国際宇宙ステーション(ISS)に提供する実験装置 (汎用宇宙曝露実験用ハンドレール取付機構 (ExHAM))に関する安全審査結果について

平成26年1月14日

独立行政法人 宇宙航空研究開発機構

説明者

有人宇宙ミッション本部 有人システム安全・ミッション保証室

室長 上森 規光

ExHAM:

Exposed Experiment Handrail Attachment Mechanism

目次

- 1. 目的
- 2. 審査経緯
- 3. 審査結果
- 4. 標準的な制御方法により検証した事項
- 5. 特徴的な制御方法により検証した事項
- 6. 結論

1. 目的

JAXAによる安全審査プロセス(資料7-1-2)を実際のシステムに適用した事例として、JAXAが行った汎用宇宙曝露実験用ハンドレール取付機構(ExHAM)に対する安全審査の結果を示す。

2. 審査経緯

JAXAは、ExHAMに関する有人安全審査会及び安全審査委員会を下記の通り 実施し、平成25年4月に終了した。

	有人安全審査会	安全審査委員会
フェーズ0/1 (基本設計終了時)	平成23年9月30日	平成24年2月7日
フェーズ2 (詳細設計終了時)	平成24年8月21日	平成25年1月29日
フェーズ3 (認定試験終了時)	平成25年2月14日	平成25年4月16日

3. 審査結果(1/3)

- (I)有人安全審査会において下記を確認した。
 - 1. ハザード及びハザード原因が適切に識別されていること(フェーズ0/1)
 - ▶ 識別されたハザードを次ページに、FTAを添付1に示す。
 - 2. 識別された全てのハザード原因に対して、ハザード制御方法が適切に設定されていること(フェーズ2)
 - ▶ 安全解析結果を添付2に示す。
 - 3. ハザード制御方法が適切に検証されていること(フェーズ3)
 - ▶検証結果を4章及び5章に示す。
- (II)各フェーズにおける有人安全審査会の結果について、安全審査委員会で審議・了承した。

以上によりJAXAとしての、汎用宇宙曝露実験用ハンドレール取付機構(ExHAM)の安全審査プロセスを完了した。

3. 審査結果(2/3)ー標準ハザード

識別されたハザード及びその審査結果を以下に示す。(安全解析結果の概要は添付2を参照。)

ハザード番号	標準ハザード*1	結果
1	打上げ荷重による構造破壊 (輸送用バッグにて打ち上げられるものが対象)	ユニークHR:ExHAM-02で評価
2	シールを有する圧力機器の破損	該当なし
3	ベントポートを有する機器の破損	該当なし
4	鋭利端部への接触、挟み込み	ユニークHR:ExHAM-04で評価
5	ガラス破損	該当なし
6	火災(可燃性物質の使用)	検証結果が妥当であることを確認した
7	船内空気の汚染(使用材料からのオフガス)	同上
8	電磁適合性	該当なし
9	電池の破裂/漏えい	該当なし
10	高/低温部への接触	ユニークHR:ExHAM-03で評価
11	電力系の損傷	該当なし
12	発火源の有無(シャトル打ち上げの場合)	該当なし
13	回転機器(循環ポンプ、ファン)の破損	該当なし
14	電力コネクタ着脱時の感電	該当なし
15	クル一退避時の障害	検証結果が妥当であることを確認した
16	水銀による船内空気の汚染	該当なし

*1;標準ハザード:標準化された方法で制御が可能なハザード。

3. 審査結果(3/3) - ユニークハザード

ユニークハザードは、製品に特徴的な制御が必要となるハザード。

ExHAMは、以下の特徴を有するため、それに対応したユニークハザードを識別。

- ✓ 「きぼう」ロボットアームを使用して取付/取外しを行う。
- ✓ 船内及び船外の両方で運用する。

	ユニークハザード	結果
1	ハンドホールドからのExHAMの不意な放出(UNQ-ExHAM-01)	検証結果が妥当であることを確認
2	ExHAM又はハンドホールドの構造破壊(UNQ-ExHAM-02)	同上
3	高温/低温部への接触 (UNQ-ExHAM-03)	同上
4	鋭利端部への接触 (UNQ-ExHAM-04)	同上

