

月へは片道数日、火星へ6~9か月(かつ帰還の機会も500日毎)。長期有人滞在技術が必要。

■通信遅延と宇宙航行支援

通信遅延(月:約2.6秒、火星:8~40分)とGPS等の航法支援が得られないため、深宇宙運用技術が必要。

- 3) 重力天体への安全な着陸と滞在、帰還
 - ■重力天体への着陸と帰還

重力のある天体(月:1/6G、火星:1/3G)への安全な着陸と帰還には、効率的なエンジンや大気減速が必要。

■未知の場所へのアクセスと滞在

未知の場所へのアクセスはリスクがあるため、ロボットによる事前調査やクルー支援が必要。

■太陽光の影響、熱環境条件

月面の2週間に亘る夜や-200℃~+120℃の温度変化、火星の弱い太陽光に対処する電力技術が必要。

6. 宇宙探査に対する世界の動きとニーズ

- 米国および民間の動きとニー ズ
 - 月以遠の天体に安全に着陸し、表面で活動し、帰還する技術
 - NASA(小惑星、火星)
 - 安価に人および物資を輸送する技術
 - 地球低軌道(ボーイング社、スペースX社、他)
- 国際社会の中でのプレゼンス確保の動きとニーズ
 - 国際プレゼンス確保を目的とした有人宇宙技術
 - 米国、ロシア、中国、他
 - 地球以外の資源・エネルギーを利用する技術
 - 資源現地利用(NASA)、小惑星資源利用(米国プラネタリ・リソース社、他)
- 世界共通の国家ニーズ
 - 地上産業界の優位性を強め伸ばせる技術
 - ロボット技術、資源再生技術、材料技術、システム技術、他
 - 宇宙産業技術の優位性を強め伸ばせる技術
 - 輸送技術、深宇宙大容量通信技術、他

7. 国際宇宙探査に必要なキー技術とそのレベル

VA

	 キー技術・能力	有人探査に必要な要求		世界の現状		備考	
	十一文例"能力	有人月探査	有人火星探査	正分下	フ-近1人 	III つ	
	探査用宇宙船 [人数/突入速度]	4名/11km/s	6名/12km/s	4-6名	Orion[米]	• 米が探査用宇宙船及び大型	
有人	大型(LEO100t超)打上げ[LEO能力]	105t	130t	130t(機体込)	シャトル [米]	ロケットの開発を開始。 (露も計画中) ●極低温燃料貯蔵やヒートシー	
輸送	極低温燃料貯蔵[蒸発率]	1%/day	0%/day	75%/day	SLS[米]		
+111 /22	地球再突入ヒートシールド[比重]	0.5	0.3	0.5	Apollo/Orion[米]	ルドは多くの機関(日本含	
	高効率大型推進エンジン	_	推力10t/Isp1000秒	_	研究中[米]	む)で研究中	
	深宇宙航法ランデブ	月近傍/有人	火星周回/有人	月近傍/有人	Apollo[米]	• Apolloでのランデブはマニュアル	
深宇	大型電気推進 [電力]	数10kW	100kW	5kW	AJ[米]	┣・大型電気推進は、米のほか、	
宙運	光通信[軌道/通信速度]	800M級	250M-500級	月/622M	LADEE[米]	日・露・欧が研究中	
用	燃料補給[種類]	極低温液体	極低温液体	常温	ISS[米露欧]	● 光通信は、日・露・欧が研究	
	深宇宙自律運用	_	必要	計画中	ISS実証	中	
	高精度着陸 [精度]	100m	100m	数km	着陸[露米中]	* 米・露・中が既に着陸実績があるが、精度は高くない。	
₩ ¥	障害物回避[無人/有人]	必要	必要	月面	嬢娥[中]/Apollo		
離着陸	表面からの有人離陸 [離陸機質量]	10t	30t	5t	apollo[米]	• 火星大気突入実績は米のみ	
座	メタンエンジン[推力/比推力]	100kN級/350秒	500kN級/350秒	22kN/321秒	Morpheus[米]	● メタンエンジン研究は米・日の	
	火星大気突入·降下 [着陸質量]	_	60t	1t	Curiosity[米]	み	
	表面移動 [距離]	200-500km	1000km	41km(火星)	Opportunity[米]	• 表面移動技術は多くの国が研	
ボッ	粉塵・低温下での機構・掘削 [深度]	10m(TBD)	10m(TBD)	292cm(月)	Apollo[米]	究中。	
NO	準リアルタイム遠隔操作	遠隔	遠隔/自律	遠隔	ISS	┣・機構・掘削技術は日本の他は	
•	EVA作業支援ロボット	作業支援	作業支援	移動支援	ISS[米加]	カナダ・英国で研究中。	
	再生型燃料電池[電力,電力密度]	\sim 10kW, 500Wh/kg	\sim 100kW, 800Wh/kg	160Wh/kg	Li−Ion電池	• 燃料電池は多くの国研究中。	
電力	軽量/自動展開太陽電池パネル	10kW級, 1kW/kg	100kW級, 2kW/kg	0.15 kW/kg	Orion[米]	● 太陽電池パネルは日・米が世	
	原子力発電[発電電力]	_	\sim 100 kWe	125We	MMRTG[米]	界トップレベルの研究状況	
	放射線対策	数mSv/日×50-60日	数mSv/日×900日	1mSv/日	ISS[米]		
	水·空気再生[水再生率]	90%	99%	80%	ISS[米]	┣• 探査では高エネルギーの銀河	
有人	宇宙医学・健康管理[期間/支援]	50-60日間/自律	900日間/自律	180日/地上	ISS[米露]	宇宙線への対処が必要	
滞在	居住モジュール軽量化	軽量化	軽量化	20t/330m ³	BA 330[米]]● 水/空気再生、宇宙医学/健	
	宇宙服(レゴリス、低重力対応)	レゴリス、低重力対応	レゴリス、低重力対応	無重力対応	ISS [米露]	康管理は多くの国が研究中	
	現地資源利用	実証	実用化	研究	[米]		

