物質のフェムト秒物理・化学現象解析のためのX線散乱計測技術

京大工 松原英一郎

1. サブグループの構成

(1) 超短パルス・コヒーレントX線を用いたイメージング技術開発(京大工 松原英一郎・理研播磨研 西野吉則)
(1)コヒーレント光イメージング基盤装置

(2) 試料を時間・空間領域で分光学的に監視するフェムト秒時間分解顕微鏡の開発(筑波大数物 守友浩・理研播磨研 田中義人)

(3) 微小磁性体内の磁化ベクトル分布解析技術の開発発(東北大 角田匡清・JASRI 中村哲也、鈴木基寛・ 富士通 淡路直樹)

(4) 吸着反応状態での回折データのその場・高速時間分解測定技術と吸着現象の可視化技術 (京大工 北川進・理研播磨研 高田 昌樹)

2. ナノマテリアルグループ開発主要装置概要

(1)コヒーレント回折イメージング基盤装置 一式 X線自由電子レーザーからのコヒーレント光を用 いた透過ジオメトリーでの前方スペックル散乱強度 測定と回折角度(20≦30°)の反射ジオメトリーでの 表面スペックル散乱および回折スペックル散乱測定 に対応でき、ビームラインに直結して超高真空下で

の測定を想定し設計されている。 (2)光励起系反射率等観察用フェムト秒顕微鏡シス

テム 一式

試料表面上の可視光反射率分布をフェムト秒の時間分解能でとらえる顕微鏡筒およびその周辺装 置の開発を行っている。

(3) 磁気スペックル測定用装置 一式

本装置は、高真空チャンバー内に精密2軸ゴニオメ ーターを備えたX線回折測定装置である。ブラッグ回 折配置での電荷スペックルおよび磁気スペックル実験、 透過配置でのホログラフィー実験、コヒーレント回折 イメージング実験に用いる。真空を破ることなく、回 折角 2 θ = -3° ~77°の範囲で CCD 検出器を無段階に 走査可能であり、大気によるX線の散乱や減衰が無い 条件で試料からの回折スペックル像を測定できる。磁 場印加用の電磁石、ナノメートル精度での精密試料位 置決め機構を備える。

3. ナノマテリアルグループの XFEL に向けた研究進捗状況

(1) コヒーレント光イメージング

この研究では、以下のテーマについて研究を行ってきた。

- 1) 位置分解能の追求 : 位相反復法を用いたコヒーレント光イメージング
- 2) 時間分解能の追求
 - 超短パルスイメージング フーリエ変換ホログラフィー (散乱強度と分解能とのトレード オフ) および HERALD 法(散乱強度 と分解能の両立)の2種類のフーリ エ変換ホログラフィーについて、
 XFEL からのシングルパルスでの測 定の実現に向けた研究を行ってき た。ここでの大きな成果は、XFEL で の測定のシミュレーションとして、
 極紫外自由電子レーザーを用いて、

シングルパルスでのスペックルの測定と、ヘラルド法での結像に成功したいことで、XFEL での超短パルスイメージングへの道を開いた。

● クロスビームトポグラフィーを用いた超高速イメージング

超短パルスイメージングよりさらに高速な物質表面での電子密度変化を捉えるための基礎 技術開発であり、インラインホログラフィーの確立を主要なテーマとした。

(2) クロスビームトポグラフィーによる光励起イメージング基盤研究

この研究は、(1)の超高速イメージン グ技術との組合せで、光物質科学分野開拓 に不可欠な光励起による固体物質の高速構 造変化とフェムト秒可視光イメージングの 同時測定技術の構築を目標とする研究開発 である。最近の研究では、フェムト秒レー ザーでシリコンミラー表面を照射した際の シリコン表面の超短パルスイメージングを 用いて、シリコンの瞬間的昇華に伴うナノ メートルオーダーの表面起伏の変化を位相 情報から取り出す実験に成功した。

4. XFEL で優先して行いたい研究

空間における光トリガー科学 ゼロエネルギーロス物質の研究

これまで本グループで行ってきた 主要な研究課題である超短パルスイ メージングとフェムト秒レーザー励 起現象観測技術を融合し、波長の異な る可視光フェムト秒レーザーを「励起 する光」と「電子を見る光」とし、そ れに XFEL からの「原子を見る光」を 組み合わすことで、光励起電子やフォ ノンの時間・空間変化、光励起に伴う 格子緩和・相変化の時間・空間変化な どを系統的に解析できる光トリガー 励起構造ダイナミクス計測技術を完 成する。そしてこの計測技術を用いて、 「電気から光へ」のゲームチェンジを

位相から求めたレーザー照射後の照射中心での シリコン単結晶面の起伏の時間変化 再構成像 位相 3ps 3.5pt 4.5pt 8.50 9.5p 10.5 7.50 18.5 31.5 25.5p 25.5p 500ur 位相[radian] -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 試料表面からの距離[nm] -15 -10 -5 0 高低差[nm] 20 遅延時間 [ps]

> 目指すゼロエネルギーロス物質開発支援の ためのピコ秒・ナノメートルの世界(未知の 時空間)活用するための新研究学術領域「光 トリガー科学」の創成に展開したい。

5. まとめ

ナノマテリアルグループでは、XFEL での測定を目指して、コヒーレント回折イメージング基盤装置、光励起系反射率等観察用フェムト秒顕微鏡システム、磁気スペックル測定用装置などの装置系の開発を行ってきた。
主要な研究成果としては、コヒーレント

X線回折イメージングにおける時間分解能の追求 における超短パルスイメージングの開発、ホログ

ラフィー法(フーリエ変換ホログラフィー、 HERALD法)を用いたコヒーレント光イメージ ングの開発、クロスビームトポグラフィー を用いた超高速イメージング開発を目的と するインラインホログラフィー と、クロス ビームトポグラフィーによる光励起イメー ジングの基礎実験を挙げることができる。 3)本グループとして、XFELによる光トリガ 一励起構造ダイナミクス測定を活用した時 空間における光トリガー科学(ゼロエネルギ ーロス物質)を提案する。