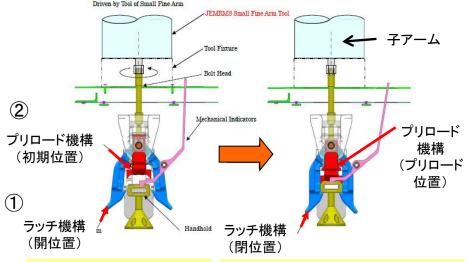
上記ユニークハザードについて、5項で説明する。

4. 標準的な制御方法により検証した事項

標準 ハザード 番号	タイトル	想定されるハザード	制御	検証
6	火災(可燃性 物質の使用)	可燃性物質を使用 していた場合、「き ぼう」内で火災が発 生する恐れがある。	適切な材料プロセス (JAXA宇宙ステーション プログラム材料及び工 程要求書)に従った材 料選定を行う。	材料使用リスト(MIUL; Material Identification and Usage List)を審査し、 承認した。
7	船内空気の汚染(使用材料 からのオフガス)	機器からのオフガス がクルーに危害を 与える恐れがある。	適切な材料プロセス (JAXA宇宙ステーション プログラム材料及び工 程要求書)に従った材 料選定を行う。	材料使用リスト(MIUL; Material Identification and Usage List)を審査し、 承認した。
15	クルー退避時 の障害	機器が障害となり、 緊急時のクルーの 退避を阻害する恐 れがある。	クルーの緊急時の退避 経路を阻害しないエン ベロープとする。	ExHAMのエンベロープ が規定値以内に収まる ことを確認した。

5. 特徴的な制御方法により検証した事項

UNQ-ExHAM-01: ハンドホールドからのExHAMの不意な放出



プリロードインジケータ

【想定されるハザード】: カタストロフィックハザード(ISS、「きぼう」の損傷/搭乗員の死傷)

・ハンドホールドからのExHAMの不意な放出により、ExHAMが浮遊し、ISS、「きぼう」もしくはEVAクルーと衝突し損傷/死傷させる。 【ハザード原因】

- ①:締結時におけるラッチ機構の故障
- ②:締結時におけるプリロード機構のジャミング
- ③:締結時におけるミスオペによる子アームからの不意な放出

プリロード機構がハンドホールドを抑え、 ラッチ機構が作動し把持完了した状態

ラッチインジケータ (3) 安全審査φ01の過 程で、EVA対応設 計に変更した。 Shaft RTLインジケータ EVAシャフト プリロードインジケータ ラッチインジケータ

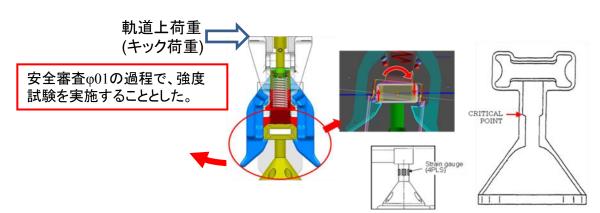
【制御方法、検証方法】

プリロード機構、ラッチ機構が

作動していない未把持状態

ラッチインジケータは当初は1つだったが、安全審査φ01の過程で、2つに設計変更した。

制御 検証 ①-1, ②-1 ISS共通の要求に基づく機構設計(1故障許容相当) ①-1, ②-1 解析及び試験結果(機能、ランダム振動、熱真 空、寿命)を確認 ①-2 ラッチ不良時には子アームによりラッチ機構を再解放し、その後船内へ持ち帰る (1)-2, (2)-2, (3) 運用制御合意文書を確認 (運用制御) ②-2 プリロード機構のジャミング時は、EVAクルーによりプリロード機構を解放し、 ②-2, ③ 機構解析、機能試験、現品確認の結果を確認 その後、船内へ持ち帰る(運用制御) ③プリロード機構及びラッチ機構の把持状態を表示するインジケータによる目視確認 ③ 視野解析結果を確認 (運用制御)