開発中(緑)。有人月探査においても技術開発(黄)が必要。有人火星探査はさらに技術的ハードルが高い(赤)。

8. 国際宇宙探査に向けたJAXAの取り組み(1/2)

- 国際宇宙探査の広範なキー技術に対し、我が国に相応しい技術を 選択し集中的に取り組む。
- 技術の選択に当たっての考え方は以下の通り。
 - ① 国際宇宙探査を先導可能で、これまでの実績を更に伸ばし、 科学技術立国日本の国力を世界にアピールできる技術
 - (例)基幹技術である輸送系技術(軌道間輸送機、及びエンジンなどの要素技術) 国際宇宙探査をより安全でロバストとする為の複数の手段の確保(ロケットや通信技術)、等
 - ② 宇宙での実績は少ないが、日本の技術動向を踏まえた世界に 貢献できる技術および産業への橋渡しができる技術
 - (例)日本の優れた省エネルギーやクリーンエネルギー技術を生かした電力・エネルギー技術 最先端医療技術を生かした宇宙医学 高度な再生・リサイクル技術を生かした有人滞在技術 等
 - ③ 日本が将来的に優位(世界一)に立てる可能性が高い技術
 - (例)基幹技術である着陸・回収技術 民生ロボット技術を生かした有人支援ロボット 安全運転支援技術を取り込んだ安全な有人ローバ、等

8. 国際宇宙探査に向けたJAXAの取り組み(2/2)

ISSや「はやぶさ」での経験(参考)

- 日本オリジナルの技術による輸送技術の「デファクトスタンダード」 確立
 - こうのとり(HTV)のソフトランデブー・ドッキング技術
 ISSから10mの位置にホバリングし、ISSロボットアームで把持、ドッキングする方式

 ⇒ 米国民間輸送機でも採用
 - はやぶさの小惑星探査技術

障害を回避し指定の場所に安全に着陸する技術や、小惑星から地球に試料を回収する技術
⇒ 欧州のロゼッタ計画(彗星探査)や米国のOSIRIS-REX(小惑星サンプル回収)に先行

- 日本の技術を生かした高信頼性、高品質
 - こうのとり: 定時打上げ、定時到着(4機連続)
 - きぼう実験棟: 不具合は米国実験棟 の半分以下

打上げから48カ月後の不具合件数比較

	不具合件数
きぼう	75件
2008年3月打上げ	2012年3月まで
米国実験棟	175件
2001年2月打上げ	2005年2月まで

● はやぶさイオンエンジン: 4万時間運転(世界一)

参考資料

<u>キー技術について(1/6) −有人輸送一</u>

キー技術	探査用宇宙船	大型(LEO100t超) 打上げ	極低温燃料貯蔵	地球再突入ヒー トシールド	高効率大型推進エンジン
概要	地球低軌道より 遠方に飛行士を 運搬する機能	大型重量物を地 上から低軌道に運 搬する能力	宇宙空間で極低 温燃料の蒸発を 防止し、長期間貯 蔵する技術	有人宇宙船の大 型熱防護材の軽 量化	電気推進や原子力 を用いた高効率、大 型の推進エンジン
月探査目標	4名	105トン[LEO]	蒸発率 1%/日	熱防護材比重: 0.3	不要
火星探査目標	6名	130トン[LEO]	蒸発率0%/日 (再液化)	熱防護材比重: 0.3	推力10t 比推力1000 秒
日本の強み	無	無	H-IIA/B上段エン ジン	はやぶさ帰還カ プセル、HTV-R	無
例 <i>/イメ</i> ―ジ 図	(c)NASA 有人宇宙船 Orion	(c)NASA 重量級打上げロ ケット	極低温燃料タンク	有人宇宙船の地球帰還カプセル	(c)NASA 熱核ロケットエンジ ンの例 12