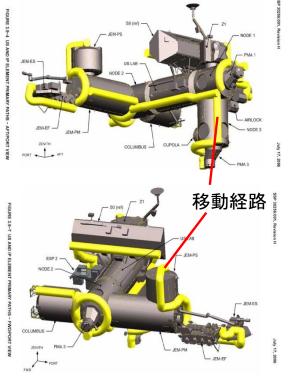

5. 特徴的な制御方法により検証した事項 UNQ-ExHAM-02: ExHAMまたはハンドホールドの構造破壊(1/2)

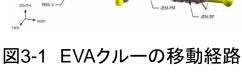
【想定されるハザード】: カタストロフィックハザード(ISS、「きぼう」の損傷/搭乗員の死傷)

•打上げ荷重/軌道上荷重の負荷によりExHAM、ハンドホールドもしくはハンドホールドインタフェースの構造 破壊、ExHAMの把持開放によりそれらが浮遊し、ISS、「きぼう」もしくはEVAクルーと衝突し、損傷/死傷させる。

打上げ用バッグに梱包された状態で 打ち上げられ、打上げ荷重を受ける

【制御方法、検証方法】


制御	検証
・ハンドホールド/ハンドホールドインタフェースの強度に関する強度解析、強度試験を行う。 EVAキック荷重に対しては、不適合報告書(NCR)の承認を得る(次ページ参照)。	・構造解析及び強度試験結果を確認、構造検証計画を承認。不適合報告書(NCR)が承認されたことを確認。
•ExHAMの打上げ荷重に対して、安全係数1.5 (降伏)、2.0(終極)を、軌道上荷重に対して、安全係数 1.25(降伏)、2.0(終極)を適用した構造設計を行う。	●構造解析、現品確認の結果を確認、構造検証計画を承認、図面を確認。
・ISS要求を満たす材料を使用する。	●材料リスト(MIUL)及び材料使用合意書(MUA)を承認。
•フラクチャコントロール計画及びファスナコントロール計画を 作成する。	●フラクチャコントロールステータスレポート/サマリレポートを 承認、ファスナの図面確認、現品確認の結果を確認。
•軌道上で取り付けるファスナについては、トルク管理を手順 書に記載する(運用制御)。	●図面確認、現品確認、運用制御合意文書を確認。


5. 特徴的な制御方法により検証した事項 UNQ-ExHAM-02: ExHAMまたはハンドホールドの構造破壊(2/2)

宇宙飛行士の船外活動(EVA)中のキック荷重が負荷された場合、ハンドホールドのブラケットの強度余裕が負となり、要求を満足しない(詳細は添付5参照)。これについては、以下により受入可能と判断した。

●受入根拠

- (1)ハンドホールドのブラケットは2つあり、破壊するのは1つのみ(ハンドホールドが破断しExHAMが外れて飛んでいくことはない)。
- (2)使用するハンドホールドはEVAクルーの移動経路ではない(図3-1)。
- (3)EVAクルーによるExHAMの解放時には、EVAクルーの姿勢から、キック荷重は負荷される恐れはない(図3-2)。
- (4)手順書でクルーに注意喚起する。

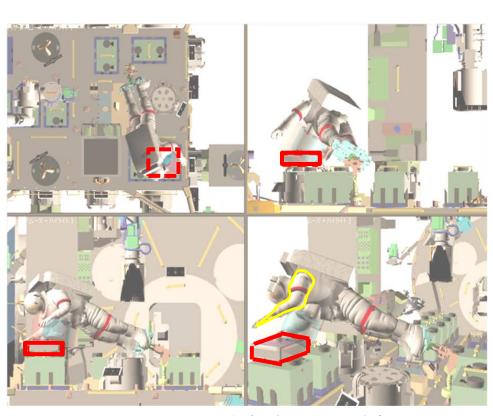


図3-2 ExHAMの解放時のクルー姿勢

5. 特徴的な制御方法により検証した事項 UNQ-ExHAM-03: 高温/低温への接触

【想定されるハザード】: クリティカルハザード(搭乗員の負傷)

- •ExHAMの接触温度範囲超過により、クルーを負傷させる
- (1)クルーがExHAMを「きぼう」曝露部からエアロック経由で船内へ移送する際、軌道上環境により ExHAMがクルー接触温度範囲(IVA:-18℃~49℃、EVA:-118℃~113℃)を逸脱する
- (2)不適切な設計・製造によりクルー接触温度範囲を逸脱する

【制御方法、検証方法】:

制御	検証
	●熱解析結果を確認した
•IVAクルーはExHAMが許容温度範囲内になる待ち時間を過ぎてからハッチをオープンする(運用制御)	•運用制御合意文書を確認した
 •EVAで許容される表面温度範囲内であることを確認する。 ・偶発的な接触:-118℃~+113℃ ・意図的な接触:-42.8℃~+62.6℃ ・上記を満足しない場合、Heat rateが許容値以下であることを確認する。 	

5. 特徴的な制御方法により検証した事項 UNQ-ExHAM-04: 鋭利端部への接触(1/2)

【想定されるハザード】: カタストロフィックハザード(ISS、「きぼう」の損傷/搭乗員の死傷)
•ExHAM外表面に鋭利端部があると、クルーが接触した場合、クルーを損傷させる

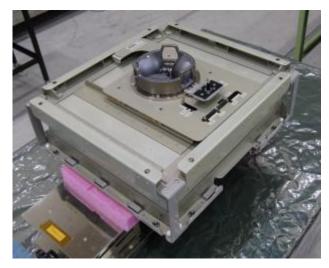


図1-1 ExHAM天頂部

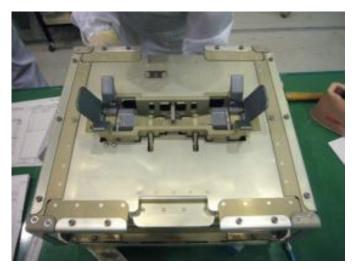
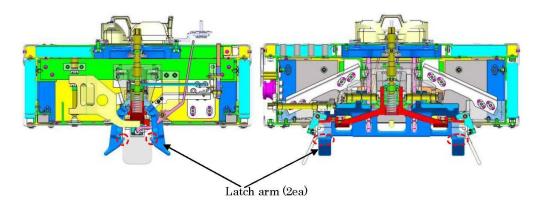


図1-2 ExHAM下面部

【制御方法、検証方法】

制御	検証
・ISS共通要求に基づく設計 (ラッチアームの鋭利端部については、次ページ参照)	•図面確認、現品確認、強度試験及び寿命試験後の現品 確認、接触試験、不適合報告書(NCR)が承認されたこと を確認。
•ラッチアームの鋭利端部を接触禁止エリアとする(運用制御)	●運用制御合意文書を確認。


5. 特徴的な制御方法により検証した事項 UNQ-ExHAM-04: 鋭利端部への接触(2/2)

ラッチアームの一部が鋭利端部の要求を満足できない(図4-1)。これについては、下記により受入可能と判断した。

●受入根拠

- (1)ロボットアームによるExHAM取外し作業に失敗した場合のみ、クルーによる船外活動が必要になる。取り外されたExHAMはバッグに保管されるため、鋭利端部にクルーが触れるおそれはない。
- (2)ラッチアームの鋭利端部は、クルーの触れにくい位置にある(図4-1)。
- (3)鋭利端部をクルーの接触禁止エリアとして識別する(図4-2)。
- (4)ラッチアームの接触がハンドホールドに鋭利端部を生じさせないことを試験により確認している。

クルーの接触禁止エリアとして設定

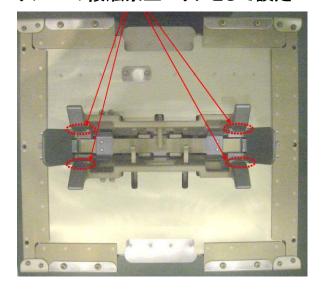


図4-1 鋭利端部

図4-2 接触禁止エリア

6. 結論

JAXAは、汎用宇宙曝露実験用ハンドレール取付機構 (ExHAM)について、JAXA内の安全審査を完了し、安全検証は 完了したと判断した。