キー技術について(2/6) -深宇宙運用一

キー技術	深宇宙航法・ラン デブ	大型電気推進	光通信	燃料補給	深宇宙自律運用
概要	GPSが使えない 宇宙機同士のラ ンデブドッキング する技術	ホールスラスタの大型化技術	レーザを利用した 高速宇宙通信技術	宇宙拠点に燃料を充填する技術	地上系に依存しない宇宙船運用
月探査目標	ドッキング速度: 5~10cm/sec	10kW/500mN	800Mbps	必要	不要 (通信遅延:2.6秒)
火星探査目標	ドッキング速度: 5~10cm/sec	100kW∕5N	250-500Mbps	必要	必要 (通信遅延:数分 ~最大44分)
日本の強み	こうのとり (低軌道)	はやぶさ (イオンエンジ ン)	光通信技術衛星 (OICETS/低軌道)	こうのとり (低軌道・補給)	はやぶさ他 (深宇宙運用)
例/イメージ図			(c)NASA 月近傍光通信実験		はやぶさ運用
	ランデブセンサ	ホールスラスタ	(LADEE(米))	電動推薬ポンプ	14

<u>キー技術について(3/6)</u> -離着陸一

4	
	\boldsymbol{A}
7	4
-XI	_

キー技術	高精度着陸	障害物回避	メタンエンジン	表面からの有人 離陸・回収	火星大気突入 •降下
概要	周回軌道から指 定した場所に着陸 する技術	安全に着陸するために、障害物を買回 避する技術	動力降下で着陸 制御する推力可 変の大推力エン ジン	惑星表面から地 球に帰還するた めの離陸技術	火星表面に着陸 するために大気 圏に突入し降下 する技術
月探査目標	着陸精度:100m	必要	推力: 10ton@1/6G	必要	_
火星探査目 標	着陸精度:100m	必要	推力: 30ton@1/3G	必要	必要
日本の強み	地形照合による航 法技術	Flash LIDARによる 高速検知(研究中)	LNGエンジン (研究中)	無	無
例 <i>/イメ</i> ージ 図	地形照合技術	HAVABUSA2 LIDAR LIDAR(はやぶさ2)	LNGエンジン	(c)NASA 月面有人離着陸 機	(c)NASA 火星有人突入/ 降下

キー技術について(4/6) -ロボットー

キー技術	表面移動	粉塵・低温化での機 構・掘削	準リアルタイム遠隔 操作	EVA作業支援ロボット
概要	傾斜を有する不整地 環境を宇宙飛行士が 移動する技術	レゴリス、低温等の特殊環境において掘削等の機構を動作させる技術	ロボットを近傍の拠点、 及び地上から遠隔操 作する技術	クル一のEVA作業を 支援するロボット技術
月探査目標	走行距離:500km	掘削深度: ~20m	遠隔	作業支援
火星探査目標	走行距離:1000km	掘削深度:~20m	遠隔/自律	作業支援
日本の強み	自動走行技術 (地上技術)	建設機械等の地上技 術	災害対応等の地上ロボ	ジット技術
例/イメージ図	有人与圧ローバ	掘削ドリル (地上試験モデル)	有人支持	(c)NASA 爰ロボット 16

キー技術について(5/6) -電力技術一

キ一技術	再生型燃料電池	軽量/自動展開太陽電池 パネル	原子力発電
概要	水電解技術により酸素・水 素を生成(充電)し、補給が 不要な電池技術	自動展開可能な太陽電池 パドルの軽量化・自立化技 術	惑星面上で安定電力供給を 可能とする原子力発電技術
月探査目標	10kW, 500Wh/kg	1kW/kg	極周辺: 不要 (中低緯度: ~40kWe)
火星探査目標	100kW, 800Wh/kg	2kW/kg	100kWe
日本の強み	成層圏プラットフォームで開 発した再生型燃料電池	人工衛星(低軌道)技術 IKAROSの薄膜太陽電池	超小型炉技術
例/イメージ図	再生型燃料電池 (地上モデル)	自立式自動展開太陽電池パドル	(c)NASA 火星原子力発電システム

17

<u>キー技術について(6/6)</u> −有人滞在一

ISSでの放射

線計測

ISSでの水再

生

月面資源利用

プラント

キー技術	放射線対策	水・空気再生	宇宙医学•健 康管理	居住モジュー ル軽量化	宇宙服	現地資源利用
概要	磁気圏外の厳 しい放射線環 境から人体を 保護する技術	飛行士が使用 した尿等の水 分、二酸化炭 素等を再利用 する技術	宇宙飛行士が 長期滞在する 際の健康管理 技術	惑星表面に設 置され、クルー が滞在するた めの構造物の 軽量化	レゴリス・低重力環境に適応した船外用宇宙服	現地の物質の 直接利用や、 酸素等の生成 を行う技術
月探査目標	60日	再生率:90%	60日	軽量化	1/6G対応	実証
火星探査目標	900日	再生率:99%	900日	軽量化	1/3G対応	酸素製造
日本の強み	計測技術	水浄化技術	遠隔医療技術	軽量化技術 新素材技術	新素材技術	プラント技術
例 <i>/イ</i> メージ 図	25Gu			(c)Bigelow Aerospace		(c)NASA

ISSでの宇宙

医学実験

インフレータブル

居住モジュール 次世代宇宙服